Elettromagnetismo. Induzione elettromagnetica. Lezione n Prof. Francesco Ragusa Università degli Studi di Milano

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Elettromagnetismo. Induzione elettromagnetica. Lezione n Prof. Francesco Ragusa Università degli Studi di Milano"

Transcript

1 Elettromagnetismo Prof. Francesco Ragusa Università degli Studi di Milano Lezione n Induzione elettromagnetica Anno Accademico 2015/2016

2 La scoperta di Faraday Ricordiamo la scoperta di Oersted del 1820 sulla generazione di forze magnetiche con le correnti elettriche Dopo questa scoperta parte una intensa attività sperimentale e teorica Fra le altre cose si cercano nelle correnti fenomeni analoghi a quelli classificati come "induzione elettrostatica" Si cerca di capire se le correnti possono "indurre" correnti Pioniere di questi studi fu Michael Faraday, intorno al 1830 Inizialmente gli studi furono poco fruttuosi Un corrente circolante nel solenoide esterno NON induce una corrente in quello interno Tuttavia una VARIAZIONE di corrente induce una corrente Ad esempio all'apertura o alla chiusura dell'interruttore Con questi studi Faraday scopre l'importante fenomeno dell'induzione elettromagnetica Ci permetterà di completare l'equazione del rotore di E Prima di passare alla formulazione definitiva del fenomeno studiamolo alla luce di quanto già conosciamo Elettromagnetismo Prof. Francesco Ragusa 126

3 Barretta conduttrice in moto (B 0) Consideriamo una regione dello spazio in cui è presente un campo magnetico B, diretto lungo l'asse z Utilizziamo un sistema inerziale S Il campo B è uniforme e non varia nel tempo Non ci sono campi elettrici Consideriamo adesso una barretta conduttrice orientata parallelamente all'asse x La barretta si muove con velocità costante v diretta lungo l'asse y Poiché si tratta di un conduttore al suo interno ci sono portatori di carica che possono muoversi Tutte le cariche della barretta hanno una velocità v Appare una forza di Lorentz La forza è diretta nel senso positivo delle x per le cariche positive Sotto l'azione della forza le cariche si muovono Tuttavia si giunge presto ad una condizione stazionaria Le cariche spostandosi generano un campo elettrico E In ogni punto all'interno della barretta la forza di Lorentz è bilanciata dalla forza elettrica qe Elettromagnetismo Prof. Francesco Ragusa 127

4 Barretta conduttrice in moto (B 0) Le cariche elettriche si distribuiscono sulla superficie della barretta in modo da generare all'interno un campo elettrico uniforme La forza di Lorentz è uniforme dentro la barretta La forza elettrica bilancia la forza magnetica La carica sulla superficie della barretta genera un campo anche all'esterno della barretta Elettromagnetismo Prof. Francesco Ragusa 128

5 Barretta conduttrice in moto (B 0) Esaminiamo adesso il fenomeno descritto in un sistema inerziale S in cui la barretta conduttrice è a riposo In questo sistema il campo magnetico è differente Appare anche un campo elettrico Ricordiamo il tensore campo elettromagnetico La trasformazione in S è F = ΛFΛ Τ È facile verificare che La matrice Λ è Nel sistemas il campo magnetico B è ancora diretto lungo l'asse z ed è diventato più intenso per il fattore relativistico γ È comparso un campo elettrico E diretto lungo l'asse x Elettromagnetismo Prof. Francesco Ragusa 129

6 Barretta conduttrice in moto (B 0) Interpretiamo quello che succede nella barretta conduttrice nel sistema S C'è un campo magnetico B ma la barretta è ferma Non ci sono forze magnetiche sulle cariche all'interno Nel sistemas è presente un campo elettrico E Le cariche si distribuiscono sulla superficie del conduttore in modo da annullare il campo elettrico al suo interno Come abbiamo studiato in elettrostatica In S la situazione è statica Riepiloghiamo le due interpretazioni Nel sistema S la barretta si muove e dentro la barretta c'è una forza magnetica che causa una redistribuzione della carica sulla superficie La distribuzione di carica genera un campo elettrico che bilancia la forza magnetica Nel sistema S c'è un campo elettrico E La carica si redistribuisce sulla superficie del conduttore e genera un campo elettrico che, sommato a E, annulla il campo all'interno del conduttore Elettromagnetismo Prof. Francesco Ragusa 130

7 Barretta conduttrice in moto (B 0) Nel sistema inerziale S Nel sistema inerziale S Elettromagnetismo Prof. Francesco Ragusa 131

8 Spira in campo non uniforme Sostituiamo adesso la barretta con una spira conduttrice di lato w che si muove con velocità v lungo l'asse y C'è sempre un campo uniforme B Il campo elettrico è nullo Siamo in una situazione analoga a quanto già visto I due lati della spira si caricano positivamente e negativamente Non succede altro Immaginiamo tuttavia che il campo magnetico non sia uniforme anche se è costante nel tempo Abbiamo già analizzato un problema simile (diapositiva ) Supponiamo la spira vincolata a muoversi parallelamente all'asse y Sulle cariche all'interno dei lati paralleli all'asse y(lati 2 e 4) si esercitano forze perpendicolari al filo Sulle cariche dei lati paralleli all'asse x(1 e 3) le forze sono lungo il filo Calcoliamo la circuitazione della forza magnetica Elettromagnetismo Prof. Francesco Ragusa 132

9 Spira in campo non uniforme Pertanto viene compiuto un lavoro sui portatori di carica del conduttore della spira Se viene fatto un lavoro significa che è stata generata una corrente elettrica Nella spira è presente una forza elettromotrice È conveniente riscrivere questa relazione in funzione del flusso del campo magnetico B attraverso la superficie della spira Consideriamo due posizioni a e b della spira a due istanti di tempo t e t +dt Il flusso del campo magnetico è Calcoliamo la variazione del flusso Confrontando con l'espressione per E Elettromagnetismo Prof. Francesco Ragusa 133

10 Chi fa lavoro? Nell'analisi del sistema precedente abbiamo visto che ai portatori di carica viene trasferita energia Viene compiuto un lavoro A prima vista sembra che siano le forze magnetiche a compiere lavoro Abbiamo detto che le forze magnetiche non fanno lavoro Per approfondire questo punto consideriamo il sistema seguente Il sistema è immerso in un campo magnetico uniformebche entra nel piano Al tempo t il conduttore rosso è ad una distanza vt Il flusso concatenato è la forza elettromotrice è Questa forza elettromotrice mette in moto le cariche Se la resistenza del conduttore è R dissipa una potenza Consideriamo in dettaglio cosa succede al conduttore rosso Le cariche hanno due componenti della velocità La componente u y legata alla corrente La componente u x = v dovuta al moto della barretta La forza magnetica sui portatori di carica è pertanto F m Elettromagnetismo Prof. Francesco Ragusa 134

