Elettromagnetismo. Prof. Francesco Ragusa Università degli Studi di Milano. Lezione n

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Elettromagnetismo. Prof. Francesco Ragusa Università degli Studi di Milano. Lezione n"

Transcript

1 Elettromagnetismo Prof. Francesco Ragusa Università degli Studi di Milano Lezione n Dipolo oscillante Radiazione di una carica in moto Casi dell'accelerazione parallela e perpendicolare alla velocità Anno Accademico 2018/2019

2 Radiazione Quando una carica subisce un'accelerazione si genera una perturbazione elettromagnetica che si disaccoppia dalle sorgenti che l'hanno generata La perturbazione generata viaggia allontanandosi dalla sorgente Trasporta energia e quantità di moto La potenza (Joule al secondo) al tempo t della radiazione è data dal flusso del vettore di Poynting attraverso (ad esempio) la superficie A di una sfera di raggio r (con r molto grande) La potenza al tempo t deve essere uguale alla potenza emessa dalla sorgente al tempo precedente t 0 = t r/c Abbiamo pertanto Il limite per r deve essere uguale a P source (t 0 ) e quindi indipendente da r Pertanto il flusso del vettore di Poynting non deve dipendre da r Il flusso del vettore di Poynting su una sfera di raggio r vale circa Elettromagnetismo Prof. Francesco Ragusa 480

3 Radiazione Il ragionamento precedente ci dice che i campi statici o quasi statici che conosciamo non possono essere campi di radiazione Ad esempio, per un campo statico I campi derivati dai potenziali ritardati hanno dei termini che dipendono dalla derivata rispetto al tempo delle sorgenti e che variano come 1/r Ad esempio consideriamo il campo elettrico (vedi diapositiva ) origine Contiene termini che hanno la dipendenza da 1/r corretta Per studiare la radiazione pertanto occorre Studiare la soluzione per i campi a grande distanza dalla sorgente Trascurare i termini che vanno a zero all'infinito più velocemente di 1/r Questi termini si annullano per grandi distanze In particolare diventa nullo il flusso di energia attraverso una superficie punto di osservazione Elettromagnetismo Prof. Francesco Ragusa 481

4 Radiazione di dipolo elettrico Consideriamo un sistema composto da due piccole sfere collegate da un cavo collegato ad un generatore di corrente. Il sistema è orientato lungo l'asse z Al tempo t le due sfere hanno carica è un dipolo Il generatore fornisce pertanto una corrente Calcoliamo il potenziale ritardato dovuto alle due cariche (v. diapositiva ) Matematicamente la densità di carica è data da Inseriamo nella formula del potenziale Elettromagnetismo Prof. Francesco Ragusa 482

5 Radiazione di dipolo elettrico L'integrale è molto semplice per la presenza della funzione δ Otteniamo Fino a questo punto il calcolo è stato esatto Applichiamo adesso tre approssimazioni La prima che la dimensione del dipolo oscillante sia molto piccola d r Elettromagnetismo Prof. Francesco Ragusa 483

6 Radiazione di dipolo elettrico La seconda approssimazione assume che il dipolo sia piccolo rispetto alla lunghezza d'onda della radiazione: d λ Inseriamo nell'equazione del termine oscillante Ritorniamo all'espressione del potenziale Elettromagnetismo Prof. Francesco Ragusa 484

7 Radiazione di dipolo elettrico Riassumiamo i risultati ottenuti Introduciamo le approssimazioni nella formula di φ Il primo termine varia come 1/r, come atteso per la radiazione Elettromagnetismo Prof. Francesco Ragusa 485

8 Radiazione di dipolo elettrico Applichiamo adesso la terza approssimazione La distanza dal dipolo è molto maggiore della lunghezza d'onda Il secondo termine è trascurabile In conclusione il potenziale scalare è Riassumiamo le approssimazioni usate: d λ r Calcoliamo adesso il potenziale vettore Elettromagnetismo Prof. Francesco Ragusa 486

9 Radiazione di dipolo elettrico Applichiamo le approssimazioni La dimensione del dipolo molto minore della distanza d r La corrente del dipolo è (vedi diapositiva ) Assumiamo che z <d sia molto minore della lunghezza d'onda λ Si può trascurare l'ultimo termine Otteniamo Elettromagnetismo Prof. Francesco Ragusa 487

10 Radiazione di dipolo elettrico In previsione della derivazione dei campi E e B esprimiamo A in coordinate sferiche Ricordiamo che I potenziali sono pertanto (usiamo V invece di φ per evitare confusione) Calcoliamo il gradiente di V Trascuriamo i termini 1/r 2 rispetto a ω/rc (approssimazione tre) Elettromagnetismo Prof. Francesco Ragusa 488

11 Radiazione di dipolo elettrico Inoltre Otteniamo infine il campo elettrico di radiazione Per il campo magnetico Elettromagnetismo Prof. Francesco Ragusa 489

12 Radiazione di dipolo elettrico Calcoliamo le derivate Il secondo termine va come 1/r 2 ed è trascurabile rispetto al primo Concludiamo Come previsto la soluzione è un'onda elettromagnetica che si propaga in direzione radiale I campi E rad e B rad sono perpendicolari alla direzione di propagazione Inoltre sono perpendicolari fra di loro e E rad /B rad = c Osserviamo che non sono onde piane bensì onde sferiche Elettromagnetismo Prof. Francesco Ragusa 490

13 Radiazione di dipolo elettrico Elettromagnetismo Prof. Francesco Ragusa 491

14 Energia radiata dal dipolo oscillante Calcoliamo in vettore di Poynting L'intensità dell'onda si ottiene mediando su un ciclo L'intensità dipende dall'angolo polare A distanza r fissata dall'origine l'intensità ha l'andamento La lunghezza del vettore è proporzionale a <S> Elettromagnetismo Prof. Francesco Ragusa 492

15 Energia radiata dal dipolo oscillante La potenza radiata attraverso una superficie sferica di raggio r si trova calcolando il flusso del vettore di Poynting In definitiva Elettromagnetismo Prof. Francesco Ragusa 493

16 Radiazione di una carica puntiforme Nella diapositiva abbiamo calcolato i campi di una carica in movimento Abbiamo già notato che il campo ha due componenti Un campo di velocità che dipende da 1/r 2 Un campo di accelerazione che dipende da 1/r Questa parte è quella che da luogo alla radiazione Concentriamoci pertanto sulla componente di accelerazione origine punto di osservazione Studieremo questo problema in alcune situazioni interessanti che però permettono di semplificare la formula Elettromagnetismo Prof. Francesco Ragusa 494

17 Radiazione di una carica puntiforme Una prima condizione che studiamo è quella di un moto non relativistico Assumiamo che la velocità della particella sia trascurabile v c, β 1 Da ora in poi assumiamo che le quantità siano tutte ritardate ed eliminiamo la notazione [ ] ret Ricordiamo che il campo magnetico è Calcoliamo il vettore di Poynting Osserviamo che il vettore di Poynting è parallelo al vettore "Punta" verso la posizione ritardata della particella origine punto di osservazione Elettromagnetismo Prof. Francesco Ragusa 495

