La prospettiva e i suoi strumenti teorici e tecnici

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "La prospettiva e i suoi strumenti teorici e tecnici"

Transcript

1 Dispense del Corso di Disegno, tenuto da Riccardo Migliari nella Facoltà di Architettura Ludovico Quaroni della Sapienza Università di Roma nell Anno Accademico La prospettiva e i suoi strumenti teorici e tecnici 5 1

2 Fig. 5.1 (in alto) Misura in prospettiva dell angolo formato da due rette incidenti r ed s, appartenenti al piano geometrale 1. Fig. 5.2 (in basso) Ricostruzione nello spazio della misura dell angolo formato da due rette incidenti r ed s, appartenenti al piano geometrale 1. Misure di angoli e segmenti La retta r e la retta a oggettive sono incidenti nel punto P e formano, nello spazio, angoli (supplementari) che sono generalmente diversi da quelli formati dalle prospettive r e a incidenti in P. Si pone dunque il problema di misurare questi angoli. Consideriamo allora le rette proiettanti r e a : queste rette hanno per costruzione la direzione delle corrispondenti rette oggettive (il che è come dire che sono a quelle parallele) e perciò formano angoli eguali a quelli formati dalle rette oggettive. Perciò, per compiere la misura che ci interessa, basta riportare sul piano di quadro, cioè sul disegno, le rette r e a, facendo compiere loro un movimento rigido. Questo movimento si chiama ribaltamento e interessa il piano individuato dalle due rette, che, in questo caso, è il piano dell orizzonte. La retta intersezione del piano delle due rette con il quadro è la cerniera del ribaltamento che serve da asse di rotazione del piano. I due punti di fuga I r e I a, che appartengono alla cerniera, restano fermi durante il ribaltamento, o, se si vuole, ruotano su sé stessi. Il centro di proiezione O descrive un arco di cerchio che giace in un piano perpendicolare alla cerniera (come fa la maniglia di una porta quando la chiudiamo). Questo piano taglia il quadro secondo una retta perpendicolare alla cerniera che passa per O e su questa retta si porta il centro di proiezione O a ribaltamento avvenuto. Per trovare la posizione di O, a ribaltamento avvenuto, posizione che indicheremo con il simbolo O * (leggi O primo asterisco), basta misurare la distanza del centro di proiezione dal quadro, cioè la distanza principale; ma, dato che questa distanza è eguale al raggio del cerchio omonimo, è evidente che O * si trova sul cerchio di distanza, da una parte o dall altra della cerniera, secondo il verso del movimento di rotazione (figg. 5.1, 5.2). Il piano ribaltato trascina nel suo movimento anche le rette r e a che, a ribaltamento avvenuto, si portano in r * e a * incidenti in O * e descrivono così l angolo che volevamo misurare in vera forma. Vogliamo ora risolvere un altro problema, quello di rappresentare in prospettiva un segmento di lunghezza nota, appartenente ad una retta perpendicolare al quadro. Le considerazioni che svilupperemo, tuttavia, sono del tutto generali e si possono applicare, come vedremo, a qualsiasi retta incidente il quadro, quale che sia la sua direzione. cerniera del ribaltamento 2

3 Consideriamo dunque la retta r, che ha prospettiva r (T r I r), e cioè ha traccia nel punto T r e fuga nel punto I r. Vogliamo staccare su questa retta un segmento (T r-p) lungo un metro, cioè desideriamo costruire la prospettiva (T r-p ) di tale segmento. In primo luogo, bisogna individuare uno degli infiniti piani che appartengono alla retta r, il che significa trovarne la traccia e la fuga. Dato che r è lo spigolo tra il pavimento della stanza e la parete destra, converrà scegliere il primo, cioè il geometrale, o la seconda, che appartiene ad un piano verticale, perché questi piani sono già rappresentati, ma, come vedremo tra poco, nulla impedisce di scegliere un qualsiasi altro piano del fascio che usa retta r come sostegno. Il piano geometrale, dunque, il pavimento della stanza, ci aiuterà in questa prima operazione di misura. Perché abbiamo bisogno di un piano? Perché su questo piano 1, nello spazio, potremo disegnare una retta m, capace di staccare sulla retta r e sulla traccia del piano che la contiene, t 1, segmenti eguali. Disegneremo dunque la prospettiva m della retta m e questa incontrerà la prospettiva r della retta r nella prospettiva P del punto P (figg. 5.3, 5.4). Come sappiamo, la prospettiva di una retta resta individuata quando se ne conosca la traccia e la fuga, chiediamoci dunque: dove si trovano questi due punti? Dato che la retta m appartiene, per nostra scelta, al piano 1, la traccia T m sarà su t 1 e la fuga I m su i 1, cioè sull orizzonte. Il punto T m, in particolare, dista da T r un metro, ovviamente nella scala della prospettiva, giacché tutto lo spazio che rappresentiamo ha subito una riduzione. Possiamo staccare questo punto, sulla traccia t 1, indifferentemente a destra o a sinistra di T r. Occupiamoci ora della fuga I m. Osserviamo che i punti T r, T m e P costituiscono i vertici di un triangolo isoscele, essendo i segmenti (T r-t m) e (T r-p) eguali per costruzione. Osserviamo che i punti I r, I m e O costituiscono anch essi i vertici di un triangolo isoscele, perché, per costruzione, il lato (I r-i m) appartiene all orizzonte, che è parallelo alla fondamentale, mentre il lato (I r-o ) è parallelo al lato (T r-p) perché appartiene alla retta r, proiettante e parallela alla retta r. Questa osservazione ci permette dunque di affermare quanto segue: il punto di fuga della retta m, I m, capace di staccare segmenti e- guali su una retta oggettiva e sulla traccia del piano che la contiene, dista dalla fuga della retta oggettiva quanto quest ultima dista dal centro di proiezione O. Fig. 5.3 Misura in prospettiva di un segmento T r-p, di lunghezza assegnata, su di una retta r perpendicolare al piano di quadro. 1 Fig. 5.4 Ricostruzione nello spazio della misura in prospettiva di un segmento T r-p, di lunghezza assegnata, su di una retta r perpendicolare al piano di quadro. 3