11 Chi fa lavoro? Assumiamo di essere in una condizione stazionaria La corrente è costante La velocità dalla barretta è costante Tutte le forze sono in equilibrio Scomponiamo la forza magnetica in una componente verticale e una orizzontale La componente orizzontale bilancia la forza esterna La velocità della barretta è costante La componente verticale mantiene costante la corrente contro l'effetto dissipativo delle collisioni con gli ioni Consideriamo il lavoro fatto dalle forze nell'unità di tempo La componente verticale della forza magnetica effetto Joule contro F R La componente orizzontale della forza magnetica si oppone alla forza esterna Osserviamo che la potenza totale P x + P y della forza F m è nulla La forza magnetica non compie lavoro Elettromagnetismo Prof. Francesco Ragusa 135

12 Chi fa lavoro? Notiamo infine che le potenze sono tutte uguali in modulo L'agente esterno che applica F ext eroga una potenza qbu x u y =qbvu y La forza magnetica si oppone all'agente esterno e dissipa qbu x u y La forza magnetica eroga la potenza necessaria a mantenere la corrente pari a qbu x u y L'effetto Joule dissipa una potenza qbu x u y Per finire un analogo meccanico Un piano inclinato senza attrito Il diagramma delle forze è lo stesso di quello della diapositiva precedente La forza normale non compie lavoro La reazione normale si scompone in due componenti La forza esterna orizzontale compie un lavoro aumentando l'altezza e quindi l'energia potenziale gravitazionale della massa Elettromagnetismo Prof. Francesco Ragusa 136

13 Il flusso del campo magnetico Nel calcolo precedente abbiamo utilizzato una spira piana La superfice che abbiamo utilizzato era anch'essa piana Tuttavia si tratta di restrizioni non essenziali La spira potrebbe non essere piana e la superficie utilizzata potrebbe essere una qualunque Ad esempio il flusso attraverso la superficie S 1 delimitata dal cammino C Oppure attraverso la superficie S 2 Dimostriamo che Consideriamo la superficie chiusa formata da S 1 + S 2 Le normali alle superfici sono verso l'esterno Ma si ha da 3 = da 2 Nel sistema MKS il flusso si misura in Weber Elettromagnetismo Prof. Francesco Ragusa 137

Chi fa lavoro? Osserviamo che la forza magnetica è perpendicolare alla velocità dei portatori di carica Non compie lavoro sulle cariche

Chi fa lavoro? Osserviamo che la forza magnetica è perpendicolare alla velocità dei portatori di carica Non compie lavoro sulle cariche Chi fa lavoro? Nell'analisi del sistema precedente abbiamo osservato che se si aumenta la corrente la forza magnetica supera il peso e il circuito si sposta verso l'alto La massa m acquista energia potenziale

Dettagli

Dati numerici: f = 200 V, R 1 = R 3 = 100 Ω, R 2 = 500 Ω, C = 1 µf.

Dati numerici: f = 200 V, R 1 = R 3 = 100 Ω, R 2 = 500 Ω, C = 1 µf. ESERCIZI 1) Due sfere conduttrici di raggio R 1 = 10 3 m e R 2 = 2 10 3 m sono distanti r >> R 1, R 2 e contengono rispettivamente cariche Q 1 = 10 8 C e Q 2 = 3 10 8 C. Le sfere vengono quindi poste in

Dettagli

Prof. F.Soramel Elementi di Fisica 2 - A.A. 2010/11 1

Prof. F.Soramel Elementi di Fisica 2 - A.A. 2010/11 1 Induzione La legge dell induzione di Faraday combina gli effetti dei campi elettrici e delle correnti, infatti sappiamo che Corrente + campo magnetico momento torcente motore elettrico Momento torcente

Dettagli

1. Il moto della sbarretta (OLIMPIADI della FISICA 1991)

1. Il moto della sbarretta (OLIMPIADI della FISICA 1991) 1. Il moto della sbarretta (OLIMPIADI della FISICA 1991) Obiettivi Determinare la f.e.m. indotta agli estremi di un conduttore rettilineo in moto in un campo magnetico Applicare il secondo principio della

Dettagli

Elettromagnetismo. Induttanza e mutua induttanza Energia Magnetica. Lezione n Prof. Francesco Ragusa Università degli Studi di Milano

Elettromagnetismo. Induttanza e mutua induttanza Energia Magnetica. Lezione n Prof. Francesco Ragusa Università degli Studi di Milano Elettromagnetismo Prof. Francesco Ragusa Università degli Studi di Milano Lezione n. 29 27.04.2017 Induttanza e mutua induttanza Energia Magnetica Anno Accademico 2016/2017 Einstein Relatività Ristretta

Dettagli

Interazioni di tipo magnetico II

Interazioni di tipo magnetico II INGEGNERIA GESTIONALE corso di Fisica Generale Prof. E. Puddu Interazioni di tipo magnetico II 1 Forza magnetica su una carica in moto Una particella di carica q in moto risente di una forza magnetica

Dettagli

Elettromagnetismo. Applicazioni della legge di Gauss. Lezione n. 6 14.10.2015. Prof. Francesco Ragusa Università degli Studi di Milano

Elettromagnetismo. Applicazioni della legge di Gauss. Lezione n. 6 14.10.2015. Prof. Francesco Ragusa Università degli Studi di Milano Elettromagnetismo Prof. Francesco Ragusa Università degli Studi di Milano Lezione n. 6 14.10.2015 Applicazioni della legge di Gauss Anno Accademico 2015/2016 Campo di un guscio sferico cavo Abbiamo già

Dettagli

Elettromagnetismo. Prof. Francesco Ragusa Università degli Studi di Milano. Lezione n

Elettromagnetismo. Prof. Francesco Ragusa Università degli Studi di Milano. Lezione n Elettromagnetismo Prof. Francesco Ragusa Università degli Studi di Milano Lezione n. 8 21.10.2015 Equazione di Laplace Conduttori in un campo elettrostatico Anno Accademico 2015/2016 Energia del campo

Dettagli

Esercitazione XII - Elettrostatica e magnetismo

Esercitazione XII - Elettrostatica e magnetismo Esercitazione XII - Elettrostatica e magnetismo Esercizio 1 Una particella di massa m = 10g e carica negativa q = 1mC viene posta fra le armature di un condensatore a piatti piani e paralleli, ed è inoltre

Dettagli

Prof.ssa Garagnani Elisa - Correnti indotte. Campi magnetici variabili e correnti indotte

Prof.ssa Garagnani Elisa - Correnti indotte. Campi magnetici variabili e correnti indotte Campi magnetici variabili e correnti indotte Campi elettromagnetici lentamente variabili 1-7 Esperienze di Faraday (1831) che evidenziano gli effetti di campi elettrici e magnetici variabili nel tempo.

