Campo magnetico B (o di induzione magnetica)

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Campo magnetico B (o di induzione magnetica)"

Transcript

1 Campo magnetico B (o di induzione magnetica) La proprietà di alcuni materiali, come la magnetite Fe 3 O 4, di attirare a sè la limatura di ferro, era nota già dal VII secolo a.c. e fu denominata "magnetismo. I nomi "magnetite" e "magnetismo" derivano da quello della città di Magnesia, in Asia Minore, dove veniva estratto il materiale (magnētēs lithos o pietra di Magnesia). Nel XVI secolo W. Gilbert compì una serie di esperimenti con la magnetite al fine di osservare in dettaglio le proprietà del magnetismo e comprenderne l'origine. A questo scopo preparò dei piccoli cilindri di magnetite, detti "magneti", ed osservò che la proprietà di attirare la limatura di ferro si concentrava solo alle estremità del cilindro, che chiamò poli magnetici (Nord e Sud) perché nelle bussole, gli aghetti magnetici avevano la proprietà di orientarsi verso il polo Nord magnetico della Terra. I poli magnetici si comportavano in modo analogo a cariche elettriche di segno opposto.ad es.le forze dipendono dal quadrato della distanza. La limatura di ferro rendeva evidenti anche l andamento delle linee di forza del campo magnetico. 1 Gilbert pensò che la Terra potesse essere pensata come un magnete il cui polo Sud è posto nel Polo geografico. In realtà il Polo Nord Magnetico oltre a non coincidere con quello Geografico è pure in movimento. Posizione del Polo Nord geografico e magnetico. Il polo Nord magnetico si sposta nel tempo 2

2 Però esistono differenze sostanziali tra il caso elettrico e quello magnetico. a) le cariche elettriche negative si possono separare da quelle positive mentre non è possibile isolare su di un magnete una delle polarità: se si spezza una calamita in due parti, non si ottiene la separazione dei due poli, ma si ottengono ancora due magneti. b) Conosciamo le particelle elementari che sono responsabili dell'elettrizzazione dei corpi: gli elettroni e i protoni. Invece, non riusciamo a identificare le particelle che determinano le proprietà magnetiche delle calamite. c) Non potendo ottenere dei "monopoli" magnetici non si conosce nel magnetismo alcun fenomeno analogo alla corrente elettrica, nel senso che non esiste un equivalente magnetico della carica elettrica. d) Mentre nel campo elettrico le linee di forza che si dipartono da un corpo elettrizzato possono perdersi all'infinito ( cosa che accade, ad esempio, nel caso di una carica positiva isolata), nel campo magnetico le linee di forza si chiudono sempre sui poli del magnete. In analogia con quanto ricavato per il campo E B nda= 0 seconda equazione di Maxwell in forma integrale, poiché tante linee di campo entrano e tante ne escono da cui B= 0 in forma differenziale, (non ci sono sorgenti del campo magnetico). N N S N S 3 S Campo magnetico B (o di induzione magnetica) Non essendo state osservate cariche magnetiche, la definizione operativa del campo magnetico B non può avvenire come nel caso di E. Per procedere, osserviamo che un campo magnetico determina un azione su una carica elettrica in moto. Quindi se in una regione di spazio c è B l azione sulle carica q in moto sarà F=q v B forza di Lorentz, in modulo B= F/(qv) se v B (unità tesla T=Ns/(Cm): tale forza può servire come definizione di B Quindi la forza complessiva su una carica in cui sono presenti contemporaneamente un campo E e B è F=q (v B + E) La forza è perpendicolare a v e a B e quindi il campo non fa lavoro sulla particella. Se una particella entra in un campo magnetico uniforme e non dissipa energia la traiettoria è circolare (perché?) 4