4 Ebbene: la distanza (O -I r) è nota perché è la distanza principale, raggio del cerchio di distanza, e dunque il punto I m sta sulla fuga i 1 e sul cerchio medesimo. I punti come I m, che sono fuga delle rette che misurano una retta oggettiva, si dicono punti di misura e l enunciato che abbiamo dato poc anzi può anche scriversi nella seguente forma semplificata: il punto di misura dista dal punto di fuga della retta da misurare tanto quanto quest ultimo dista dal punto di vista. Possiamo riassumere il procedimento che permette di misurare una retta r qualsiasi nella seguente procedura: 1. si sceglie un piano, tra quelli che passano per la retta r, sul quale operare la misura, ad esempio ; 2. si rappresenta il piano, disegnandone la traccia t e la fuga i ; 3. si stacca sulla traccia del piano la traccia della retta di misura m, ad una distanza, dalla traccia della retta da misurare, eguale al segmento che si vuole staccare; 4. si stacca sulla fuga del piano la fuga della retta di misura ad una distanza dalla fuga della retta da misurare eguale alla distanza della medesima dal centro di proiezione O ; 5. si disegna la prospettiva m della retta m, che stacca sulla prospettiva r della retta r, la prospettiva P del punto che si voleva costruire. Supponiamo ora di voler staccare sulla retta oggettiva a una serie di segmenti eguali in successione: caso frequentissimo, questo, perché ricorre ogni volta che si debbano rappresentare strutture regolari dello spazio, come un porticato o anche semplicemente un pavimento ammattonato. In questo caso non basterà una sola retta m, ma occorrerà costruirne tante quanti sono i punti da staccare sulla retta oggettiva (fig. 5.5). Supponiamo, ancora, di voler staccare sulla retta oggettiva un segmento P 2 -P 3 a partire da un punto P 2 di cui si conosce la prospettiva P 2. In questo caso basterà costruire il punto di misura I m per tracciare la prospettiva m 2 (I m P 2 ) della retta m 2 : la m 2 incontrerà la traccia del piano scelto per misurare nel punto T m 2, a partire dal quale si potranno riportare, nella scala del disegno, i segmenti che si vuole staccare sulla retta oggettiva (fig. 5.5). Fig. 5.5 Prospettiva di un porticato e di un pavimento ammattonato quadrato. Misurare su un piano qualsiasi Come abbiamo già detto, la prima operazione da compiere, quando si voglia misurare una retta, consiste nello scegliere il piano, passante per la retta da misurare, nel quale sarà costruita la retta m. Se decidiamo di assumere, a questo scopo, il piano verticale, la traccia della retta m si troverà sulla t, la fuga sulla i, ad una distanza da I r eguale alla distanza di quest ultimo punto dal centro di proiezione O e perciò eguale alla distanza principale, visto che r è perpendicolare al quadro. La retta di misura m sarà, perciò, una retta obliqua che giace nella parete della stanza (fig. 5.3). Supponiamo ora che r non sia lo spigolo tra parete e pavimento, ma una retta del soffitto, pur sempre perpendicolare al quadro, ma posta in una posizione qualsiasi (fig. 5.6). Dato che abbiamo scelto di appoggiare la parete di fondo della stanza sul quadro, la traccia 4

5 Fig. 5.6 Misura di un segmento in prospettiva su un piano obliquo qualsiasi. del piano del soffitto, t, è nota, e così la traccia della retta T r, che gli appartiene. Scegliamo di misurare su un piano obliquo qualsiasi: questa scelta, a volte, è necessaria per aumentare la distanza tra la traccia e la fuga del piano di misura e ottenere, così facendo, un risultato più accurato. Ebbene: la traccia del piano di misura appartiene alla traccia della retta, T r, la fuga alla fuga I r e, dato che traccia e fuga di un piano sono rette parallele, i è determinata. Il resto segue com è noto. 5

gino copelli lezioni di scienza della rappresentazione appunti 2012

gino copelli lezioni di scienza della rappresentazione appunti 2012 gino copelli lezioni di scienza della rappresentazione appunti 2012 Simbologia Il punto, la linea e la superficie sono enti geometrici fondamentali. I punti si indicano con lettere maiuscole dell alfabeto

Dettagli

COMUNICAZIONE N.18 DEL 13.04.2011 1

COMUNICAZIONE N.18 DEL 13.04.2011 1 COMUNICAZIONE N.18 DEL 13.04.2011 1 SECONDO MODULO - APPLICAZIONI DI GEOMETRIA DESCRITTIVA (16) LA PROSPETTIVA - SECONDA PARTE. ESEMPI 144-151 Rette parallele al geometrale Sia data una retta r parallela

Dettagli

ESEMPIO DI RAPPRESENTAZIONE IN PIANTA E ALZATO DEL MODELLO CREATO PER LA PRIMA ESERCITAZIONE

ESEMPIO DI RAPPRESENTAZIONE IN PIANTA E ALZATO DEL MODELLO CREATO PER LA PRIMA ESERCITAZIONE Università Sapienza di Roma, Facoltà di Architettura Corso di laurea in Gestione del processo edilizio Project Management, a.a. 2014-2015 Corso di Disegno tecnico e automatico Docente: Arch. Jessica Romor

Dettagli

Disegno tecnico e automatico ESEMPIO DI RAPPRESENTAZIONE PROSPETTICA

Disegno tecnico e automatico ESEMPIO DI RAPPRESENTAZIONE PROSPETTICA Università Sapienza di Roma, Facoltà di Architettura Corso di laurea in Gestione del processo edilizio - Project Management, a.a. 2014-2015 Corso di Disegno tecnico e automatico Docente: Arch. Jessica

Dettagli

La prospettiva e i suoi strumenti teorici e tecnici

La prospettiva e i suoi strumenti teorici e tecnici Dispense del Corso di Disegno, tenuto da Riccardo Migliari nella Facoltà di Architettura Ludovico Quaroni della Sapienza Università di Roma nell Anno Accademico 2009 2010 La prospettiva e i suoi strumenti

Dettagli

COMUNICAZIONE N.4 DEL

COMUNICAZIONE N.4 DEL COMUNICAZIONE N.4 DEL 7.11.2012 1 1 - PRIMO MODULO - COSTRUZIONI GEOMETRICHE (4): ESEMPI 10-12 2 - SECONDO MODULO - APPLICAZIONI DI GEOMETRIA DESCRITTIVA (4): ESEMPI 19-25 PRIMO MODULO - COSTRUZIONI GEOMETRICHE