Dettagli

APPENDICE 1 CAMPI CONSERVATIVI CIRCUITAZIONE DI UN VETTORE LUNGO UNA LINEA CHIUSA CORRENTE DI SPOSTAMENTO

APPENDICE 1 CAMPI CONSERVATIVI CIRCUITAZIONE DI UN VETTORE LUNGO UNA LINEA CHIUSA CORRENTE DI SPOSTAMENTO APPENDICE 1 CAMPI CONSERVATIVI CIRCUITAZIONE DI UN VETTORE LUNGO UNA LINEA CHIUSA CORRENTE DI SPOSTAMENTO Quando un punto materiale P si sposta di un tratto s per effetto di una forza F costante applicata

Dettagli

LICEO SCIENTIFICO STATALE G. MARCONI FOGGIA

LICEO SCIENTIFICO STATALE G. MARCONI FOGGIA LICEO SCIENTIFICO STATALE G. MARCONI FOGGIA PROGRAMMA DI Fisica Classe VB Anno Scolastico 2014-2015 Insegnante: Prof.ssa La Salandra Incoronata 1 FORZA E CAMPI ELETTRICI (Richiami) Teoria sui vettori I

Dettagli

Induzione elettromagnetica

Induzione elettromagnetica Induzione elettromagnetica Una corrente elettrica produce un campo magnetico Un campo magnetico esercita una forza sui circuiti percorsi da corrente È possibile generare correnti per mezzo di campi magnetici?

Dettagli

Indice 3. Note di utilizzo 9. Ringraziamenti 10. Introduzione 11

Indice 3. Note di utilizzo 9. Ringraziamenti 10. Introduzione 11 Indice Indice 3 Note di utilizzo 9 Ringraziamenti 10 Introduzione 11 Capitolo 1 Grandezze fisiche e schematizzazione dei sistemi materiali 13 1.1 Grandezze fisiche ed operazione di misura 13 1.2 Riferimento

Dettagli

CAMPI MAGNETICI DELLE CORRENTI

CAMPI MAGNETICI DELLE CORRENTI CAMPI MAGNETICI DELLE CORRENTI Esperienza di Oersted ----------------- Nel 1820 una esperienza storica segnò la data di nascita dell'elettromagnetismo, una teoria unificata che dimostra come i fenomeni

Dettagli

Legge di Faraday. x x x x x x x x x x E x x x x x x x x x x R x x x x x x x x x x. x x x x x x x x x x. x x x x x x x x x x E B 1 Φ B.

Legge di Faraday. x x x x x x x x x x E x x x x x x x x x x R x x x x x x x x x x. x x x x x x x x x x. x x x x x x x x x x E B 1 Φ B. Φ ε ds ds dφ = dt Legge di Faraday E x x x x x x x x x x E x x x x x x x x x x R x x x x x x x x x x 1 x x x x x x x x x x E x x x x x x x x x x E Schema Generale Elettrostatica moto di q in un campo E

Dettagli

PROGRAMMAZIONE DEL GRUPPO DISCIPLINARE A.S. 2015/2016 INDIRIZZO SCOLASTICO: LICEO SCIENTIFICO

PROGRAMMAZIONE DEL GRUPPO DISCIPLINARE A.S. 2015/2016 INDIRIZZO SCOLASTICO: LICEO SCIENTIFICO ISTITUTO D ISTRUZIONE SUPERIORE Enrico Mattei ISTITUTO TECNICO COMMERCIALE LICEO SCIENTIFICO LICEO dellescienze UMANE Via delle Rimembranze, 26 40068 San Lazzaro di Savena BO Tel. 051 464510 464545 fax

Dettagli

Prova Scritta di Elettricità e Magnetismo e di Elettromagnetismo A. A Febbraio 2008 (Proff. F.Lacava, C.Mariani, F.Ricci, D.

Prova Scritta di Elettricità e Magnetismo e di Elettromagnetismo A. A Febbraio 2008 (Proff. F.Lacava, C.Mariani, F.Ricci, D. Prova Scritta di Elettricità e Magnetismo e di Elettromagnetismo A. A. 2006-07 - 1 Febbraio 2008 (Proff. F.Lacava, C.Mariani, F.Ricci, D.Trevese) Modalità: - Prova scritta di Elettricità e Magnetismo:

Dettagli

Elementi di Fisica 2CFU

Elementi di Fisica 2CFU Elementi di Fisica 2CFU III parte - Elettromagnetismo Andrea Susa MAGNETISMO 1 Magnete Alcune sostanze naturali, come ad esempio la magnetite, hanno la proprietà di attirare pezzetti di ferro, e per questo

Dettagli

Unità 9. Il campo magnetico

Unità 9. Il campo magnetico Unità 9 Il campo magnetico 1. La forza di Lorentz Se un fascio catodico è in un campo magnetico: La forza di Lorentz Gli elettroni risentono di una forza magnetica anche se non sono in un filo metallico;

Dettagli

Gli esperimenti condotti da Faraday hanno portato a stabilire l esistenza di una forza elettromotrice e quindi di una corrente indotta in un circuito

Gli esperimenti condotti da Faraday hanno portato a stabilire l esistenza di una forza elettromotrice e quindi di una corrente indotta in un circuito Gli esperimenti condotti da Faraday hanno portato a stabilire l esistenza di una forza elettromotrice e quindi di una corrente indotta in un circuito quando: 1) il circuito è in presenza di un campo magnetico

Dettagli

LA LEGGE DI FARADAY-HENRY O DELL INDUZIONE ELETTROMAGNETICA

LA LEGGE DI FARADAY-HENRY O DELL INDUZIONE ELETTROMAGNETICA LA LEGGE DI FARADAY-HENRY O DELL INDUZIONE ELETTROMAGNETICA Se un magnete è posto vicino ad un circuito conduttore chiuso, nel circuito si manifesta una f.e.m. quando il magnete è messo in movimento. Tale

Dettagli

Istituto Villa Flaminia 27 Aprile 2015 IV Scientifico Simulazione Prova di Fisica (400)

Istituto Villa Flaminia 27 Aprile 2015 IV Scientifico Simulazione Prova di Fisica (400) Istituto Villa Flaminia 27 Aprile 2015 IV Scientifico Simulazione Prova di Fisica (400) 1 Teoria In questa prima parte le domande teoriche; in una seconda parte troverete un paio di esempi di esercizi.