18 Radiazione di una carica puntiforme Calcoliamo Osserviamo che Inoltre (vedi diapositiva ) Otteniamo Consideriamo la posizione ritardata r 0 (t r ) Consideriamo la radiazione che attraversa una sfera centrata in r 0 (t r ) di raggio R(t r ) Chiamiamo θ l'angolo fra l'accelerazione a e la direzione ritardata origine punto di osservazione Elettromagnetismo Prof. Francesco Ragusa 496

19 Radiazione di una carica puntiforme La potenza che attraversa una superficie è Vista dalla superficie della sfera la carica irraggia in modo analogo al dipolo La figura a "ciambella" con asse l'accelerazione origine punto di osservazione La potenza totale si calcola integrando L'integrale è elementare e conduce alla famosa formula di Larmor In accordo con l'espressione per il dipolo (vedi ) con Elettromagnetismo Prof. Francesco Ragusa 497

20 Radiazione nel caso di v e a parallele Consideriamo adesso il caso in cui a e v sono parallele senza assumere che la velocità sia trascurabile rispetto a c Ricordiamo la formula per il campo elettrico di radiazione Poiché a e v sono parallele Osserviamo (e ricordiamo) che Sviluppiamo il prodotto triplo Ricordiamo che Pertanto Inseriamo nell'espressione per E rad Elettromagnetismo Prof. Francesco Ragusa 498

21 Radiazione nel caso di v e a parallele Avevamo ricavato una formula per il vettore di Poynting Ricordiamo che Calcoliamo il quadrato di E rad Sviluppiamo il quadrato Il vettore di Poynting è pertanto Infine Elettromagnetismo Prof. Francesco Ragusa 499

22 Radiazione nel caso di v e a parallele Esaminiamo la formula trovata Somiglia molto alla formula non relativistica C'è una fondamentale differenza Il denominatore g 6 Prima studiare l'effetto di questo termine notiamo una sottile circostanza L'espressione di dp/dω è relativa al tempo t Fornisce il tasso di emissione sulla sfera di raggio R(t r ) Se siamo interessati al tasso di emissione al tempo t r ("sulla carica") dobbiamo applicare una correzione origine punto di osservazione Calcoliamo la derivata (vedi diapositiva ) Otteniamo infine Elettromagnetismo Prof. Francesco Ragusa 500

23 Radiazione nel caso di v e a parallele Il fattore g 5 nel denominatore modifica la distribuzione angolare della radiazione Per velocità non relativistiche (β 0) la distribuzione angolare tende a quella trovata nel caso non relativistico Osserviamo che la direzione del moto e dell'accelerazione coincidono e costituiscono un asse di simmetria del problema La radiazione è emessa simmetricamente intorno alla traiettoria Vale anche nel caso relativistico Elettromagnetismo Prof. Francesco Ragusa 501

24 Radiazione nel caso di v e a parallele Quando la velocità non può essere trascurata il denominatore concentra la radiazione a piccoli angoli Il numeratore comunque rende nulla la radiazione emessa in avanti La quantità totale di energia emessa dipende dalla velocita Per trovare la potenza totale occorre integrare su tutto l'angolo solido posto cosθ = x Elettromagnetismo Prof. Francesco Ragusa 502

25 Caso di v e a perpendicolari Velocità e accelerazione sono perpendicolari sono un altro caso importante Ad esempio in un moto circolare come negli acceleratori In questo caso non esiste un asse di simmetria Assumiamo che a e v giacciano sul piano x z In particolare Il punto di osservazione r Ricordiamo la formula per la distribuzione della radiazione nel caso generale Un calcolo un po' lungo porta alla seguente espressione Elettromagnetismo Prof. Francesco Ragusa 503

26 Caso di v e a perpendicolari Consideriamo prima di tutto il limite non relativistico (β 0) Se chiamiamo α l'angolo fra e abbiamo Ritorniamo pertanto alla "ciambella" non relativistica Elettromagnetismo Prof. Francesco Ragusa 504

27 Caso di v e a perpendicolari Veniamo al caso relativistico La figura mostra la forma della distribuzione della radiazione Anche in questo caso per chiarezza è mostrata solo metà della distribuzione Integrando su tutto l'angolo solido si ottiene la potenza totale irraggiata Notiamo che a differenza del caso precedente (v a) la potenza totale varia come γ 4 Elettromagnetismo Prof. Francesco Ragusa 505

28 Stabilita dell'atomo di idrogeno Consideriamo il modello classico dell'atomo di idrogeno Un elettrone di massa m e e carica e che ruota in un'orbita di raggio r 0 Al centro un nucleo di massa infinita che genera un campo coulombiano Dall'equazione del moto circolare uniforme Il moto è non relativistico L'energia dell'elettrone è Durante il suo moto l'elettrone irraggia e perde energia Il raggio diminuisce La variazione di energia dovuta alla diminuzione del raggio deve essere uguale all'energia persa per radiazione Elettromagnetismo Prof. Francesco Ragusa 506

29 Stabilita dell'atomo di idrogeno Ricordiamo la formula di Larmor Uguagliando (attenzione ai segni) Ricaviamo dt Calcoliamo il tempo necessario perché il raggio passi da r 0 a 0 Nell'atomo classico l'elettrone "cade" nel nucleo in 13 ps!! Elettromagnetismo Prof. Francesco Ragusa 507

Elettromagnetismo. Prof. Francesco Ragusa Università degli Studi di Milano. Lezione n

Elettromagnetismo. Prof. Francesco Ragusa Università degli Studi di Milano. Lezione n Elettromagnetismo Prof. Francesco Ragusa Università degli Studi di Milano Lezione n. 38 5.06.2018 Potenziali per una carica puntiforme Quantità di moto elettromagnetica Radiazione. Dipolo oscillante Anno

Dettagli

Elettromagnetismo. Prof. Francesco Ragusa Università degli Studi di Milano. Lezione n

Elettromagnetismo. Prof. Francesco Ragusa Università degli Studi di Milano. Lezione n Elettromagnetismo Prof. Francesco Ragusa Università degli Studi di Milano Lezione n. 36 24.05.2019 Potenziali di Liénard-Wiechert Campi di una carica in moto rettilineo uniforme Radiazione del dipolo Anno

Dettagli

Elettromagnetismo. Prof. Francesco Ragusa Università degli Studi di Milano. Lezione n

Elettromagnetismo. Prof. Francesco Ragusa Università degli Studi di Milano. Lezione n Elettromagnetismo Prof. Francesco Ragusa Università degli Studi di Milano Lezione n. 23 23.3.2018 Potenziale di una spira. Dipolo magnetico. Forze su circuiti magnetici Anno Accademico 2017/2018 Il momento

Dettagli

Elettromagnetismo. Prof. Francesco Ragusa Università degli Studi di Milano. Lezione n