Dettagli

Prospettiva a quadro verticale

Prospettiva a quadro verticale Prospettiva a quadro verticale Tr 1 P 2 P 1 Rappresentiamo una retta r, posta su π 1 nelle proiezioni ortogonali, un punto P (punto di vista) ed il quadro verticale α. Vogliamo proiettare la retta r sul

Dettagli

UNITÀ DIDATTICA 5 LA RETTA

UNITÀ DIDATTICA 5 LA RETTA UNITÀ DIDATTICA 5 LA RETTA 5.1 - La retta Equazione generica della retta Dalle considerazioni emerse nel precedente capitolo abbiamo compreso come una funzione possa essere rappresentata da un insieme

Dettagli

Corso di Laurea in Scienze dell Architettura. Corso di Fondamenti e Applicazioni di Geometria Descrittiva

Corso di Laurea in Scienze dell Architettura. Corso di Fondamenti e Applicazioni di Geometria Descrittiva Università degli Studi di Roma Facoltà di Architettura Ludovico Quaroni - AA 2014-2015 Corso di Laurea in Scienze dell Architettura Corso di Fondamenti e Applicazioni di Geometria Descrittiva Riccardo

Dettagli

la restituzione prospettica - schemi 14corso tecniche di rappresentazione dello spazio docente Arch. Emilio Di Gristina

la restituzione prospettica - schemi 14corso tecniche di rappresentazione dello spazio docente Arch. Emilio Di Gristina la restituzione prospettica - schemi 14corso tecniche di rappresentazione dello spazio docente rch. Emilio Di Gristina la restituzione prospettica - ricerca della Linea d Orizzonte Le rette parallele al

Dettagli

Corso di Laurea in Scienze dell Architettura

Corso di Laurea in Scienze dell Architettura Università degli Studi di Roma Facoltà di Architettura AA 2013 2014 Corso di Laurea in Scienze dell Architettura Corso di Disegno Riccardo Migliari 1, Marta Salvatore 2, Jessica Romor 3 1 Professore ordinario

Dettagli

Capitolo VIII Polarità

Capitolo VIII Polarità Capitolo VIII Polarità 1 Polarità definita da una conica Una conica K non degenere (cioè un ellisse, una parabola oppure un iperbole) determina una corrispondenza tra punti e rette del piano, detta polarità.

Dettagli

Costruzione dell immagine prospettica di un parallelepipedo.

Costruzione dell immagine prospettica di un parallelepipedo. Costruzione dell immagine prospettica di un parallelepipedo. La difficoltà di costruzione dell immagine prospettica di un parallelepipedo equivale, tutto sommato, a quella che si incontra nella costruzione

Dettagli

Lezione 6 Richiami di Geometria Analitica

Lezione 6 Richiami di Geometria Analitica 1 Piano cartesiano Lezione 6 Richiami di Geometria Analitica Consideriamo nel piano due rette perpendicolari che si intersecano in un punto O Consideriamo ciascuna di queste rette come retta orientata

Dettagli

Corso di Laurea in Scienze dell Architettura. Corso di Fondamenti e Applicazioni di Geometria Descrittiva

Corso di Laurea in Scienze dell Architettura. Corso di Fondamenti e Applicazioni di Geometria Descrittiva Università degli Studi di Roma Facoltà di Architettura Ludovico Quaroni - AA 2014-2015 Corso di Laurea in Scienze dell Architettura Corso di Fondamenti e Applicazioni di Geometria Descrittiva Riccardo

Dettagli

B6. Sistemi di primo grado

B6. Sistemi di primo grado B6. Sistemi di primo grado Nelle equazioni l obiettivo è determinare il valore dell incognita che verifica l equazione. Tale valore, se c è, è detto soluzione. In un sistema di equazioni l obiettivo è

Dettagli

Lezione introduttiva allo studio della GEOMETRIA SOLIDA

Lezione introduttiva allo studio della GEOMETRIA SOLIDA Lezione introduttiva allo studio della GEOMETRIA SOLIDA Geometria solida Lo spazio euclideo è un insieme infinito di elementi detti punti e contiene sottoinsiemi propri ed infiniti : le rette e i piani..

Dettagli

PREREQUISITI. Rette e piani (parallelismo, perpendicolarità, incidenza) Proiezioni ortogonali Componenti Direzione Seno, coseno e tangente Glossario

PREREQUISITI. Rette e piani (parallelismo, perpendicolarità, incidenza) Proiezioni ortogonali Componenti Direzione Seno, coseno e tangente Glossario Appunti corso di Fisica, Facoltà di Agraria, Docente Ing. Francesca Todisco REREQUISITI Rette e piani (parallelismo, perpendicolarità, incidenza) roiezioni ortogonali Componenti Direzione Seno, coseno

Dettagli

PROIETTIVITÀ. L ombra di un oggetto data dai raggi provenienti da una lampada puntiforme

PROIETTIVITÀ. L ombra di un oggetto data dai raggi provenienti da una lampada puntiforme PROIETTIVITÀ L ombra di un oggetto data dai raggi provenienti da una lampada puntiforme Se osserviamo l ombra di un quadrettato disposto con un lato che poggia sul tavolo di proiezione (figura 1) notiamo

Dettagli

LA RETTA. La retta è un insieme illimitato di punti che non ha inizio, né fine.

LA RETTA. La retta è un insieme illimitato di punti che non ha inizio, né fine. LA RETTA La retta è un insieme illimitato di punti che non ha inizio, né fine. Proprietà: Per due punti del piano passa una ed una sola retta. Nel precedente modulo abbiamo visto che ad ogni punto del

Dettagli

Punti nel piano cartesiano

Punti nel piano cartesiano Punti nel piano cartesiano In un piano consideriamo due rette perpendicolari che chiamiamo x e. Solitamente, disegniamo la retta x (ascisse) orizzontalmente e orientata da sinistra a destra, la retta e

Dettagli

Stabilire se il punto di coordinate (1,1) appartiene alla circonferenza centrata nell origine e di raggio 1.