Dettagli

Formulario Elettromagnetismo

Formulario Elettromagnetismo Formulario Elettromagnetismo. Elettrostatica Legge di Coulomb: F = q q 2 u 4 0 r 2 Forza elettrostatica tra due cariche puntiformi; ε 0 = costante dielettrica del vuoto; q = cariche (in C); r = distanza

Dettagli

Fisica II. 7 Esercitazioni

Fisica II. 7 Esercitazioni Esercizi svolti Esercizio 7.1 Il campo magnetico che agisce perpendicolarmente ad un circuito costituito da 3 spire di 3 cm di diametro, passa da un valore di.4t a -.65T in 18 msec. Calcolare la tensione

Dettagli

Appunti di elettromagnetismo

Appunti di elettromagnetismo Appunti di elettromagnetismo Andrea Biancalana ottobre 1999 1 Magneti e correnti elettriche Magneti: esistono materiali che manifestano interazioni non-gravitazionali e non-elettriche; caratteristica dei

Dettagli

IL CAMPO MAGNETICO. V Classico Prof.ssa Delfino M. G.

IL CAMPO MAGNETICO. V Classico Prof.ssa Delfino M. G. IL CAMPO MAGNETICO V Classico Prof.ssa Delfino M. G. UNITÀ - IL CAMPO MAGNETICO 1. Fenomeni magnetici 2. Calcolo del campo magnetico 3. Forze su conduttori percorsi da corrente 4. La forza di Lorentz LEZIONE

Dettagli

Campo magnetico e forza di Lorentz (II)

Campo magnetico e forza di Lorentz (II) Campo magnetico e forza di Lorentz (II) Moto di particelle cariche in un campo magnetico Seconda legge elementare di Laplace Principio di equivalenza di Ampere Effetto Hall Galvanometro Moto di una particella

Dettagli

Esercizi vari su legge di induzione di Faraday e fenomeni correlati

Esercizi vari su legge di induzione di Faraday e fenomeni correlati Università di Siena, DIISM, CdS in Ingegneria, Corso di fisica, slides lezione n.25, pag.1/11 In questa esercitazione: Esercizi vari su legge di induzione di Faraday e fenomeni correlati Università di

Dettagli

Cosa è la dinamo? dinamo

Cosa è la dinamo? dinamo La dinamo Cosa è la dinamo? La dinamo è una macchina elettrica rotante per la trasformazione di lavoro meccanico in energia elettrica, sotto forma di corrente continua (DC, per gli inglesi, direct current).

Dettagli

Fisica Generale II (prima parte)

Fisica Generale II (prima parte) Corso di Laurea in Ing. Medica Fisica Generale II (prima parte) Cognome Nome n. matricola Voto 4.2.2011 Esercizio n.1 Determinare il campo elettrico in modulo direzione e verso generato nel punto O dalle

Dettagli

Argomenti per esame orale di Fisica Generale (Elettromagnetismo) 9 CFU A.A. 2012/2013

Argomenti per esame orale di Fisica Generale (Elettromagnetismo) 9 CFU A.A. 2012/2013 Argomenti per esame orale di Fisica Generale (Elettromagnetismo) 9 CFU A.A. 2012/2013 1. Il campo elettrico e legge di Coulomb: esempio del calcolo generato da alcune semplici distribuzioni. 2. Il campo

Dettagli

SCIENZE INTEGRATE (FISICA) - settore tecnologico COMPETENZE DISCIPLINARI CLASSI SECONDE

SCIENZE INTEGRATE (FISICA) - settore tecnologico COMPETENZE DISCIPLINARI CLASSI SECONDE SCIENZE INTEGRATE (FISICA) - settore tecnologico COMPETENZE DISCIPLINARI CLASSI SECONDE Saper analizzare un fenomeno o un problema riuscendo ad individuare gli elementi significativi e le relazioni coinvolte,

Dettagli

Cap 31 - Induzione e induttanza. 31.2 Due esperimenti

Cap 31 - Induzione e induttanza. 31.2 Due esperimenti N.Giglietto A.A. 2002/03-31.2 Due esperimenti - 1 Cap 31 - Induzione e induttanza Sappiamo che una spira percorsa da corrente e immersa in un campo magnetico è soggetta ad un momento torcente. Proviamo

Dettagli

Programma di Matematica - 5A

Programma di Matematica - 5A Programma di Matematica - 5A U.D.1 U.D.2 U.D.3 U.D.4 Premesse all'analisi infinitesimale: Intervalli numerici limitati e illimitati, massimo e minimo, estremo superiore e inferiore. Punto di accumulazione

Dettagli

Elettromagnetismo. Prof. Francesco Ragusa Università degli Studi di Milano. Lezione n

Elettromagnetismo. Prof. Francesco Ragusa Università degli Studi di Milano. Lezione n Elettromagnetismo Prof. Francesco Ragusa Università degli Studi di Milano Lezione n. 37 1.06.2016 Riflessione e rifrazione Incidenza obliqua Potenziali elettrodinamici Anno Accademico 2016/2017 Quantità

Dettagli

L Induzione Elettromagnetica. Fabio Bevilacqua Dipartimento di Fisica A.Volta Università di Pavia

L Induzione Elettromagnetica. Fabio Bevilacqua Dipartimento di Fisica A.Volta Università di Pavia L Induzione Elettromagnetica Fabio Bevilacqua Dipartimento di Fisica A.Volta Università di Pavia Il fenomeno Uno straordinario fenomeno avviene quando un filo conduttore è mosso in vicinanza di un magnete:

Dettagli

FISICA (modulo 1) PROVA SCRITTA 21/02/2014

FISICA (modulo 1) PROVA SCRITTA 21/02/2014 ESERCIZI FISICA (modulo 1) PROVA SCRITTA 21/02/2014 E1. Due corpi di massa m 1 = 1000 Kg e m 2 = 1200 Kg collidono proveniendo da direzioni perpendicolari. L urto è perfettamente anelastico e i due corpi

Dettagli

Corrente di spostamento ed equazioni di Maxwell

Corrente di spostamento ed equazioni di Maxwell Corrente di spostamento ed equazioni di Maxwell n Corrente di spostamento n Modifica della legge di Ampere n Equazioni di Maxwell n Onde elettromagnetiche Corrente di spostamento n La legge di Ampere e`

Dettagli

1. La forza di Lorentz. Se un fascio catodico è in un campo magnetico:

1. La forza di Lorentz. Se un fascio catodico è in un campo magnetico: Il campo magnetico 1. La forza di Lorentz Se un fascio catodico è in un campo magnetico: La forza di Lorentz Gli elettroni risentono di una forza magnetica anche se non sono in un filo metallico; l'importante

Dettagli

Le 4 forze della natura:

Le 4 forze della natura: Le 4 forze della natura: Forze elettromagnetiche Forze gravitazionali Forze nucleari forti Forze nucleari deboli Meccanica: Che cosa fanno le forze? le forze producono accelerazioni, cioè cambiamenti di

Dettagli

MODULO DI ELETTROMAGNETISMO Prova Pre-Esame del 28 GENNAIO 2009 A.A

MODULO DI ELETTROMAGNETISMO Prova Pre-Esame del 28 GENNAIO 2009 A.A MODULO D ELETTROMAGNETSMO Prova Pre-Esame del 28 GENNAO 2009 A.A. 2008-2009 FSCA GENERALE Esercizi FS GEN: Punteggio in 30 esimi 1 8 Fino a 4 punti COGNOME: NOME: MATR: 1. Campo elettrostatico La sfera

Dettagli

Potenziale elettrostatico

Potenziale elettrostatico Doppio strato piano Potenziale elettrostatico Consideriamo il lavoro compiuto dalla forza elettrica quando una particella di prova di carica q viene spostata in un campo elettrico E. Possiamo definire

Dettagli

Conoscenze FISICA LES CLASSE TERZA SAPERI MINIMI

Conoscenze FISICA LES CLASSE TERZA SAPERI MINIMI FISICA LES SAPERI MINIMI CLASSE TERZA LE GRANDEZZE FISICHE E LA LORO MISURA Nuovi principi per indagare la natura. Il concetto di grandezza fisica. Misurare una grandezza fisica. L impossibilità di ottenere

Dettagli

Il campo magnetico. n I poli magnetici di nome contrario non possono essere separati: non esiste il monopolo magnetico

Il campo magnetico. n I poli magnetici di nome contrario non possono essere separati: non esiste il monopolo magnetico Il campo magnetico n Le prime osservazioni dei fenomeni magnetici risalgono all antichità n Agli antichi greci era nota la proprietà della magnetite di attirare la limatura di ferro n Un ago magnetico

Dettagli

Il lavoro e l energia

Il lavoro e l energia Il lavoro e l energia Il concetto fondamentale che mette in relazione forze, spostamenti ed energia è quello di lavoro Lavoro di una forza costante Nel caso di forza e spostamento con uguale direzione

Dettagli

Esercizi di Fisica LB: Induzione Elettromagnetica

Esercizi di Fisica LB: Induzione Elettromagnetica Esercizi di Fisica LB: Induzione Elettromagnetica Esercizio 1 Esercitazioni di Fisica LB per ingegneri - A.A. 23-24 Una sbarra conduttrice di lunghezza l è fissata ad un estremo ed è fatta ruotare con

Dettagli

EQUAZIONI DI MAXWELL

EQUAZIONI DI MAXWELL EQUAZIONI DI MAXWELL CAMPO ELETTRICO INDOTTO Per la legge di Faraday-Neumann-Lenz, in una spira conduttrice dove c è una variazione di Φ(B) concatenato si osserva una corrente indotta. Ricordando che una

Dettagli

Simulazionme Prova Scritta Completa-Fisica 9 CFU Corso di Laurea in Tossicologia dell ambiente e degli alimenti

Simulazionme Prova Scritta Completa-Fisica 9 CFU Corso di Laurea in Tossicologia dell ambiente e degli alimenti Simulazionme Prova Scritta Completa-Fisica 9 CFU Corso di Laurea in Tossicologia dell ambiente e degli alimenti Quesito 1 In un moto uniformemente accelerato, quale tra le seguenti affermazioni è sempre

Dettagli

INDUZIONE ELETTROMAGNETICA

INDUZIONE ELETTROMAGNETICA INDUZIONE ELETTROMAGNETICA Faraday scoprì che muovendo rapidamente un magnete vicino ad una bobina, in questa passava una corrente elettrica che cessava di esistere quando il magnete era in quiete. Questo

Dettagli

ELETTROTECNICA. Elettromagnetismo. Livello 13. Andrea Ros sdb

ELETTROTECNICA. Elettromagnetismo. Livello 13. Andrea Ros sdb ELETTROTECNICA Livello 13 Elettromagnetismo Andrea Ros sdb Livello 13 Elettromagnetismo Sezione 1 Campi magnetici e correnti elettriche Nel 1820 il fisico Oersted scoprì che il passaggio di una corrente

Dettagli

L induzione elettromagnetica - Legge di Faraday-Lentz

L induzione elettromagnetica - Legge di Faraday-Lentz Ver. 1. del 7/1/9 L induzione elettromagnetica - Legge di Faraday-Lentz i osservano alcuni fatti sperimentali. 1 ) Consideriamo un filo metallico chiuso su se stesso (spira) tramite un misuratore di corrente

Dettagli

PROFILO IN USCITA PER IL TERZO ANNO FISICA Sezioni internazionale Francese-Tedesca ad indirizzo scientifico

PROFILO IN USCITA PER IL TERZO ANNO FISICA Sezioni internazionale Francese-Tedesca ad indirizzo scientifico PROFILO IN USCITA PER IL TERZO ANNO I vettori: componenti cartesiane, algebra dei vettori Il moto nel piano Moto circolare uniforme ed uniformemente accelerato Moto parabolico Il vettore forza Equilibrio

Dettagli

Esercizi di magnetismo

Esercizi di magnetismo Esercizi di magnetismo Fisica II a.a. 2003-2004 Lezione 16 Giugno 2004 1 Un riassunto sulle dimensioni fisiche e unità di misura l unità di misura di B è il Tesla : definisce le dimensioni [ B ] = [m]

Dettagli

Lezione 5. L equilibrio dei corpi. Lavoro ed energia.