Elettromagnetismo. Prof. Francesco Ragusa Università degli Studi di Milano. Lezione n Elettromagnetismo Prof. Francesco Ragusa Università degli Studi di Milano Lezione n. 21 19.3.2019 Campo di una spira circolare Potenziale Vettore Potenziale di una spira Anno Accademico 2018/2019 Campo

Dettagli

Elettromagnetismo. Prof. Francesco Ragusa Università degli Studi di Milano. Lezione n

Elettromagnetismo. Prof. Francesco Ragusa Università degli Studi di Milano. Lezione n Elettromagnetismo Prof. Francesco Ragusa Università degli Studi di Milano Lezione n. 23 20.3.2018 Applicazioni della legge di Ampère Potenziale Vettore Anno Accademico 2017/2018 Filo di raggio a percorso

Dettagli

Elettromagnetismo. Prof. Francesco Ragusa Università degli Studi di Milano. Lezione n

Elettromagnetismo. Prof. Francesco Ragusa Università degli Studi di Milano. Lezione n Elettromagnetismo Prof. Francesco Ragusa Università degli Studi di Milano Lezione n. 14 30.11.2018 Sfera di dielettrico polarizzata Carica puntiforme e semispazio dielettrico Energia elettrostatica Anno

Dettagli

Elettromagnetismo. Prof. Francesco Ragusa Università degli Studi di Milano. Lezione n

Elettromagnetismo. Prof. Francesco Ragusa Università degli Studi di Milano. Lezione n Elettromagnetismo Prof. Francesco Ragusa Università degli Studi di Milano Lezione n. 09 27.10.2017 Soluzioni dell'equazione di Laplace Metodo separazione delle variabili Anno Accademico 2017/2018 Separazione

Dettagli

Elettromagnetismo. Prof. Francesco Ragusa Università degli Studi di Milano. Lezione n

Elettromagnetismo. Prof. Francesco Ragusa Università degli Studi di Milano. Lezione n Elettromagnetismo Prof. Francesco Ragusa Università degli Studi di Milano Lezione n. 5 13.10.2017 Legge di Gauss Angolo solido Applicazioni della legge di Gauss Anno Accademico 2017/2018 La Legge di Gauss

Dettagli

Elettromagnetismo. Applicazioni della legge di Gauss. Lezione n. 6 14.10.2015. Prof. Francesco Ragusa Università degli Studi di Milano

Elettromagnetismo. Applicazioni della legge di Gauss. Lezione n. 6 14.10.2015. Prof. Francesco Ragusa Università degli Studi di Milano Elettromagnetismo Prof. Francesco Ragusa Università degli Studi di Milano Lezione n. 6 14.10.2015 Applicazioni della legge di Gauss Anno Accademico 2015/2016 Campo di un guscio sferico cavo Abbiamo già

Dettagli

Elettromagnetismo. Prof. Francesco Ragusa Università degli Studi di Milano. Lezione n

Elettromagnetismo. Prof. Francesco Ragusa Università degli Studi di Milano. Lezione n Elettromagnetismo Prof. Francesco Ragusa Università degli Studi di Milano Lezione n. 22 22.3.2019 Forze sui dipoli magnetici Invarianza relativistica della carica Trasformazione di Lorentz del campo E

Dettagli

Elettromagnetismo. Prof. Francesco Ragusa Università degli Studi di Milano. Lezione n

Elettromagnetismo. Prof. Francesco Ragusa Università degli Studi di Milano. Lezione n Elettromagnetismo Prof. Francesco Ragusa Università degli Studi di Milano Lezione n. 32 13.05.2019 Sfera in campo uniforme Magneti permanenti Onde elettromagnetiche Anno Accademico 2018/2019 Sfera in campo

Dettagli

Elettromagnetismo. Prof. Francesco Ragusa Università degli Studi di Milano. Lezione n

Elettromagnetismo. Prof. Francesco Ragusa Università degli Studi di Milano. Lezione n Elettromagnetismo Prof. Francesco Ragusa Università degli Studi di Milano Lezione n. 21 16.3.2018 Sorgenti del campo magnetico Divergenza e rotore del campo magnetico Applicazioni della legge di Ampère

Dettagli

Elettromagnetismo. Prof. Francesco Ragusa Università degli Studi di Milano. Lezione n

Elettromagnetismo. Prof. Francesco Ragusa Università degli Studi di Milano. Lezione n Elettromagnetismo Prof. Francesco Ragusa Università degli Studi di Milano Lezione n. 33 11.05.2018 Guscio sferico di carica Uso del potenziale scalare Sfera magnetica in campo uniforme Anno Accademico

Dettagli

Elettromagnetismo. Prof. Francesco Ragusa Università degli Studi di Milano. Lezione n

Elettromagnetismo. Prof. Francesco Ragusa Università degli Studi di Milano. Lezione n Elettromagnetismo Prof. Francesco Ragusa Università degli Studi di Milano Lezione n. 14 29.11.2017 Campo elettrico di materia polarizzata Densità di carica superficiali e di volume Sfera di dielettrico

Dettagli

Elettromagnetismo. Prof. Francesco Ragusa Università degli Studi di Milano. Lezione n

Elettromagnetismo. Prof. Francesco Ragusa Università degli Studi di Milano. Lezione n Elettromagnetismo Prof. Francesco Ragusa Università degli Studi di Milano Lezione n. 10 2.11.2016 Equazione di Poisson Metodo delle cariche immagine Anno Accademico 2016/2017 Equazione di Poisson Tramite

Dettagli

Elettromagnetismo. Prof. Francesco Ragusa Università degli Studi di Milano. Lezione n

Elettromagnetismo. Prof. Francesco Ragusa Università degli Studi di Milano. Lezione n Elettromagnetismo Prof. Francesco Ragusa Università degli Studi di Milano Lezione n. 35 18.05.2018 Polarizzazione Teorema di Poynting Energia e quantità di moto dell'onda Anno Accademico 2017/2018 Soluzioni:

Dettagli

Elettromagnetismo. Prof. Francesco Ragusa Università degli Studi di Milano. Lezione n

Elettromagnetismo. Prof. Francesco Ragusa Università degli Studi di Milano. Lezione n Elettromagnetismo Prof. Francesco Ragusa Università degli Studi di Milano Lezione n. 6 18.10.2017 Divergenza e teorema della divergenza Forma differenziale della Legge di Gauss Energia del campo elettrostatico

Dettagli

Elettromagnetismo. Prof. Francesco Ragusa Università degli Studi di Milano. Lezione n

Elettromagnetismo. Prof. Francesco Ragusa Università degli Studi di Milano. Lezione n Elettromagnetismo Prof. Francesco Ragusa Università degli Studi di Milano Lezione n. 09 7.11.2018 Soluzioni dell'equazione di Laplace Equazione di Poisson Funzione delta di Dirac Anno Accademico 2018/2019

Dettagli

Elettromagnetismo. Prof. Francesco Ragusa Università degli Studi di Milano. Lezione n