Stabilire se il punto di coordinate (1,1) appartiene alla circonferenza centrata nell origine e di raggio 1. Definizione di circonferenza e cerchio. Equazione della circonferenza centrata in O e di raggio R. Esercizi. La circonferenza e il cerchio Definizioni: dato un punto C nel piano cartesiano e dato un numero

Dettagli

Storia del pensiero matematico

Storia del pensiero matematico Storia della Matematica 1 Storia del pensiero matematico Le coniche di Apollonio L'opera di Apollonio Ad Apollonio possiamo riconoscere due grandi meriti: il primo è una sintesi completa dei lavori precedenti

Dettagli

Corso di Laurea in Scienze dell Architettura. Corso di Fondamenti e Applicazioni di Geometria Descrittiva

Corso di Laurea in Scienze dell Architettura. Corso di Fondamenti e Applicazioni di Geometria Descrittiva Università degli Studi di Roma Facoltà di Architettura Ludovico Quaroni - AA 2014-2015 Corso di Laurea in Scienze dell Architettura Corso di Fondamenti e Applicazioni di Geometria Descrittiva Riccardo

Dettagli

2 Vettori applicati. 2.1 Nozione di vettore applicato

2 Vettori applicati. 2.1 Nozione di vettore applicato 2 Vettori applicati 2 Vettori applicati 2.1 Nozione di vettore applicato Numerose grandezze fisiche sono descritte da vettori (spostamento, velocità, forza, campo elettrico, ecc.). Per alcune di esse e,

Dettagli

1 Prodotto cartesiano di due insiemi 1. 5 Soluzioni degli esercizi 6

1 Prodotto cartesiano di due insiemi 1. 5 Soluzioni degli esercizi 6 1 PRODOTTO CARTESIANO DI DUE INSIEMI 1 I-4 R 2 ed R 3 Piano e spazio cartesiani Indice 1 Prodotto cartesiano di due insiemi 1 2 Rappresentazione di R 2 sul piano cartesiano 2 3 Sottoinsiemi di R 2 e regioni

Dettagli

LA PERPENDICOLARITA NELLO SPAZIO. Nello spazio si definiscono la perpendicolarità sia tra una retta e un piano sia tra due piani.

LA PERPENDICOLARITA NELLO SPAZIO. Nello spazio si definiscono la perpendicolarità sia tra una retta e un piano sia tra due piani. 1 LA PERPENDICOLARITA NELLO SPAZIO Nello spazio si definiscono la perpendicolarità sia tra una retta e un piano sia tra due piani. 2.1 La perpendicolarità retta piano Nel piano la perpendicolarità tra

Dettagli

Fondamenti e applicazioni di geometria descrittiva

Fondamenti e applicazioni di geometria descrittiva Le ombre La teoria delle ombre si basa sull'ormai noto concetto di proiezione: in questo caso il centro di proiezione è la sorgente luminosa (il sole o la lampadina) da cui si dipartono i raggi luminosi

Dettagli

Applicazioni ed esercitazioni

Applicazioni ed esercitazioni Applicazioni ed esercitazioni Università Mediterranea di Reggio Calabria Facoltà di Architettura Corso di DISEGNO Modulo 1 Prof. Franco Prampolini Unità didattica n. 5 Fondamenti di Geometria Descrittiva

Dettagli

Le sezioni piane del cubo

Le sezioni piane del cubo Le sezioni piane del cubo Versione provvisoria 11 dicembre 006 1 Simmetrie del cubo e sezioni speciali Sezioni speciali si presentano in corrispondenza di piani perpendicolari agli assi di simmetria del

Dettagli

Per ruotare la figura fino a disporla parallela al occorre individuarne un qualsiasi segmento orizzontale. Per tale segmento, o per una parallela ad e

Per ruotare la figura fino a disporla parallela al occorre individuarne un qualsiasi segmento orizzontale. Per tale segmento, o per una parallela ad e Determinare la forma reale del triangolo rappresentato effettuando il ribaltamento (o la rotazione) del piano a cui appartiene. Nome Cognome Classe Data Per ruotare la figura fino a disporla parallela

Dettagli

UNIVERSITÀ DEGLI STUDI DI CASSINO - DICeM

UNIVERSITÀ DEGLI STUDI DI CASSINO - DICeM Esercitazione n. 1 da eseguire a mano libera SCRITTURA, NOMENCLATURA E CONVENZIONI GRAFICHE ELEMENTARI A. Inserire nella tavola un prova di scrittura, e la nomenclatura degli enti Fondamentali 1. Asse

Dettagli

COMUNICAZIONE N.17 DEL

COMUNICAZIONE N.17 DEL COMUNICAZIONE N.17 DEL 03.04.20131 1- SECONDO MODULO - APPLICAZIONI DI GEOMETRIA DESCRITTIVA (16): ESEMPI 134-143 2 - QUARTO MODULO - CLASSICI MODERNI E CONTEMPORANEI (15): REM KOOLHAAS, VILLA DALL'AVA,

Dettagli

La retta nel piano cartesiano

La retta nel piano cartesiano La retta nel piano cartesiano Se proviamo a disporre, sul piano cartesiano, una retta vediamo che le sue possibili posizioni sono sei: a) Coincidente con l asse delle y; b) Coincidente con l asse delle

Dettagli

1 La traslazione. 2 La composizione di traslazioni. 3 La rotazione

1 La traslazione. 2 La composizione di traslazioni. 3 La rotazione 1 La traslazione Per poter applicare una traslazione ad una generica figura geometrica si deve: ± creare il vettore di traslazione AB mediante il comando Vettore tra due punti; ± cliccare con il mouse

Dettagli

METODO DELLE DOPPIE PROIEZIONI DI MONGE

METODO DELLE DOPPIE PROIEZIONI DI MONGE METODO DELLE DOPPIE PROIEZIONI DI MONGE 1) elementi rappresentativi dei principali enti geometrici: punto, retta, piano; 2) Rappresentazione di punti, rette e piani particolari; 3) Condizioni di appartenenza,

Dettagli

Piano cartesiano e retta

Piano cartesiano e retta Piano cartesiano e retta Il punto, la retta e il piano sono concetti primitivi di cui non si da una definizione rigorosa, essi sono i tre enti geometrici fondamentali della geometria euclidea. Osservazione