Lezione 5. L equilibrio dei corpi. Lavoro ed energia. Lezione 5 L equilibrio dei corpi. Lavoro ed energia. Statica E la parte della Meccanica che studia l equilibrio dei corpi. Dai principi della dinamica sappiamo che se su un corpo agiscono delle forze allora

Dettagli

CARICA ELETTRICA E LEGGE DI COULOMB

CARICA ELETTRICA E LEGGE DI COULOMB QUESITI 1 CARICA ELETTRICA E LEGGE DI COULOMB 1. (Da Medicina e Odontoiatria 2015) Due particelle cariche e isolate sono poste, nel vuoto, a una certa distanza. La forza elettrostatica tra le due particelle

Dettagli

Campi Elettromagnetici Stazionari - a.a

Campi Elettromagnetici Stazionari - a.a Campi Elettromagnetici Stazionari - a.a. 2005-06 I Compitino - 17 Novembre 2005 Due anelli di raggio a=1 cm e sezione trascurabile, disposte come in Figura 1, coassiali tra loro e con l'asse x, in posizione

Dettagli

Riassunto lezione 3. Principi della dinamica. Sistemi di riferimento inerziali. Legge di Newton: F = ma

Riassunto lezione 3. Principi della dinamica. Sistemi di riferimento inerziali. Legge di Newton: F = ma Riassunto lezione 3 Principi della dinamica Sistemi di riferimento inerziali Legge di Newton: F = ma Forza peso, forza elastica, tensione, forze d attrito 1 Obiettivo lezione 4 Energia e lavoro Capire

Dettagli

Compitino di Fisica II 15 Aprile 2011

Compitino di Fisica II 15 Aprile 2011 Compitino di Fisica II 15 Aprile 2011 Alcune cariche elettriche q sono disposte ai vertici di un quadrato di lato a come mostrato in figura. Si calcoli: +2q y +q a) il momento di dipolo del sistema; b)

Dettagli

Il fenomeno dell induzione elettromagnetica: la legge di Faraday-Neumann-Lenz.

Il fenomeno dell induzione elettromagnetica: la legge di Faraday-Neumann-Lenz. Una lezione per il PL A.A. 2013-14 F. Lacava 17/01/2014 Il fenomeno dell induzione elettromagnetica: la legge di Faraday-eumann-Lenz. Cercherò di farvi capire il fenomeno dell induzione elettromagnetica

Dettagli

L INDUZIONE ELETTROMAGNETICA. V Scientifico Prof.ssa Delfino M. G.

L INDUZIONE ELETTROMAGNETICA. V Scientifico Prof.ssa Delfino M. G. L INDUZIONE ELETTROMAGNETICA V Scientifico Prof.ssa Delfino M. G. INDUZIONE E ONDE ELETTROMAGNETICHE 1. Il flusso del vettore B 2. La legge di Faraday-Neumann-Lenz 3. Induttanza e autoinduzione 4. I circuiti

Dettagli

CORSO di AGGIORNAMENTO di FISICA

CORSO di AGGIORNAMENTO di FISICA MATHESIS _ ROMA CORSO di AGGIORNAMENTO di FISICA Commento ai problemi proposti nell incontro del 17 febbraio 2016 Adriana Lanza I.T:T. COLOMBO via Panisperna, 255 24 febbraio 2016 I problemi proposti TRACCE

Dettagli

CAMPO MAGNETICO E FORZA DI LORENTZ

CAMPO MAGNETICO E FORZA DI LORENTZ QUESITI 1 CAMPO MAGNETICO E FORZA DI LORENTZ 1. (Da Medicina e Odontoiatria 2013) Un cavo percorso da corrente in un campo magnetico può subire una forza dovuta al campo. Perché tale forza non sia nulla

Dettagli

Soluzioni della prova scritta di Fisica Generale

Soluzioni della prova scritta di Fisica Generale Scienze e Tecnologie dell Ambiente Soluzioni della prova scritta di Fisica Generale 9 Luglio 2010 Parte 1 Esercizio 1 Un astronauta di massa m=80 Kg atterra su un pianeta dove il suo peso vale P=200 N.

Dettagli

= E qz = 0. 1 d 3 = N

= E qz = 0. 1 d 3 = N Prova scritta d esame di Elettromagnetismo 7 ebbraio 212 Proff.. Lacava,. Ricci, D. Trevese Elettromagnetismo 1 o 12 crediti: esercizi 1, 2, 4 tempo 3 h; Elettromagnetismo 5 crediti: esercizi 3, 4 tempo

Dettagli

Meccanica del punto materiale

Meccanica del punto materiale Meccanica del punto materiale Princìpi della dinamica. Forze. Momento angolare. Antonio Pierro @antonio_pierro_ (https://twitter.com/antonio_pierro_) Per consigli, suggerimenti, eventuali errori o altro

Dettagli

Modellistica dei Sistemi Elettro-Meccanici

Modellistica dei Sistemi Elettro-Meccanici 1 Prof. Carlo Cosentino Fondamenti di Automatica, A.A. 2016/17 Corso di Fondamenti di Automatica A.A. 2016/17 Modellistica dei Sistemi Elettro-Meccanici Prof. Carlo Cosentino Dipartimento di Medicina Sperimentale

Dettagli

Argomenti delle lezioni del corso di Elettromagnetismo

Argomenti delle lezioni del corso di Elettromagnetismo Argomenti delle lezioni del corso di Elettromagnetismo 2012-13 4 marzo (2 ore) Introduzione al corso, modalità del corso, libri di testo, esercitazioni. Il fenomeno dell elettricità. Elettrizzazione per

Dettagli

Magnete. Campo magnetico. Fenomeni magnetici. Esempio. Esempio. Che cos è un magnete? FENOMENI MAGNETICI

Magnete. Campo magnetico. Fenomeni magnetici. Esempio. Esempio. Che cos è un magnete? FENOMENI MAGNETICI Magnete FENOMENI MAGNETICI Che cos è un magnete? Un magnete è un materiale in grado di attrarre pezzi di ferro Prof. Crosetto Silvio 2 Prof. Crosetto Silvio Quando si avvicina ad un pezzo di magnetite