Elettromagnetismo. Prof. Francesco Ragusa Università degli Studi di Milano. Lezione n Elettromagnetismo Prof. Francesco Ragusa Università degli Studi di Milano Lezione n. 24 27.03.2018 Forse sui circuiti percorsi da corrente Invarianza relativistica della carica Trasformazioni di Lorentz

Dettagli

Operatore applicato a prodotti

Operatore applicato a prodotti Operatore applicato a prodotti Con l'operatore «Nabla" ( ) abbiamo definito tre operazioni applicandolo Ad una funzione scalare per costruire un vettore: gradiente φ Ad una funzione vettoriale per costruire

Dettagli

Elettromagnetismo. Prof. Francesco Ragusa Università degli Studi di Milano. Lezione n

Elettromagnetismo. Prof. Francesco Ragusa Università degli Studi di Milano. Lezione n Elettromagnetismo Prof. Francesco Ragusa Università degli Studi di Milano Lezione n. 37 1.06.2016 Riflessione e rifrazione Incidenza obliqua Potenziali elettrodinamici Anno Accademico 2016/2017 Quantità

Dettagli

Elettromagnetismo. Prof. Francesco Ragusa Università degli Studi di Milano. Lezione n

Elettromagnetismo. Prof. Francesco Ragusa Università degli Studi di Milano. Lezione n Elettromagnetismo Prof. Francesco Ragusa Università degli Studi di Milano Lezione n. 12 9.11.2016 Coefficienti di capacità Dielettrici. Dipolo elettrico Anno Accademico 2017/2018 Coefficienti di capacità

Dettagli

Chi fa lavoro? Osserviamo che la forza magnetica è perpendicolare alla velocità dei portatori di carica Non compie lavoro sulle cariche

Chi fa lavoro? Osserviamo che la forza magnetica è perpendicolare alla velocità dei portatori di carica Non compie lavoro sulle cariche Chi fa lavoro? Nell'analisi del sistema precedente abbiamo osservato che se si aumenta la corrente la forza magnetica supera il peso e il circuito si sposta verso l'alto La massa m acquista energia potenziale

Dettagli

Prova Scritta di Elettricità e Magnetismo e di Elettromagnetismo A. A Febbraio 2008 (Proff. F.Lacava, C.Mariani, F.Ricci, D.

Prova Scritta di Elettricità e Magnetismo e di Elettromagnetismo A. A Febbraio 2008 (Proff. F.Lacava, C.Mariani, F.Ricci, D. Prova Scritta di Elettricità e Magnetismo e di Elettromagnetismo A. A. 2006-07 - 1 Febbraio 2008 (Proff. F.Lacava, C.Mariani, F.Ricci, D.Trevese) Modalità: - Prova scritta di Elettricità e Magnetismo:

Dettagli

Elettromagnetismo. Distribuzioni di carica Potenziale elettrostatico. Lezione n Prof. Francesco Ragusa Università degli Studi di Milano

Elettromagnetismo. Distribuzioni di carica Potenziale elettrostatico. Lezione n Prof. Francesco Ragusa Università degli Studi di Milano Elettromagnetismo Prof. Francesco Ragusa Università degli Studi di Milano Lezione n. 3 6.10.2017 Distribuzioni di carica Potenziale elettrostatico Anno Accademico 2017/2018 Distribuzioni di carica Fino

Dettagli

Elettromagnetismo. Prof. Francesco Ragusa Università degli Studi di Milano. Lezione n

Elettromagnetismo. Prof. Francesco Ragusa Università degli Studi di Milano. Lezione n Elettromagnetismo Prof. Francesco Ragusa Università degli Studi di Milano Lezione n. 34 17.05.2019 Il tensore degli stress Energia e quantità di moto dell'onda Propagazione nella materia Riflessione e

Dettagli

Elettromagnetismo. Prof. Francesco Ragusa Università degli Studi di Milano. Lezione n

Elettromagnetismo. Prof. Francesco Ragusa Università degli Studi di Milano. Lezione n Elettromagnetismo Prof. Francesco Ragusa Università degli Studi di Milano Lezione n. 34 15.05.2018 Onde elettromagnetiche Equazione dell'onda Soluzione dell'equazione dell'onda Onde piane. Polarizzazione

Dettagli

Elettromagnetismo. Campo elettrico come gradiente del potenziale. Lezione n Prof. Francesco Ragusa Università degli Studi di Milano

Elettromagnetismo. Campo elettrico come gradiente del potenziale. Lezione n Prof. Francesco Ragusa Università degli Studi di Milano Elettromagnetismo Prof. Francesco Ragusa Università degli Studi di Milano Lezione n. 4 12.10.2017 Campo elettrico come gradiente del potenziale Anno Accademico 2017/2018 Il campo elettrico come gradiente

Dettagli

Elettromagnetismo. Prof. Francesco Ragusa Università degli Studi di Milano. Lezione n

Elettromagnetismo. Prof. Francesco Ragusa Università degli Studi di Milano. Lezione n Elettromagnetismo Prof. Francesco Ragusa Università degli Studi di Milano Lezione n. 13 28.11.2018 Sfera polarizzata. Legge di Gauss nella materia Il campo Spostamento Elettrico D Sfera di dielettrico

Dettagli

Elettromagnetismo. Prof. Francesco Ragusa Università degli Studi di Milano. Lezione n

Elettromagnetismo. Prof. Francesco Ragusa Università degli Studi di Milano. Lezione n Elettromagnetismo Prof. Francesco Ragusa Università degli Studi di Milano Lezione n. 36 22.05.2018 Propagazione nella materia Riflessione e rifrazione. Incidenza obliqua Potenziali elettrodinamici. Trasformazioni

Dettagli

Elettromagnetismo. Prof. Francesco Ragusa Università degli Studi di Milano. Lezione n

Elettromagnetismo. Prof. Francesco Ragusa Università degli Studi di Milano. Lezione n Elettromagnetismo Prof. Francesco Ragusa Università degli Studi di Milano Lezione n. 5 17.10.2018 Legge di Gauss. Angolo solido Applicazioni della legge di Gauss Divergenza e teorema della divergenza Forma

Dettagli

Corso di fisica generale con elementi di fisica tecnica

Corso di fisica generale con elementi di fisica tecnica Corso di fisica generale con elementi di fisica tecnica Aniello (Daniele) Mennella Dipartimento di Fisica Secondo modulo Parte prima (fondamenti di elettromagnetismo) Lezione 4 Onde elettromagnetiche Sommario

Dettagli

Energia del campo elettromagnetico

Energia del campo elettromagnetico Energia del campo elettromagnetico 1. Energia 2. Quantità di moto 3. Radiazione di dipolo VII - 0 Energia Come le onde meccaniche, anche le onde elettromagnetiche trasportano energia, anche se non si propagano

Dettagli

Elettromagnetismo. Prof. Francesco Ragusa Università degli Studi di Milano. Lezione n