Dettagli

Anno 2. Circonferenza e retta: definizioni e proprietà

Anno 2. Circonferenza e retta: definizioni e proprietà Anno 2 Circonferenza e retta: definizioni e proprietà 1 Introduzione I Sumeri furono tra i primi popoli ad occuparsi di matematica, e in particolare di problemi relativi alla. La è una figura geometrica

Dettagli

Indice. Parte prima Metodi. XI Gli autori

Indice. Parte prima Metodi. XI Gli autori XI Gli autori XIII Prefazione Parte prima Metodi 5 Capitolo 1 Elementi di geometria proiettiva 5 1.1 Gli enti geometrici 6 1.2 Convenzioni 7 1.3 L operazione di proiezione 9 1.4 L ampliamento proiettivo

Dettagli

SUI SISTEMI DI DISEQUAZIONI IN DUE INCOGNITE

SUI SISTEMI DI DISEQUAZIONI IN DUE INCOGNITE SUI SISTEMI DI DISEQUAZIONI IN DUE INCOGNITE.Sistema di disequazioni in due incognite di primo grado Una disequazione di primo grado in due incognite: a b c nel piano cartesiano, rappresenta uno dei due

Dettagli

PIANO CARTESIANO e RETTE classi 2 A/D 2009/2010

PIANO CARTESIANO e RETTE classi 2 A/D 2009/2010 PIANO CARTESIANO e RETTE classi 2 A/D 2009/2010 1) PIANO CARTESIANO serve per indicare, identificare, chiamare... ogni PUNTO del piano (ente geometrico) con una coppia di valori numerici (detti COORDINATE).

Dettagli

La prospettiva e i suoi strumenti teorici e tecnici

La prospettiva e i suoi strumenti teorici e tecnici Dispense del Corso di Disegno, tenuto da Riccardo Migliari nella Facoltà di Architettura Ludovico Quaroni della Sapienza Università di Roma nell Anno Accademico 2009 2010 La prospettiva e i suoi strumenti

Dettagli

GLI ENTI GEOMETRICI NELLO SPAZIO EUCLIDEO

GLI ENTI GEOMETRICI NELLO SPAZIO EUCLIDEO GLI ENTI GEOMETRICI NELLO SPAZIO EUCLIDEO PUNTI Ciò che non ha parte LINEE Linea è ciò che ha lunghezza senza larghezza Estremi di una linea sono punti RETTE Ciò che giace uniformemente rispetto ai suoi

Dettagli

La circonferenza nel piano cartesiano

La circonferenza nel piano cartesiano 6 La circonferenza nel piano cartesiano onsideriamo la circonferenza in figura in cui il centro è ; e il raggio 5 r : se indichiamo con P ; un punto della circonferenza avremo, per definizione, che la

Dettagli

Geometria BATR-BCVR Esercizi 9

Geometria BATR-BCVR Esercizi 9 Geometria BATR-BCVR 2015-16 Esercizi 9 Esercizio 1. Per ognuna delle matrici A i si trovi una matrice ortogonale M i tale che Mi ta im sia diagonale. ( ) 1 1 2 3 2 A 1 = A 2 1 2 = 1 1 0 2 0 1 Esercizio

Dettagli

LAVORO ESTIVO di MATEMATICA Classi Terze Scientifico Moderno N.B. DA CONSEGNARE ALLA PRIMA LEZIONE DI MATEMATICA DI SETTEMBRE

LAVORO ESTIVO di MATEMATICA Classi Terze Scientifico Moderno N.B. DA CONSEGNARE ALLA PRIMA LEZIONE DI MATEMATICA DI SETTEMBRE LAVORO ETIVO di MATEMATICA Classi Terze cientifico Moderno N.B. A CONEGNARE ALLA PRIMA LEZIONE I MATEMATICA I ETTEMBRE PROBLEMI I ALGEBRA APPLICATA ALLA GEOMETRIA ) In un cerchio di raggio r si determini

Dettagli

EQUAZIONE DELLA RETTA

EQUAZIONE DELLA RETTA EQUAZIONE DELLA RETTA EQUAZIONE DEGLI ASSI L equazione dell asse x è 0. L equazione dell asse y è 0. EQUAZIONE DELLE RETTE PARALLELE AGLI ASSI L equazione di una retta r parallela all asse x è cioè è uguale

Dettagli

Una circonferenza e una parabola sono disegnate nel piano cartesiano. La circonferenza ha centro nel punto

Una circonferenza e una parabola sono disegnate nel piano cartesiano. La circonferenza ha centro nel punto La parabola Esercizi Esercizio 368.395 Una circonferenza e una parabola sono disegnate nel piano cartesiano. La circonferenza ha centro nel punto 0 ;5 e raggio, e la parabola ha il suo vertice in 0 ;0.

Dettagli

Risposte ai quesiti D E H D

Risposte ai quesiti D E H D Perugia, dic. 2009/gen. 2010 Risposte ai quesiti 1. Dati i quadrati CD e C D, come in figura, provare che la perpendicolare uscente da alla retta DD passa per il punto medio del segmento quale che sia

Dettagli

Assumendo 1 u = 1 cm, calcola il perimetro e l area del quadrilatero ABCD.

Assumendo 1 u = 1 cm, calcola il perimetro e l area del quadrilatero ABCD. Esercizio 1a Disegna un piano cartesiano ortogonale ed in esso inserisci i punti che seguono, poi uniscili nell ordine dato: Secondo te che tipo di quadrilatero hai ottenuto? Perché? Quali sono le sue

Dettagli

Uno spazio per lo spazio.