Dettagli

Temi di elettromagnetismo

Temi di elettromagnetismo Temi di elettromagnetismo Prova scritta del 12/04/1995 1) Una carica puntiforme q 1 = 5 µc e' fissata nell'origine ed una seconda carica q 2 = -2µC e' posta sull'asse x, a una distanza d = 3 m, come in

Dettagli

Quadro di Riferimento della II prova di Fisica dell esame di Stato per i Licei Scientifici

Quadro di Riferimento della II prova di Fisica dell esame di Stato per i Licei Scientifici Quadro di Riferimento della II prova di Fisica dell esame di Stato per i Licei Scientifici Il presente documento individua le conoscenze, abilità e competenze che lo studente dovrà aver acquisito al termine

Dettagli

ESERCITAZIONI FISICA PER FARMACIA A.A. 2012/2013 ELETTROMAGNETISMO - OTTICA

ESERCITAZIONI FISICA PER FARMACIA A.A. 2012/2013 ELETTROMAGNETISMO - OTTICA ESERCITAZIONI FISICA PER FARMACIA A.A. 2012/2013 ELETTROMAGNETISMO - OTTICA Esercizio 1 Due cariche q 1 e q 2 sono sull asse x, una nell origine e l altra nel punto x = 1 m. Si trovi il campo elettrico

Dettagli

FORMULARIO ELETTROMAGNETISMO

FORMULARIO ELETTROMAGNETISMO FORMULARIO ELETTROMAGNETISMO Forza di Coulomb : forza che intercorre tra due particelle cariche Campo elettrico : quantità vettoriale generata da una carica Densità di carica superficiale, volumetrica

Dettagli

Elettromagnetismo Formulazione differenziale

Elettromagnetismo Formulazione differenziale Elettromagnetismo Formulazione differenziale 1. Legge di Faraday 2. Estensione della legge di Ampere 3. Equazioni di Maxwell 4. Onde elettromagnetiche VI - 0 Legge di Faraday Campo elettrico Campo di induzione

Dettagli

FISICA GENERALE Ingegneria edile/architettura

FISICA GENERALE Ingegneria edile/architettura FISICA GENERALE Ingegneria edile/architettura Tutor: Enrico Arnone Dipartimento di Chimica Fisica e Inorganica arnone@fci.unibo.it http://www2.fci.unibo.it/~arnone/teaching/teaching.html Bologna 3 Giugno

Dettagli

Cose da sapere - elettromagnetismo

Cose da sapere - elettromagnetismo Cose da sapere - elettromagnetismo In queste pagine c e` un riassunto di relazioni e risultati che abbiamo discusso e che devono essere conosciuti. Forza di Lorentz agente su una carica q in moto con velocita`

Dettagli

Esame Scritto Fisica Generale T-B/T-2

Esame Scritto Fisica Generale T-B/T-2 Esame Scritto Fisica Generale T-B/T-2 (CdL Ingegneria Civile e Informatic Prof. B. Fraboni - M. Sioli VI Appello A.A. 2013-2014 - 11/09/2014 Soluzioni Esercizi Ex. 1 Due cariche puntiformi 1 = + e 2 =

Dettagli

Compito di Fisica II del 14/09/2009

Compito di Fisica II del 14/09/2009 Compito di Fisica II del 14/09/2009 Prof. G. Zavattini Una sbarretta conduttrice omogenea di massa m = 1g, lunghezza d = 10 cm e resistenza trascurabile è incernierata perpendicolarmente a due guide rettilinee

Dettagli

CORSO DI BIOFISICA IL MATERIALE CONTENUTO IN QUESTE DIAPOSITIVE E AD ESCLUSIVO USO DIDATTICO PER L UNIVERSITA DI TERAMO

CORSO DI BIOFISICA IL MATERIALE CONTENUTO IN QUESTE DIAPOSITIVE E AD ESCLUSIVO USO DIDATTICO PER L UNIVERSITA DI TERAMO CORSO DI IOFISICA IL MATERIALE CONTENUTO IN QUESTE DIAPOSITIVE E AD ESCLUSIVO USO DIDATTICO PER L UNIVERSITA DI TERAMO LE IMMAGINE CONTENUTE SONO STATE TRATTE DAL LIRO FONDAMENTI DI FISICA DI D. HALLIDAY,

Dettagli

(a) ;

(a) ; Corso di Fisica Generale II - A.A. 2005/2006 Proff. S. Amoruso, M. Iacovacci, G. La Rana Esercizi di preparazione alle prove intercorso ------------------------- Cap. VIII Campi elettrici e magnetici variabili

Dettagli

Scritto di Fisica 2 dott. Esposito 20/02/2013

Scritto di Fisica 2 dott. Esposito 20/02/2013 Scritto di Fisica 2 dott. Esposito 20/02/2013 Corso di Laurea: Data orale (indicativa): 25 febbraio 4 marzo Anno di corso: 1) Si considerino due bobine di N spire percorse da una corrente i. Esse sono

Dettagli

Elettromagnetismo. Prof. Francesco Ragusa Università degli Studi di Milano. Lezione n

Elettromagnetismo. Prof. Francesco Ragusa Università degli Studi di Milano. Lezione n Elettromagnetismo Prof. Francesco Ragusa Università degli Studi di Milano Lezione n. 24 12.1.2016 Circuiti elettrici Equazioni per la soluzione dei circuiti Anno Accademico 2015/2016 Forza elettromotrice

Dettagli

Cenni di magnetostatica nel Vuoto 1.1 (Lezione L14 Prof. Della Valle) 1. Effetti Meccanici del Campo Magnetico

Cenni di magnetostatica nel Vuoto 1.1 (Lezione L14 Prof. Della Valle) 1. Effetti Meccanici del Campo Magnetico Cenni di magnetostatica nel Vuoto 11 (Lezione L14 Prof Della Valle) 1 Effetti Meccanici del Campo Magnetico 11 La Magnetostatica L elettrostatica studia le forze di interazione fra cariche elettriche ferme

Dettagli

Sulla superficie interna del guscio sferico (induzione totale) si avrà la carica indotta q distribuita uniformemente, quindi

Sulla superficie interna del guscio sferico (induzione totale) si avrà la carica indotta q distribuita uniformemente, quindi 1) Una sfera conduttrice di raggio r = 5 cm possiede una carica q = 10 8 C ed è posta nel centro di un guscio sferico conduttore, di raggio interno R = 20 cm, posto in contatto con la terra (a massa).