Elettromagnetismo. Prof. Francesco Ragusa Università degli Studi di Milano. Lezione n Elettromagnetismo Prof. Francesco Ragusa Università degli Studi di Milano Lezione n. 10 3.11.2017 Equazione di Poisson Funzione δ(x) di Dirac Metodo delle cariche immagine Anno Accademico 2017/2018 Equazione

Dettagli

Elettromagnetismo. Prof. Francesco Ragusa Università degli Studi di Milano. Lezione n

Elettromagnetismo. Prof. Francesco Ragusa Università degli Studi di Milano. Lezione n Elettromagnetismo Prof. Francesco Ragusa Università degli Studi di Milano Lezione n. 15 1.12.2017 Campo "Spostamento elettrico" Legge di Gauss nel dielettrico Soluzione dell'equazione di Laplace in presenza

Dettagli

Elettromagnetismo. Induttanza e mutua induttanza Energia Magnetica. Lezione n Prof. Francesco Ragusa Università degli Studi di Milano

Elettromagnetismo. Induttanza e mutua induttanza Energia Magnetica. Lezione n Prof. Francesco Ragusa Università degli Studi di Milano Elettromagnetismo Prof. Francesco Ragusa Università degli Studi di Milano Lezione n. 28 20.04.2018 Induttanza e mutua induttanza Energia Magnetica Anno Accademico 2017/2018 Induttanza Consideriamo una

Dettagli

Lezione 10 Equazioni del campo elettromagnetico e onde elettromagnetiche (sintesi slides)

Lezione 10 Equazioni del campo elettromagnetico e onde elettromagnetiche (sintesi slides) Lezione 10 Equazioni del campo elettromagnetico e onde elettromagnetiche (sintesi slides) Questa sintesi fa riferimento alla lezione 10 Equazioni del campo elettromagnetico e onde elettromagnetiche del

Dettagli

Elettromagnetismo. Prof. Francesco Ragusa Università degli Studi di Milano. Lezione n

Elettromagnetismo. Prof. Francesco Ragusa Università degli Studi di Milano. Lezione n Elettromagnetismo Prof. Francesco Ragusa Università degli Studi di Milano Lezione n. 39 07.06.2019 Equazione del potenziale Forza di Lorentz Funzioni di Green Teoria dell'elettrone Anno Accademico 2018/2019

Dettagli

Elettromagnetismo. Proprietà della forza magnetica. Lezione n Prof. Francesco Ragusa Università degli Studi di Milano

Elettromagnetismo. Proprietà della forza magnetica. Lezione n Prof. Francesco Ragusa Università degli Studi di Milano Elettromagnetismo Prof. Francesco Ragusa Università degli Studi di Milano Lezione n. 20 13.3.2018 Proprietà della forza magnetica Anno Accademico 2017/2018 La forza di Lorentz Insistiamo ancora sul fatto

Dettagli

Elettromagnetismo. Prof. Francesco Ragusa Università degli Studi di Milano. Lezione n

Elettromagnetismo. Prof. Francesco Ragusa Università degli Studi di Milano. Lezione n Elettromagnetismo Prof. Francesco Ragusa Università degli Studi di Milano Lezione n. 38 31.05.2019 Acceleratori di particelle Formulazione covariante dell'elettrodinamica Anno Accademico 2018/2019 Acceleratori

Dettagli

Elettromagnetismo. Induzione elettromagnetica. Lezione n Prof. Francesco Ragusa Università degli Studi di Milano

Elettromagnetismo. Induzione elettromagnetica. Lezione n Prof. Francesco Ragusa Università degli Studi di Milano Elettromagnetismo Prof. Francesco Ragusa Università degli Studi di Milano Lezione n. 35 13.04.2016 Induzione elettromagnetica Anno Accademico 2015/2016 La scoperta di Faraday Ricordiamo la scoperta di

Dettagli

LE ONDE. Tipi di onde e aspetti generali

LE ONDE. Tipi di onde e aspetti generali LE ONDE Tipi di onde e aspetti generali Che cos è un onda? In fisica con il termine onda si indica una perturbazione che nasce da una sorgente e si propaga nel tempo e nello spazio, trasportando energia

Dettagli

La risposta numerica deve essere scritta nell apposito riquadro e giustificata accludendo i calcoli relativi.

La risposta numerica deve essere scritta nell apposito riquadro e giustificata accludendo i calcoli relativi. Corso di Laurea in Matematica Seconda prova in itinere di Fisica (Prof. E. Santovetti) 13 gennaio 016 Nome: La risposta numerica deve essere scritta nell apposito riquadro e giustificata accludendo i calcoli

Dettagli

Elettromagnetismo. Teoria macroscopica del magnetismo nella materia. Lezione n Prof. Francesco Ragusa Università degli Studi di Milano

Elettromagnetismo. Teoria macroscopica del magnetismo nella materia. Lezione n Prof. Francesco Ragusa Università degli Studi di Milano Elettromagnetismo Prof. Francesco Ragusa Università degli Studi di Milano Lezione n. 33 16.5.217 Teoria macroscopica del magnetismo nella materia Anno Accademico 216/217 Discontinuità del campo magnetico

Dettagli

Elettromagnetismo. Prof. Francesco Ragusa Università degli Studi di Milano. Lezione n

Elettromagnetismo. Prof. Francesco Ragusa Università degli Studi di Milano. Lezione n Elettromagnetismo Prof. Francesco Ragusa Università degli Studi di Milano Lezione n. 24 1.04.2019 Quadrivettori e trasformazioni di Lorentz Cinematica e dinamica relativistiche Forza magnetica e relatività

Dettagli

Elettromagnetismo. Prof. Francesco Ragusa Università degli Studi di Milano. Lezione n

Elettromagnetismo. Prof. Francesco Ragusa Università degli Studi di Milano. Lezione n Elettromagnetismo Prof. Francesco Ragusa Università degli Studi di Milano Lezione n. 11 14.11.2018 Coefficienti di capacità Dielettrici. Campo elettrico del dipolo Campi elettrici nella materia. Dipoli

Dettagli

FISICA GENERALE II CdL in Scienza dei Materiali a.a. 2018/2019 Prof. Roberto Francini Programma del corso:

FISICA GENERALE II CdL in Scienza dei Materiali a.a. 2018/2019 Prof. Roberto Francini Programma del corso: FISICA GENERALE II CdL in Scienza dei Materiali a.a. 2018/2019 Prof. Roberto Francini Programma del corso: - Proprietà generali delle cariche elettriche - Cariche puntiformi e distribuzioni continue di

Dettagli

Elettromagnetismo. Prof. Francesco Ragusa Università degli Studi di Milano. Lezione n

Elettromagnetismo. Prof. Francesco Ragusa Università degli Studi di Milano. Lezione n Elettromagnetismo Prof. Francesco Ragusa Università degli Studi di Milano Lezione n. 35 21.05.2019 Riflessione e rifrazione. Incidenza obliqua Potenziali elettrodinamici. Invarianza di gauge Potenziali

Dettagli

Elettromagnetismo. Prof. Francesco Ragusa Università degli Studi di Milano. Lezione n

Elettromagnetismo. Prof. Francesco Ragusa Università degli Studi di Milano. Lezione n Elettromagnetismo Prof. Francesco Ragusa Università degli Studi di Milano Lezione n. 8 31.10.2018 Coordinate curvilinee Soluzioni dell'equazione di Laplace Metodo separazione delle variabili Anno Accademico

Dettagli

Sulla superficie interna del guscio sferico (induzione totale) si avrà la carica indotta q distribuita uniformemente, quindi

Sulla superficie interna del guscio sferico (induzione totale) si avrà la carica indotta q distribuita uniformemente, quindi 1) Una sfera conduttrice di raggio r = 5 cm possiede una carica q = 10 8 C ed è posta nel centro di un guscio sferico conduttore, di raggio interno R = 20 cm, posto in contatto con la terra (a massa).