Uno spazio per lo spazio. Uno spazio per lo spazio. Il gruppo di matematica del Laboratorio Franco Conti ha lavorato quest anno nella direzione di ripensare l insegnamento della geometria dello spazio, unendo la riflessione teorica

Dettagli

Costruzioni geometriche. ( Teoria pag , esercizi 141 )

Costruzioni geometriche. ( Teoria pag , esercizi 141 ) Costruzioni geometriche. ( Teoria pag. 81-96, esercizi 141 ) 1) Costruzione con squadra e riga. a) Rette parallele. Ricorda ; due rette sono parallele quando.... oppure quando hanno la stessa. Matematicamente

Dettagli

CONCETTI e ENTI PRIMITIVI

CONCETTI e ENTI PRIMITIVI CONCETTI e ENTI PRIMITIVI Sono Concetti e Enti primitivi ciò che non può essere definito in modo più elementare, il significato è noto a priori, cioè senza alcun'altra specificazione. es. es. movimento

Dettagli

COMUNICAZIONE N.13 DEL

COMUNICAZIONE N.13 DEL COMUNICAZIONE N.13 DEL 06.03.20131 1- SECONDO MODULO - APPLICAZIONI DI GEOMETRIA DESCRITTIVA (12): ESEMPI 97-108 2 - TERZO MODULO - DISEGNI A MANO LIBERA (9): DISEGNI 81-90 Le regole generali sono quelle

Dettagli

LA CIRCONFERENZA DEFINIZIONI. Una circonferenza è l insieme dei punti del piano che hanno distanza assegnata da un punto, detto centro.

LA CIRCONFERENZA DEFINIZIONI. Una circonferenza è l insieme dei punti del piano che hanno distanza assegnata da un punto, detto centro. LA CIRCONFERENZA DEFINIZIONI Una circonferenza è l insieme dei punti del piano che hanno distanza assegnata da un punto, detto centro. Un cerchio è una figura piana formata dai punti di una circonferenza

Dettagli

Geometria analitica del piano II (M.S. Bernabei & H. Thaler)

Geometria analitica del piano II (M.S. Bernabei & H. Thaler) Geometria analitica del piano II (M.S. Bernabei & H. Thaler) Equazione della retta in forma esplicita Sia data una retta r ax + by + c = 0 con b 0. Svolgendo questa equazione per y otteniamo e ponendo

Dettagli

Problemi sulla circonferenza verso l esame di stato

Problemi sulla circonferenza verso l esame di stato Problemi sulla circonferenza verso l esame di stato * * * n. 0 pag. 06 a) Scrivi l equazione della circonferenza γ 1 di centro P ; ) e passante per il punto A0; 1). b) Scrivi l equazione della circonferenza

Dettagli

Appunti di Algebra Lineare. Distanze

Appunti di Algebra Lineare. Distanze Appunti di Algebra Lineare Distanze 1 Indice 1 Distanze nel piano 1.1 Distanza punto-punto................................... 1. Distanza punto-retta.................................... 3 1.3 Distanza

Dettagli

Costruzioni geometriche. (Teoria pag , esercizi )

Costruzioni geometriche. (Teoria pag , esercizi ) Costruzioni geometriche. (Teoria pag. 81-96, esercizi 141-153 ) 1) Costruzione con squadra e riga. a) Rette parallele. Ricorda: due rette sono parallele quando.... oppure quando hanno la stessa. Matematicamente

Dettagli

1. (Da Medicina e Odontoiatria 2012) Determinare l'area del triangolo che ha come vertici i punti (0,0), (0,1), (13,12) del piano cartesiano:

1. (Da Medicina e Odontoiatria 2012) Determinare l'area del triangolo che ha come vertici i punti (0,0), (0,1), (13,12) del piano cartesiano: QUESITI 1 PIANO CARTESIANO 1. (Da Medicina e Odontoiatria 2012) Determinare l'area del triangolo che ha come vertici i punti (0,0), (0,1), (13,12) del piano cartesiano: a) 6 b) 13/2 c) 12 d) 13 e) 78 2.

Dettagli

SUPERFICI CONICHE. Rappresentazione di coni e cilindri

SUPERFICI CONICHE. Rappresentazione di coni e cilindri SUPERFICI CONICHE Rappresentazione di coni e cilindri Si definisce CONO la superficie che si ottiene proiettando tutti i punti di una curva, detta DIRETTRICE, da un punto proprio, non appartenente al piano

Dettagli

LA DISTANZA DA CENTRO RAPPRESENTA IL RAGGIO CISCUNA DELLE DUE PARTI IN CUI E DIVISA UNA CIRCONFERENZA SI CHIAMA ARCO

LA DISTANZA DA CENTRO RAPPRESENTA IL RAGGIO CISCUNA DELLE DUE PARTI IN CUI E DIVISA UNA CIRCONFERENZA SI CHIAMA ARCO LA CIRCONFERENZA LA CIRCONFERENZA E IL LUOGO DEI PUNTI EQUIDISTANTI DA UN PUNTO FISSO DETTO CENTRO LA DISTANZA DA CENTRO RAPPRESENTA IL RAGGIO UN SEGMENTO CHE CONGIUNGE DUE PUNTI DELLA CIRCONFERENZA SI

Dettagli

Programmazione finale classe II L A a.s. 2015/2016 Materia: Discipline Geometriche Docente: Antonio Caputo

Programmazione finale classe II L A a.s. 2015/2016 Materia: Discipline Geometriche Docente: Antonio Caputo 1. MODULI DISCIPLINARI PERIODO / DURATA Modulo n. 1 Proiezioni Ortogonali - Approfondimento U.D. Introduttiva - Il ripasso del sistema di rappresentazione studiato nell anno scolastico precedente: le proiezioni

Dettagli

Problemi sull ellisse

Problemi sull ellisse 1 equazione dell ellisse Determina l equazione di un ellisse che ha i fuochi sull asse delle ascisse, semiasse maggiore lungo 6 e distanza focale uguale a 6 + yy Scrivi l equazione dell ellisse con i fuochi

Dettagli

C C B B. Fig. C4.1 Isometria.