3 Gli effetti di questa forza si osservarono inizialmente su un filo percorso da corrente immerso in un campo magnetico. Un tratto Δl del filo contiene una carica Δq= n e A Δl. Poiché le cariche si muovono con con una velocità di deriva v D, la corrente è i= n e v D A F= Δq v D B= n e A Δl v D B= i Δl B avendo definito il vettore Δl B F Di modulo Δl, direzione del tratto di filo e verso i concorde con quello della corrente (def.di i). Cerchiamo di calcolare il campo B. Δ l Il campo B è generato dal movimento delle cariche, cioè dalle correnti. Dato un circuito, questo può essere pensato suddiviso in elementi di corrente i dl (vettoriali) che come sopra hanno modulo i dl e verso quello della corrente, il contributo db al campo nel punto P è dato da r P db=(μ 0 /4π) i dl r /r 3 = (μ 0 /4π) i dl ^r /r 2, legge di Biot-Savart, anche in questo caso i dl l andamento è r -2 come per la legge di Coulomb, dove r è il vettore che unisce i dl al punto P, ma al 5 posto della carica scalare q c è l elemento vettoriale di corrente che ha un valore solo formale poiché non è separabile dal circuito a cui appartiene; μ 0 = 4π 10-7 T m/ A = T m/ A è una costante detta permeabilità magnetica del vuoto. Tramite la legge di Biot-Savart possiamo calcolare il campo generato da un filo rettilineo percorso da corrente i che in modulo vale B= μ 0 i/(2π r) con r distanza dal filo. Le linee di forza del campo B risultano circonferenze concentriche. Quindi, al contrario del campo elettrostatico, le linee sono chiuse e non hanno inizio o fine, questo esprime il fatto che non esistono sorgenti (o pozzi) del campo ed è una proprietà generale del campo magnetico. Le linee si chiudono attorno alle correnti (sono concatenate) questo si esprime dicendo che i vortici del campo sono generati dalle correnti. Se si esegue la circuitazione (integrale su una linea chiusa) del campo B dl = μ 0 i c, legge di Ampere, dove i c sono le correnti concatenate con la linea (cioè racchiuse entro la linea). 6

4 Per trovare la direzione del campo B si utilizza la regola della mano destra 7 Come nel caso della legge di Gauss, anche la legge di Ampere permette in casi di distribuzioni simmetriche di corrente di calcolare il campo B senza ricorrere all integrale vettoriale della legge di Biot-Savart. Es. filo di raggio R percorso da corrente sia pieno che cavo Ricordiamo che la legge di Gauss ci ha condotto alla prima legge di Maxwell. La legge di Ampere B dl = μ 0 i c può essere utilmente riscritta come B dl = μ 0 J da (quarta equazione di Maxwell in forma integrale) dove il secondo è un integrale sulla superficie appoggiata alla curva chiusa della circuitazione. Per il teorema del rotore o di Stokes il primo integrale può essere esteso alla stessa superficie sostituendo il campo con il rotore del campo B da = μ 0 J da ovvero ( B - μ 0 J ) da = 0 ciò vale per ogni superficie da cui B = μ 0 J (IV eq.di Maxwell in forma differenziale) che mostra in modo esplicito che i vortici di B sono dovuti alle correnti (nel caso stazionario). 8

5 Ricordiamo a questo punto la definizione di ampere, l unità della corrente elettrica del Sistema internazionale. Un ampere corrisponde a quella corrente costante che scorrendo in due fili di lunghezza infinita e di dimensione trascurabile posti a distanza di 1 m nel vuoto, produrrebbe una forza tra di essi pari a 2 x 10-7 newton per metro di lunghezza. Consideriamo gli effetti meccanici su una spira, che è utilizzata in molti dispositivi (es. motori elettrici). Per semplicità consideriamo una spira rettangolare di lati a,b in cui circola una corrente i costante immersa in un campo B uniforme. La a F 1 forza su ciascun lato è b F 4 i i F= i Δl B. Le forze F 2 e F 2 F 4 (=- F 2 ) determinano un F 2 θ n momento torcente (F 1 e F 3 B sono uguali ed opposte B F 3 F 4 giacenti sulla stessa retta, momento nullo). In modulo il momento sarà t=i b B a sin θ, se ci sono N spire t=n i b B a sin θ. Se definiamo un vettore (dipolo magnetico) μ di modulo Ni a b=ni A (A=area della spira) e direzione legata alla 9 direzione della corrente tramite la regola della mano destra (n è il versore orientato come il pollice mentre le dita ruotano nella direzione di i e μ= μ n) possiamo esprimere il momento torcente come t= μ B (relazione analoga a t= p E per il dipolo elettrico) Anche in questo caso è possibile definire un energia potenziale magnetica la cui espressione è simile a quella del dipolo elettrico U= - μ B (avendo definito la direzione θ=0 quando il dipolo è allineato nella direzione del campo B) a Da osservare che le linee di forza del b dipolo elettrico e del dipolo magnetico i n sono geometricamente di forma uguale. Infatti con la legge di Biot e Savart si può calcolare il campo lungo l asse di una spira circolare di raggio R ed il risultato per z>>r è B(z)= μ 0 i R 2 /(2 z 3 ) o in termini del dipolo μ B= (μ 0 /2 π) ( μ / z 3 ) simile a quanto trovato per il dipolo elettrico 10