Dettagli

Lezione 5: Elettrostatica. Seminario didattico

Lezione 5: Elettrostatica. Seminario didattico Lezione 5: Elettrostatica Seminario didattico Esercizio n 1 Ai vertici di un quadrato di lato 2 l sono poste 4 cariche uguali Q. Determinare : a) Il campo elettrico in un punto P dell'asse; b) il campo

Dettagli

MOTO DI UNA PARTICELLA IN UN CAMPO ELETTRICO

MOTO DI UNA PARTICELLA IN UN CAMPO ELETTRICO MOTO DI UNA PARTICELLA IN UN CAMPO ELETTRICO Sappiamo che mettendo una carica positiva q chiamata carica di prova o carica esploratrice in un punto vicino all oggetto carico si manifesta un vettore campo

Dettagli

Elettromagnetismo. Prof. Francesco Ragusa Università degli Studi di Milano. Lezione n

Elettromagnetismo. Prof. Francesco Ragusa Università degli Studi di Milano. Lezione n Elettromagnetismo Prof. Francesco Ragusa Università degli Studi di Milano Lezione n. 25 6.04.2018 Campo elettrico di una carica accelerata Quadrivettori e trasformazioni di Lorentz Cinematica e dinamica

Dettagli

Applicazioni del Teorema di Gauss

Applicazioni del Teorema di Gauss Applicazioni del Teorema di Gauss Simone Alghisi Liceo Scientifico Luzzago Ottobre 2011 Simone Alghisi Liceo Scientifico Luzzago Applicazioni del Teorema di Gauss Ottobre 2011 1 / 8 Definizione Dato un

Dettagli

DEDUZIONE DEL TEOREMA DELL'ENERGIA CINETICA DELL EQUAZIONE SIMBOLICA DELLA DINAMICA

DEDUZIONE DEL TEOREMA DELL'ENERGIA CINETICA DELL EQUAZIONE SIMBOLICA DELLA DINAMICA DEDUZIONE DEL TEOREMA DELL'ENERGIA CINETICA DELL EQUAZIONE SIMBOLICA DELLA DINAMICA Sia dato un sistema con vincoli lisci, bilaterali e FISSI. Ricaviamo, dall equazione simbolica della dinamica, il teorema

Dettagli

CAPITOLO 3 TEOREMA DI GAUSS

CAPITOLO 3 TEOREMA DI GAUSS CAPITOLO 3 3.1 Il concetto di flusso Una formulazione equivalente alla legge di Coulomb è quella stabilita dal teorema di Gauss, che trae vantaggio dalle situazioni nelle quali vi è una simmetria nella

Dettagli

Formulario Elettromagnetismo

Formulario Elettromagnetismo Formulario Elettromagnetismo. Elettrostatica Legge di Coulomb: F = q q 2 u 4 0 r 2 Forza elettrostatica tra due cariche puntiformi; ε 0 = costante dielettrica del vuoto; q = cariche (in C); r = distanza

Dettagli

Elettromagnetismo. Prof. Francesco Ragusa Università degli Studi di Milano. Lezione n

Elettromagnetismo. Prof. Francesco Ragusa Università degli Studi di Milano. Lezione n Elettromagnetismo Prof. Francesco Ragusa Università degli Studi di Milano Lezione n. 19 5.3.2019 Proprietà della forza magnetica Densità di Corrente. Forza su una corrente. Legge di Biot e Savart Anno

Dettagli

Onde elettromagnetiche

Onde elettromagnetiche Onde elettromagnetiche n Equazione delle onde per i campi n Corda vibrante n Onde piane n Polarizzazione n Energia e quantita` di moto - vettore di Poynting n Velocita` di fase e di gruppo Equazione delle

Dettagli

Massa ed energia nella relatività ristretta

Massa ed energia nella relatività ristretta Massa ed energia nella relatività ristretta Cambiamento nella massa inerziale di un sistema di due cariche puntuali, dovuto all'energia potenziale elettrostatica 03/03/06 Matteo Ferrabone 1 Introduzione

Dettagli

= E qz = 0. 1 d 3 = N

= E qz = 0. 1 d 3 = N Prova scritta d esame di Elettromagnetismo 7 ebbraio 212 Proff.. Lacava,. Ricci, D. Trevese Elettromagnetismo 1 o 12 crediti: esercizi 1, 2, 4 tempo 3 h; Elettromagnetismo 5 crediti: esercizi 3, 4 tempo

Dettagli

Elettromagnetismo. Induttanza e mutua induttanza Energia Magnetica. Lezione n Prof. Francesco Ragusa Università degli Studi di Milano

Elettromagnetismo. Induttanza e mutua induttanza Energia Magnetica. Lezione n Prof. Francesco Ragusa Università degli Studi di Milano Elettromagnetismo Prof. Francesco Ragusa Università degli Studi di Milano Lezione n. 27 15.04.2019 Induttanza e mutua induttanza Energia Magnetica Anno Accademico 2018/2019 Forze elettromotrici indotte

Dettagli

Formulario. Entrante Uscente. Vettori Angolo tra l'asse e il vettore 1. Cinematica Equazioni della cinematica. Moti Moto periodico

Formulario. Entrante Uscente. Vettori Angolo tra l'asse e il vettore 1. Cinematica Equazioni della cinematica. Moti Moto periodico Formulario Entrante Uscente Vettori Angolo tra l'asse e il vettore sin cos. 2. 0. 2. 0 Cinematica Equazioni della cinematica Modulo dell'accelerazione centripeta Modulo della velocità nel moto circolare

Dettagli

Interazioni di tipo magnetico II

Interazioni di tipo magnetico II INGEGNERIA GESTIONALE corso di Fisica Generale Prof. E. Puddu Interazioni di tipo magnetico II 1 Forza magnetica su una carica in moto Una particella di carica q in moto risente di una forza magnetica

Dettagli

Programma del Corso di Fisica Battaglin

Programma del Corso di Fisica Battaglin Programma del Corso di Fisica Battaglin 2008/2009 Fenomeni fisici e grandezze fisiche. Sistema internazionale di unità di misura. Unità derivate, unità pratiche e fattori di ragguaglio. Analisi dimensionale.