C C B B. Fig. C4.1 Isometria. 4. Isometrie 4.1 Definizione di isometria Date due figure congruenti è possibile passare da una all altra con una trasformazione. Una trasformazione geometrica in un piano è una funzione biunivoca che

Dettagli

INDICAZIONI PER LA RICERCA DEGLI ASINTOTI VERTICALI

INDICAZIONI PER LA RICERCA DEGLI ASINTOTI VERTICALI 2.13 ASINTOTI 44 Un "asintoto", per una funzione y = f( ), è una retta alla quale il grafico della funzione "si avvicina indefinitamente", "si avvicina di tanto quanto noi vogliamo", nel senso precisato

Dettagli

ax 1 + bx 2 + c = 0, r : 2x 1 3x 2 + 1 = 0.

ax 1 + bx 2 + c = 0, r : 2x 1 3x 2 + 1 = 0. . Rette in R ; circonferenze. In questo paragrafo studiamo le rette e le circonferenze in R. Ci sono due modi per descrivere una retta in R : mediante una equazione cartesiana oppure mediante una equazione

Dettagli

Appunti di Geometria Descrittiva

Appunti di Geometria Descrittiva Appunti di Geometria Descrittiva Le Doppie Proiezioni Ortogonali - Metodo di Monge - 1 Notizie storiche 2 Egizi Greci (vista ortogonale frontale) Medio evo (gotico) Rinascimento (Piero della Francesca,

Dettagli

DISEGNO E RAPPRESENTAZIONE

DISEGNO E RAPPRESENTAZIONE 29. Osservando la sezione longitudinale dell Auditorium di Ibirapuera costruito da Oscar Niemeyer a San Paolo nel 2005, qual è la corretta disposizione dei piani verticali per ottenere le sezioni trasversali

Dettagli

Copyright Esselibri S.p.A.

Copyright Esselibri S.p.A. Un isometria è perciò una trasformazione geometrica che conserva la distanza tra due punti. onsideriamo alcune particolari trasformazioni isometriche. 2.1.1. Traslazioni hiamiamo vettore un segmento sul

Dettagli

Corso di Fondamenti e Applicazioni di Geometria Descrittiva b

Corso di Fondamenti e Applicazioni di Geometria Descrittiva b http://host.uniroma3.it/docenti/canciani/ Corso di Fondamenti e Applicazioni di Geometria Descrittiva b A.A. 2012-2013 Prof. M. Canciani, Arch. V. Gori 1 Proiettare.. 2/22 3 4/22 5/22 6/22 Albrecht Dürer,

Dettagli

C5. Triangoli. C5.1 Definizioni. C5.2 Classificazione dei triangoli in base ai lati

C5. Triangoli. C5.1 Definizioni. C5.2 Classificazione dei triangoli in base ai lati 5. Triangoli 5.1 efinizioni Un triangolo è un poligono con tre lati. In figura 5.1 i lati sono i segmenti =c, =b e =a. Gli angoli (interni) sono α = ˆ, β = ˆ e γ = ˆ. Si dice che un angolo è opposto a

Dettagli

Problemi di massimo e minimo

Problemi di massimo e minimo Problemi di massimo e minimo Supponiamo di avere una funzione continua in Per il teorema di Weierstrass esistono il massimo assoluto M e il minimo assoluto m I problemi di massimo e minimo sono problemi

Dettagli

Equivalenza delle figure piane

Equivalenza delle figure piane Capitolo Equivalenza Poligoni equivalenti - erifica per la classe seconda Teoremi di Pitagora ed Euclide COGNOME............................... NOME............................. Classe....................................

Dettagli

PIANO CARTESIANO. NB: attenzione ai punti con una coordinata nulla: si trovano sugli assi

PIANO CARTESIANO. NB: attenzione ai punti con una coordinata nulla: si trovano sugli assi PIANO CARTESIANO Il piano cartesiano è individuato da due rette perpendicolari (ortogonali) che si incontrano in un punto O detto origine del piano cartesiano. Si fissa sulla retta orizzontale il verso

Dettagli

Geometria Analitica Domande e Risposte

Geometria Analitica Domande e Risposte Geometria Analitica Domande e Risposte A. Il Piano Cartesiano. Qual è la formula della distanza tra due punti nel piano cartesiano? Per calcolare la formula della distanza tra due punti nel piano cartesiano

Dettagli

Svolgimento degli esercizi sulla circonferenza

Svolgimento degli esercizi sulla circonferenza Liceo Classico Galilei Pisa - Classe a A - Prof. Francesco Daddi - 1 ottobre 011 Svolgimento degli esercizi sulla circonferenza Esercizio 1. La circonferenza ha centro in C 4 ), 7, 7 ) e raggio + 7 57

Dettagli

Appunti: il piano cartesiano. Distanza tra due punti

Appunti: il piano cartesiano. Distanza tra due punti ppunti: il piano cartesiano Distanza tra due punti Come determinare la distanza tra i punti ( ; ) e ( ; ): Se i due punti e hanno la stessa ascissa = allora (-3;1) (-3; 5) d()= d()= 1 5 4 4 Se i due punti

Dettagli

misura. Adesso, ad un arbitrario punto P dello spazio associamo una terna di numeri reali x

misura. Adesso, ad un arbitrario punto P dello spazio associamo una terna di numeri reali x 4. Geometria di R 3. Questo paragrafo è molto simile al paragrafo : tratta infatti delle proprietà geometriche elementari dello spazio R 3. Per assegnare delle coordinate nello spazio, fissiamo innanzitutto

Dettagli

LA SUA PROIEZIONE ORTOGONALE E SEMPRE UGUALE AD ESSA

LA SUA PROIEZIONE ORTOGONALE E SEMPRE UGUALE AD ESSA PROIEZIONI ORTOGONALI DI FIGURE PIANE Per figura piana si intende una parte di piano delimitata da una linea chiusa. Poiché questo contorno è riconducibile ad un insieme di punti, si può ottenere la proiezione

Dettagli

1 Geometria analitica nel piano

1 Geometria analitica nel piano Lezioni di Geometria a.a. 2007-2008 cdl SIE prof. C. Franchetti 1 Geometria analitica nel piano 1.1 Distanza di due punti Siano P 1 = (x 1, y 1 ), P 2 = (x 2, y 2 ) due punti del piano, se d(p 1, P 2 )

Dettagli

Costruzione 1 Condurre la perpendicolare ad un retta data, passante per un punto della retta stessa.