6 Campo di un solenoide Una spira genera un campo magnetico, ma per aumentarne il valore si utilizzano più spire (solenoide). Utilizziamo la legge di Ampere per calcolare il campo all interno di un solenoide. Consideriamo una linea chiusa come in figura. Essa racchiude N spire e nell ipotesi che il solen. sia sufficientemente lungo, il campo esterno è trascurabile e il campo è praticamente uniforme all interno, diretto parallelamente all asse; l integrazione sui lati verticali è nulla B dl = B l=μ 0 Ni c con l=lato B i orizzontale da cui B= μ 0 (N/l) i c = μ 0 n i c (n=n/l num.spire per unità di lunghezza) il verso di B è dato dalla regola della mano destra. 11 Linee di forza del campo magnetico di un solenoide in cui le spire non sono a stretto contatto Linee di forza del campo magnetico di un solenoide in cui le spire sono a più stretto contatto. Il campo disperso esternamente è inferiore rispetto a prima. Si noti la somiglianza col campo di un dipolo elettrico 12

7 Induzione elettromagnetica Faraday osservò che ogniqualvolta c è una variazione del flusso del campo magnetico concatenato con un circuito, nasce una f.e.m. nel circuito (legge di induzione di Faraday). Più tardi Lenz scoprì che la corrente indotta ha verso tale da opporsi alla variazione di campo magnetico che l ha indotta. Consideriamo una spira immersa in un campo magnetico la f.e.m. indotta ε= - dφ B /dt = - d/dt B da (Φ B = B da flusso di B (weber Wb=Tm 2 )) per N spire ε= -N dφ B /dt = - N d/dt B da. Il flusso può cambiare per variazione del campo B, variare l area delle spire, variare l angolo fra la normale alla spira e B. Il calcolo della f.e.m. ε = E dl corrisponde al calcolo del potenziale ma su una linea chiusa non è zero nel caso non stazionario E non è conservativo. Applicando il teorema del rotore a E dl = - d/dt B da E= - B / t III eq.di Maxwell, 13 Come nel caso dei condensatori, si definisce l induttore come l elemento circuitale che presenta induttanza ovvero la costante di proporzionalità fra flusso di B e corrente i L=NΦ / i (unità henry H) (mostrare che μ 0 è in unità H/m) Per un solenoide L= μ 0 (N/l) 2 A l = μ 0 n 2 A l (A=area delle spire) In un solenoide, ad una variazione della i che vi scorre determina una f.e.m. autoindotta da NΦ =Li N dφ/dt =L di/dt ε= - L di/dt questa rappresenta la caduta di potenziale ai capi di un induttore. Formiamo un circuito RL. Dalla eq.delle maglie si ha V=iR+L di/dt (equazione differenziale in i, V f.e.m. generatore).es. Dal confronto con l equazione del moto di un corpo in caduta in fluido che presenta viscosità, determinare la soluzione i=i(t) per il circuito. + R 14 L

8 Famoso disegno di Escher che potrebbe ben rappresentare l azione su un elettrone di un circuito chiuso immerso in un campo magnetico variabile: il campo elettrico indotto (generato dal flusso variabile di B) è non conservativo e continua ad agire (spingere) l elettrone che quindi si trova sempre in discesa anche quando completa un giro. 15 Energia del campo magnetico Nel caso del condensatore avevamo dimostrato che l energia può essere pensata come contenuta nel campo elettrico. Nel caso dell induttore il lavoro svolto per far fluire la corrente attraverso di esso è diverso da zero solo nei transienti (ove di/dt 0) infatti la potenza istantanea è data da P= -ε i= - ( - L di/dt i) = d/dt (½ L i 2 ) e quindi l integrale nel tempo (lavoro fatto dall esterno sull induttore) è l energia immagazzinata pari a U=(½ L i 2 ). Infatti quando si interrompe la corrente, lo stesso lavoro viene restituito dal solenoide. Per associare questo lavoro al campo magnetico utilizziamo un solenoide (trascurando tutti i flussi dispersi) dalla relazione L= μ 0 n 2 A l e da B= μ 0 n i l energia diviene E=½ μ 0 n 2 A l i 2 =½ B 2 A l/ μ 0 e dividendo per il volume del solenoide vol=a l, si ottiene la densità di energia del campo magnetico u B =½B 2 / μ 0. Questo risultato vale in generale. In presenza di un campo elettromagnetico la densità di energia è u= u E + u B =½ ε 0 E 2 + ½ B 2 / μ 0. 16