Dettagli

MODULO DI ELETTROMAGNETISMO Prova Pre-Esame del 28 GENNAIO 2009 A.A

MODULO DI ELETTROMAGNETISMO Prova Pre-Esame del 28 GENNAIO 2009 A.A MODULO D ELETTROMAGNETSMO Prova Pre-Esame del 28 GENNAO 2009 A.A. 2008-2009 FSCA GENERALE Esercizi FS GEN: Punteggio in 30 esimi 1 8 Fino a 4 punti COGNOME: NOME: MATR: 1. Campo elettrostatico La sfera

Dettagli

PROGRAMMA DEL CORSO DI FISICA TEORICA 1 PROF. E. PACE CORSO DI LAUREA TRIENNALE IN FISICA A. A

PROGRAMMA DEL CORSO DI FISICA TEORICA 1 PROF. E. PACE CORSO DI LAUREA TRIENNALE IN FISICA A. A PROGRAMMA DEL CORSO DI FISICA TEORICA 1 PROF. E. PACE CORSO DI LAUREA TRIENNALE IN FISICA A. A. 2013-2014 ELETTROSTATICA NEL VUOTO Equazione di Poisson ed equazione di Laplace. Teorema di Green; I e II

Dettagli

CAMPO ELETTRICO. F r e = q E r. Newton ;

CAMPO ELETTRICO. F r e = q E r. Newton ; 1 CAMPO ELETTRICO Si definisce campo elettrico (o elettrostatico) una qualunque regione dello spazio nella quale si manifestano azioni su cariche elettriche. 1. DESCRIZIONE DEL CAMPO Per descrivere un

Dettagli

Facoltà di Ingegneria Prova scritta di Fisica II - VO 15-Aprile-2003

Facoltà di Ingegneria Prova scritta di Fisica II - VO 15-Aprile-2003 Facoltà di Ingegneria Prova scritta di Fisica II - VO 5-Aprile-003 Esercizio n. Un campo magnetico B è perpendicolare al piano individuato da due fili paralleli, cilindrici e conduttori, distanti l uno

Dettagli

Tutorato di Fisica 2 Anno Accademico 2010/2011

Tutorato di Fisica 2 Anno Accademico 2010/2011 Matteo Luca Ruggiero DIFIS@Politecnico di Torino Tutorato di Fisica 2 Anno Accademico 2010/2011 () 2 1.1 Una carica q è posta nell origine di un riferimento cartesiano. (1) Determinare le componenti del

Dettagli

FISICA (modulo 1) PROVA SCRITTA 07/07/2014. ESERCIZI (Motivare sempre i vari passaggi nelle soluzioni)

FISICA (modulo 1) PROVA SCRITTA 07/07/2014. ESERCIZI (Motivare sempre i vari passaggi nelle soluzioni) FISICA (modulo 1) PROVA SCRITTA 07/07/2014 ESERCIZI (Motivare sempre i vari passaggi nelle soluzioni) E1. Un blocco di legno di massa M = 1 kg è appeso ad un filo di lunghezza l = 50 cm. Contro il blocco

Dettagli

Diffusione dei raggi X da parte di un elettrone

Diffusione dei raggi X da parte di un elettrone Diffusione dei raggi X da parte di un elettrone Consideriamo un onda elettro-magnetica piana polarizzata lungo x che si propaga lungo z L onda interagisce con un singolo elettrone (libero) inducendo un

Dettagli

Elettromagnetismo. Teoria macroscopica del magnetismo nella materia. Lezione n Prof. Francesco Ragusa Università degli Studi di Milano

Elettromagnetismo. Teoria macroscopica del magnetismo nella materia. Lezione n Prof. Francesco Ragusa Università degli Studi di Milano Elettromagnetismo Prof. Francesco Ragusa Università degli Studi di Milano Lezione n. 31 4.05.2018 Teoria macroscopica del magnetismo nella materia Anno Accademico 2017/2018 Magnetizzazione e suscettività

Dettagli

Elettromagnetismo. Prof. Francesco Ragusa Università degli Studi di Milano. Lezione n

Elettromagnetismo. Prof. Francesco Ragusa Università degli Studi di Milano. Lezione n Elettromagnetismo Prof. Francesco Ragusa Università degli Studi di Milano Lezione n. 29 24.04.2018 Energia Magnetica. Oscillatore LC Equazione del rotore di B e corrente di spostamento Anno Accademico

Dettagli

Theory Italiano (Italy)

Theory Italiano (Italy) Q3-1 Large Hadron Collider (10 punti) Prima di iniziare questo problema, leggi le istruzioni generali nella busta a parte. In questo problema è discussa la fisica dell acceleratore di particelle del CERN

Dettagli

Lezione 4. Brillanza superficiale e intensità specifica, temperatura di brillanza e di antenna

Lezione 4. Brillanza superficiale e intensità specifica, temperatura di brillanza e di antenna Lezione 4 Brillanza superficiale e intensità specifica, temperatura di brillanza e di antenna Il fascio di antenna Un'antenna puntata in una certa direzione nel cielo riceve (o trasmette) radiazione anche

Dettagli

Meccanica del punto materiale

Meccanica del punto materiale Meccanica del punto materiale Princìpi della dinamica. Forze. Momento angolare. Antonio Pierro @antonio_pierro_ (https://twitter.com/antonio_pierro_) Per consigli, suggerimenti, eventuali errori o altro

Dettagli

PROGETTO DI FISICA 2004/2005 CAMPO ELETTRICO E CAMPO MAGNETICO

PROGETTO DI FISICA 2004/2005 CAMPO ELETTRICO E CAMPO MAGNETICO PROGETTO DI FISICA 2004/2005 CAMPO ELETTRICO E CAMPO MAGNETICO Autore Aleo Giacomo Luca 5H A.s. 2004/2005 1 ANALOGIE E DIFFERENZE 1) CAMPO ELETTRICO + + - - + + + + - + + + - + + + - + + + - - + + Corpo

Dettagli

Prova scritta di Fisica Scienze e Tecnologie dell Ambiente. Soluzioni

Prova scritta di Fisica Scienze e Tecnologie dell Ambiente. Soluzioni Prova scritta di Fisica Scienze e Tecnologie dell Ambiente 6 Settembre 007 Soluzioni Parte 1 1) Sia θ l angolo di inclinazione del piano. Scelto l asse x lungo la direzione di massima pendenza, e diretto

Dettagli

FISICA APPLICATA 2 FENOMENI ONDULATORI - 1

FISICA APPLICATA 2 FENOMENI ONDULATORI - 1 FISICA APPLICATA 2 FENOMENI ONDULATORI - 1 DOWNLOAD Il pdf di questa lezione (onde1.pdf) è scaricabile dal sito http://www.ge.infn.it/ calvini/tsrm/ 08/10/2012 FENOMENI ONDULATORI Una classe di fenomeni