Costruzione 1 Condurre la perpendicolare ad un retta data, passante per un punto della retta stessa. Costruzioni Costruzioni di rette, segmenti ed angoli Costruzione 1 Condurre la perpendicolare ad un retta data, passante per un punto della retta stessa. Costruzione. Consideriamo la retta r ed un punto

Dettagli

La circonferenza e il cerchio

La circonferenza e il cerchio La circonferenza e il cerchio Def.: Si dice circonferenza una linea piana chiusa formata dall insieme dei punti che hanno la stessa distanza da un punto detto centro. Si dice raggio di una circonferenza

Dettagli

LE TRASFORMAZIONI GEOMETRICHE

LE TRASFORMAZIONI GEOMETRICHE LE TRASFORMAZIONI GEOMETRICHE LA SIMMETRIA ASSIALE Definizione: il simmetrico P di un punto P, rispetto alla simmetria assiale di asse r gode delle seguenti proprietà: P e P sono equidistanti da r e il

Dettagli

Programmazione finale della classe IIA Discipline Geometriche a.s

Programmazione finale della classe IIA Discipline Geometriche a.s Programmazione finale della classe IIA Discipline Geometriche a.s. 2012-13 Il programma di Disegno Geometrico è stato svolto in due ambiti: quello teorico che - dall analisi dei segni convenzionali, degli

Dettagli

Unità Didattica N 9 : La parabola

Unità Didattica N 9 : La parabola 0 Matematica Liceo \ Unità Didattica N 9 La parabola Unità Didattica N 9 : La parabola ) La parabola ad asse verticale ) La parabola ad asse orizzontale 5) Intersezione di una parabola con una retta 6)

Dettagli

D3. Parabola - Esercizi

D3. Parabola - Esercizi D3. Parabola - Esercizi Traccia il grafico delle seguenti parabole e trova i punti d incontro con l asse e con l asse graficamente e/o algebricamente. 1) = ++ (0;)] ) = -+1 ( + 3 ;0), ( 3 ;0), (0;1)] 3)

Dettagli

Teoria delle ombre in prospettiva

Teoria delle ombre in prospettiva Teoria delle ombre in prospettiva A p p r o f o n d i m e n t o APPROFONDIMENTO Teoria delle ombre in prospettiva Ombre in prospettiva Nella determinazione delle ombre in prospettiva si possono presentare

Dettagli

Circonferenze del piano

Circonferenze del piano Circonferenze del piano 1 novembre 1 Circonferenze del piano 1.1 Definizione Una circonferenza è il luogo dei punti equidistanti da un punto fisso, detto centro. La distanza di un qualunque punto della

Dettagli

PROSPETTIVA CENTRALE A2 B2 A2 A B A LT PV AB

PROSPETTIVA CENTRALE A2 B2 A2 A B A LT PV AB PROSPETTIVA CENTRALE immaginiamo di fare scorrere un segmento AB lungo 2 binari (allonandolo sempre di più dall osservatore). la dimensione del segmento diminuisce seguendo l andamento delle due rette

Dettagli

PROIEZIONI ORTOGONALI: SEZIONI CONICHE

PROIEZIONI ORTOGONALI: SEZIONI CONICHE www.aliceappunti.altervista.org PROIEZIONI ORTOGONALI: SEZIONI CONICHE 1) PREMESSA: Il cono è una superficie generata da una retta con un estremo fisso e l altro che ruota. La retta prende il nome di GENERATRICE.

Dettagli

Capitolo 6. I poligoni. (Ob. 4, 5, 6, 7, 9, 11, 12, 14, 15)

Capitolo 6. I poligoni. (Ob. 4, 5, 6, 7, 9, 11, 12, 14, 15) (Ob. 4, 5, 6, 7, 9, 11, 12, 14, 15) (vertici, lati, diagonali, convessità, angoli, perimetro) 6.2 I triangoli 6.3 I quadrilateri 6.4 I poligoni regolari 6.5 Le altezze 6.6 Le aree Un poligono è la parte

Dettagli

Questo paragrafo e quello successivo trattano gli stessi argomenti del capitolo B6 relativo alla soluzione grafica dei sistemi di primo grado.

Questo paragrafo e quello successivo trattano gli stessi argomenti del capitolo B6 relativo alla soluzione grafica dei sistemi di primo grado. D1. Retta D1.1 Equazione implicita ed esplicita Ogni equazione di primo grado in due incognite rappresenta una retta sul piano cartesiano (e viceversa). Si può scrivere un equazione di primo grado in due

Dettagli

I TRIANGOLI. Geogebra l Triangoli COSTRUZIONE DEL TRIANGOLO ISOSCELE

I TRIANGOLI. Geogebra l Triangoli COSTRUZIONE DEL TRIANGOLO ISOSCELE I TRIANGOLI COSTRUZIONE DEL TRIANGOLO ISOSCELE Come sai il triangolo isoscele ha due lati della stessa lunghezza. Costruiamo il triangolo isoscele a partire dal lato disuguale. 1. Apri il programma Geogebra

Dettagli

La circonferenza e il cerchio

La circonferenza e il cerchio La circonferenza e il cerchio Def. Circonferenza Si dice circonferenza una linea piana chiusa formata dall insieme dei punti che hanno la stessa distanza da un punto detto centro. Si dice raggio di una

Dettagli

Test di Matematica di base

Test di Matematica di base Test di Matematica di base Geometria Il rapporto tra la superficie di un quadrato e quella di un triangolo equilatero di eguale lato è a. 4 b. 4 d. [ ] Quali sono le ascisse dei punti della curva di equazione

Dettagli

D4. Circonferenza - Esercizi

D4. Circonferenza - Esercizi D4. Circonferenza - Esercizi Trasformare l equazione della circonferenza nell altra forma e rappresentare graficamente la circonferenza trovandone prima centro e raggio. 1) + --=0 [(-1) +(-1) =, C(1;1),

Dettagli

C6. Quadrilateri - Esercizi

C6. Quadrilateri - Esercizi C6. Quadrilateri - Esercizi DEFINIZIONI E COSTRUZIONI 1) Dato il seguente quadrilatero completa al posto dei puntini. I lati AB e BC sono I lati AB e CD sono I lati AD e sono consecutivi I lati AD e sono

Dettagli

C I R C O N F E R E N Z A...

C I R C O N F E R E N Z A... C I R C O N F E R E N Z A... ESERCITAZIONI SVOLTE 3 Equazione della circonferenza di noto centro C e raggio r... 3 Equazione della circonferenza di centro C passante per un punto A... 3 Equazione della

Dettagli

1 Nozioni utili sul piano cartesiano

1 Nozioni utili sul piano cartesiano Nozioni utili sul piano cartesiano Nozioni utili sul piano cartesiano Il piano cartesiano è un sistema di riferimento costituito da due rette perpendicolari (una orizzontale detta asse delle ascisse x

Dettagli