Dettagli

Induzione magnetica 1

Induzione magnetica 1 l flusso concatenato nduzione magnetica 1 è solenoidale è definito il flusso di concatenato con una linea chiusa e orientata Φ () n d (verso della normale n indotto dalla percorrenza della linea secondo

Dettagli

Lez. 2 Intensità di corrente elettrica e tensione elettrica

Lez. 2 Intensità di corrente elettrica e tensione elettrica Lez. 2 Intensità di corrente elettrica e tensione elettrica Università di Napoli Federico II, CdL Ing. Meccanica, A.A. 2017-2018, Elettrotecnica. Lezione 2 Pagina 1 Lo studio dei circuiti elettrici può

Dettagli

La forza di Lorentz è: una forza conservativa. una forza radiale. una forza a distanza. tutte le le risposte precedenti.

La forza di Lorentz è: una forza conservativa. una forza radiale. una forza a distanza. tutte le le risposte precedenti. La forza di Lorentz è: una forza conservativa. una forza radiale. una forza a distanza. tutte le le risposte precedenti. 1 / 1 La forza di Lorentz è: una forza conservativa. una forza radiale. una forza

Dettagli

4.Semplificare e modellizzare con strumenti matematici e disciplinari situazioni reali al fine della risoluzione di semplici problemi

4.Semplificare e modellizzare con strumenti matematici e disciplinari situazioni reali al fine della risoluzione di semplici problemi MODULO : CONTINUITA 12 ore COMPETENZE: 1.Osservare, identificare ed esplorare fenomeni; 2.Formulare ipotesi esplicative utilizzando modelli, analogie e leggi 3.Costruire il linguaggio della fisica classica

Dettagli

ESPLICITA DERIVAZIONE DELLA RELAZIONE RELATIVISTICA MASSA-ENERGIA PER UN SISTEMA COMPOSTO CON POTENZIALI INTERNI

ESPLICITA DERIVAZIONE DELLA RELAZIONE RELATIVISTICA MASSA-ENERGIA PER UN SISTEMA COMPOSTO CON POTENZIALI INTERNI ESPLICITA DERIVAZIONE DELLA RELAZIONE RELATIVISTICA MASSA-ENERGIA PER UN SISTEMA COMPOSTO CON POTENZIALI INTERNI Di Riccardo Messina L espressione dell equivalenza massaenergia che è qui riportata non

Dettagli

Piano inclinato senza attrito: vale il principio di sovrapposizione per cui il corpo si muoverà secondo la II legge di Newton: Ricavo quindi:

Piano inclinato senza attrito: vale il principio di sovrapposizione per cui il corpo si muoverà secondo la II legge di Newton: Ricavo quindi: Piano inclinato senza attrito: vale il principio di sovrapposizione per cui il corpo si muoverà secondo la II legge di Newton: Ricavo quindi: Pano inclinato con attrito: Ricavo quindi: Se invece sfruttiamo

Dettagli

Lezione 4 Proprietà fondamentali di un plasma II

Lezione 4 Proprietà fondamentali di un plasma II Lezione 4 Proprietà fondamentali di un plasma II G. Bosia Universita di Torino 1 Interfaccia elettrico tra plasma e prima parete solida Quando un plasma e in contatto con un corpo solido, (quale la parete

Dettagli

rdr = 1 2!Bl2 = 0:5 V:

rdr = 1 2!Bl2 = 0:5 V: Lauree in Ing. Gest. dell Inform. e Industr. e Ing. Ambientale A.A. 2010/2011 Corso di Fisica Generale II_con Lab. 28 Gilberto Giugliarelli 4.1 Una sbarretta conduttrice di lunghezza l = 10 cm ruota con

Dettagli

Dinamica: Forze e Moto, Leggi di Newton

Dinamica: Forze e Moto, Leggi di Newton Dinamica: Forze e Moto, Leggi di Newton La Dinamica studia il moto dei corpi in relazione il moto con le sue cause: perché e come gli oggetti si muovono. La causa del moto è individuata nella presenza

Dettagli

Elettromagnetismo: soluzioni. Scheda 11. Ripetizioni Cagliari di Manuele Atzeni

Elettromagnetismo: soluzioni. Scheda 11. Ripetizioni Cagliari di Manuele Atzeni Elettromagnetismo: soluzioni Problema di: Elettromagnetismo - E0001 Scheda 11 Ripetizioni Cagliari di Manuele Atzeni - 3497702002 - info@ripetizionicagliari.it Problema di: Elettrotecnica - E0002 Testo

Dettagli

Forze su cariche nei fili: il motore elettrico

Forze su cariche nei fili: il motore elettrico Forze su cariche nei fili: il motore elettrico In presenza di un campo magnetico B, un tratto di filo (d l) percorsa da una corrente i è soggetto ad una forza F = id l B. Un tratto rettilineo di filo di

Dettagli

Facoltà di Ingegneria Prova scritta di Fisica II - VO 15-Aprile-2003

Facoltà di Ingegneria Prova scritta di Fisica II - VO 15-Aprile-2003 Facoltà di Ingegneria Prova scritta di Fisica II - VO 5-Aprile-003 Esercizio n. Un campo magnetico B è perpendicolare al piano individuato da due fili paralleli, cilindrici e conduttori, distanti l uno

Dettagli

Paradosso di Feynman

Paradosso di Feynman Paradosso di Feynman David Marzocca 27 luglio 2007 Paradosso di Feynman [] Immaginiamo di avere una bobina fissata coassialmente ad un disco di materiale isolante. Sul bordo di questo disco, a distanza

Dettagli

GENERATORI MECCANICI DI CORRENTE

GENERATORI MECCANICI DI CORRENTE GENERATORI MECCANICI DI CORRENTE IL MAGNETISMO Il termine deriva da un minerale del ferro: la magnetite (o calamita naturale), che ha la proprietà di attrarre alcuni metalli. Il campo magnetico è lo spazio

Dettagli

Olimpiadi di Fisica 2015 Campo elettrico Franco Villa

Olimpiadi di Fisica 2015 Campo elettrico Franco Villa 1 Olimpiadi di Fisica 015 ampo elettrico Franco illa 1. ate le cariche Q = -1 µ e Q = - µ (ale in cm O=0, O=10, =10, O=0) determinare: il potenziale elettrico ed il campo elettrico E (modulo, direzione

Dettagli