Dettagli

IL CAMPO ELETTRICO. Test

IL CAMPO ELETTRICO. Test Test 1 Quali delle seguenti affermazioni sul concetto di campo elettrico è corretta? A Il campo elettrico in un punto dello spazio ha sempre la stessa direzione e lo stesso verso della forza elettrica

Dettagli

Elettromagnetismo. Prof. Francesco Ragusa Università degli Studi di Milano. Lezione n

Elettromagnetismo. Prof. Francesco Ragusa Università degli Studi di Milano. Lezione n Elettromagnetismo Prof. Francesco Ragusa Università degli Studi di Milano Lezione n. 16 13.12.2017 Carica puntiforme e dielettrico Energia elettrostatica Corrente elettrica. Equazione di continuità Legge

Dettagli

Indice 3. Note di utilizzo 9. Ringraziamenti 10. Introduzione 11

Indice 3. Note di utilizzo 9. Ringraziamenti 10. Introduzione 11 Indice Indice 3 Note di utilizzo 9 Ringraziamenti 10 Introduzione 11 Capitolo 1 Grandezze fisiche e schematizzazione dei sistemi materiali 13 1.1 Grandezze fisiche ed operazione di misura 13 1.2 Riferimento

Dettagli

4. Lo spettro discreto: emissione e assorbimento di luce da parte di atomi stato fondamentale stati eccitati

4. Lo spettro discreto: emissione e assorbimento di luce da parte di atomi stato fondamentale stati eccitati 4. Lo spettro discreto: emissione e assorbimento di luce da parte di atomi Accanto allo spettro continuo che i corpi emettono in ragione del loro stato termico, si osservano spettri discreti che sono caratteristici

Dettagli

Nell'atomo l'energia dell'elettrone varia per quantità discrete (quanti).

Nell'atomo l'energia dell'elettrone varia per quantità discrete (quanti). 4. ORBITALI ATOMICI Energia degli orbitali atomici Nell'atomo l'energia dell'elettrone varia per quantità discrete (quanti). Il diagramma energetico dell'atomo di idrogeno: i livelli (individuati da n)

Dettagli

Dati numerici: f = 200 V, R 1 = R 3 = 100 Ω, R 2 = 500 Ω, C = 1 µf.

Dati numerici: f = 200 V, R 1 = R 3 = 100 Ω, R 2 = 500 Ω, C = 1 µf. ESERCIZI 1) Due sfere conduttrici di raggio R 1 = 10 3 m e R 2 = 2 10 3 m sono distanti r >> R 1, R 2 e contengono rispettivamente cariche Q 1 = 10 8 C e Q 2 = 3 10 8 C. Le sfere vengono quindi poste in

Dettagli

Interazioni di tipo magnetico II

Interazioni di tipo magnetico II NGEGNERA GESTONALE corso di Fisica Generale Prof. E. Puddu nterazioni di tipo magnetico 1 Forza magnetica su una carica in moto Una particella di carica q in moto risente di una forza magnetica chiamata

Dettagli

Elementi di Fisica 2CFU

Elementi di Fisica 2CFU Elementi di Fisica 2CFU III parte - Elettromagnetismo Andrea Susa MAGNETISMO 1 Magnete Alcune sostanze naturali, come ad esempio la magnetite, hanno la proprietà di attirare pezzetti di ferro, e per questo

Dettagli

1s= ( 1/?? ) x ( 1/a ) ³/² x 1? /?

1s= ( 1/?? ) x ( 1/a ) ³/² x 1? /? http://www. STRUTTURA ATOMICA : calcolo della densità elettronica FUNZIONE 1 S Riferendosi all'atomo di idrogeno si è visto che la funzione d'onda 1S è 1s= ( 1/?? ) x ( 1/a ) ³/² x 1? /? in questo caso

Dettagli

Dipartimento di INFORMATICA Anno Accademico 2015/16 Registro lezioni del docente MIGLIORE ERNESTO

Dipartimento di INFORMATICA Anno Accademico 2015/16 Registro lezioni del docente MIGLIORE ERNESTO Attività didattica FISICA [MFN0598] Dipartimento di INFORMATICA Anno Accademico 2015/16 Registro lezioni del docente MIGLIORE ERNESTO Corso di studio: INFORMATICA [008707] Docente titolare del corso: MIGLIORE

Dettagli

Risonanza magnetica nucleare

Risonanza magnetica nucleare Risonanza magnetica nucleare Università di Firenze Corso di Tecnologie Biomediche Lezione del 31 ottobre 2003 Leonardo Bocchi Principi fisici Premessa Modello classico Visualizzazione semplificata Equazione

Dettagli

CAPITOLO 3 LA LEGGE DI GAUSS

CAPITOLO 3 LA LEGGE DI GAUSS CAPITOLO 3 LA LEGGE DI GAUSS Elisabetta Bissaldi (Politecnico di Bari) - A.A. 2018-2019 2 Premessa TEOREMA DI GAUSS Formulazione equivalente alla legge di Coulomb Trae vantaggio dalle situazioni nelle

Dettagli

Definizione di Flusso

Definizione di Flusso Definizione di Flusso Il flusso aumenta se il campo elettrico aumenta!! Δφ E ΔA EΔAcosθ E Il flusso è la quantità di materia che passa attraverso una superficie nell unità di tempo. Se si parla di campo

Dettagli

Modellistica dei Manipolatori Industriali 01BTT Esame del 18/02/2002 Soluzione

Modellistica dei Manipolatori Industriali 01BTT Esame del 18/02/2002 Soluzione Modellistica dei Manipolatori Industriali BTT Esame del 8/2/22 Soluzione Sistemi di riferimento e cinematica di posizione In Figura a) il manipolatore è stato ridisegnato per mettere in evidenza variabili

Dettagli

Esercitazione XII - Elettrostatica e magnetismo

Esercitazione XII - Elettrostatica e magnetismo Esercitazione XII - Elettrostatica e magnetismo Esercizio 1 Una particella di massa m = 10g e carica negativa q = 1mC viene posta fra le armature di un condensatore a piatti piani e paralleli, ed è inoltre

Dettagli

MOMENTI DI INERZIA PER CORPI CONTINUI

MOMENTI DI INERZIA PER CORPI CONTINUI MOMENTI D INERZIA E PENDOLO COMPOSTO PROF. FRANCESCO DE PALMA Indice 1 INTRODUZIONE -------------------------------------------------------------------------------------------------------------- 3 2 MOMENTI

Dettagli

Appunti della lezione sulla Equazione Differenziale delle Onde

Appunti della lezione sulla Equazione Differenziale delle Onde Appunti della lezione sulla Equazione Differenziale delle Onde ultima revisione: 21 giugno 2017 In tutti i casi analizzati precedentemente si osserva che le onde obbediscono alla stessa Equazione Differenziale

Dettagli

Potenziale elettrostatico

Potenziale elettrostatico Doppio strato piano Potenziale elettrostatico Consideriamo il lavoro compiuto dalla forza elettrica quando una particella di prova di carica q viene spostata in un campo elettrico E. Possiamo definire

Dettagli