9 Consideriamo un circuito formato da un condensatore e da un induttore. Dalla eq.delle maglie -q/c - L di/dt =0 ovvero di/dt + q /(LC)=0 C ma i=dq/dt quindi L d 2 q/dt 2 + ω 2 q = 0 (eq.del moto armonico) con ω 2 =1 /(LC) Un circuito LC rappresenta perciò un oscillatore elettrico. Se inizialmente C è carico esso si scarica attraverso L. Quando C è scarico non c è più corrente ma L impedisce che la corrente cessi istantaneamente e quindi i continua e C si ricarica invertendo il segno sulle sue armature. Il processo si ripete con la corrente che scorre nel verso opposto. Dal punto di vista energetico l energia immagazzinata nel campo elettrico serve a incrementare il campo magnetico che immagazzina a sua volta energia e viceversa. Osservando l equazione, B è legato all energia cinetica del fittizio oscillatore meccanico, il campo E all energia potenziale elastica. 17 Nel caso reale c è sempre dissipazione e si hanno oscillazioni smorzate Il circuito presenterà perciò una resistenza e l eq.delle maglie diventa -q/c -Ri -L di/dt =0 ovvero di/dt +(R/L)i+ q /(LC)=0 d 2 q/dt 2 + (R/L) dq/dt+ ω 2 q = 0 (oscillatore smorzato) Le soluzioni sono le stesse del caso meccanico dove C R L il coefficiente β legato alla viscosità del fluido è sostituito da R. In presenza di un generatore di corrente alternata il circuito RLC presenta il fenomeno della risonanza quando la frequenza del generatore è prossima a quella del circuito (f=ω/2π) C e valgono le stesse considerazione fatte per il caso di un oscillatore meccanico. ~ L 18

Elementi di Fisica 2CFU

Elementi di Fisica 2CFU Elementi di Fisica 2CFU III parte - Elettromagnetismo Andrea Susa MAGNETISMO 1 Magnete Alcune sostanze naturali, come ad esempio la magnetite, hanno la proprietà di attirare pezzetti di ferro, e per questo

Dettagli

Il campo magnetico. n I poli magnetici di nome contrario non possono essere separati: non esiste il monopolo magnetico

Il campo magnetico. n I poli magnetici di nome contrario non possono essere separati: non esiste il monopolo magnetico Il campo magnetico n Le prime osservazioni dei fenomeni magnetici risalgono all antichità n Agli antichi greci era nota la proprietà della magnetite di attirare la limatura di ferro n Un ago magnetico

Dettagli

Argomenti per esame orale di Fisica Generale (Elettromagnetismo) 9 CFU A.A. 2012/2013

Argomenti per esame orale di Fisica Generale (Elettromagnetismo) 9 CFU A.A. 2012/2013 Argomenti per esame orale di Fisica Generale (Elettromagnetismo) 9 CFU A.A. 2012/2013 1. Il campo elettrico e legge di Coulomb: esempio del calcolo generato da alcune semplici distribuzioni. 2. Il campo

Dettagli

Gli esperimenti condotti da Faraday hanno portato a stabilire l esistenza di una forza elettromotrice e quindi di una corrente indotta in un circuito

Gli esperimenti condotti da Faraday hanno portato a stabilire l esistenza di una forza elettromotrice e quindi di una corrente indotta in un circuito Gli esperimenti condotti da Faraday hanno portato a stabilire l esistenza di una forza elettromotrice e quindi di una corrente indotta in un circuito quando: 1) il circuito è in presenza di un campo magnetico

Dettagli

Esercizi di magnetismo

Esercizi di magnetismo Esercizi di magnetismo Fisica II a.a. 2003-2004 Lezione 16 Giugno 2004 1 Un riassunto sulle dimensioni fisiche e unità di misura l unità di misura di B è il Tesla : definisce le dimensioni [ B ] = [m]

Dettagli

Il magnetismo magnetismo magnetite

Il magnetismo magnetismo magnetite Magnetismo Il magnetismo Fenomeno noto fin dall antichità. Il termine magnetismo deriva da Magnesia città dell Asia Minore dove si era notato che un minerale, la magnetite, attirava a sé i corpi ferrosi.

Dettagli

Formulario Elettromagnetismo

Formulario Elettromagnetismo Formulario Elettromagnetismo. Elettrostatica Legge di Coulomb: F = q q 2 u 4 0 r 2 Forza elettrostatica tra due cariche puntiformi; ε 0 = costante dielettrica del vuoto; q = cariche (in C); r = distanza

Dettagli

MAGNETISMO. Alcuni materiali (calamite o magneti) hanno la proprietà di attirare pezzetti di ferro (o cobalto, nickel e gadolinio).

MAGNETISMO. Alcuni materiali (calamite o magneti) hanno la proprietà di attirare pezzetti di ferro (o cobalto, nickel e gadolinio). MAGNETISMO Alcuni materiali (calamite o magneti) hanno la proprietà di attirare pezzetti di ferro (o cobalto, nickel e gadolinio). Le proprietà magnetiche si manifestano alle estremità del magnete, chiamate

Dettagli

Facoltà di Ingegneria Prova scritta di Fisica II - 23 Settembre Compito A Esercizio n.1 O Esercizio n. 2 O

Facoltà di Ingegneria Prova scritta di Fisica II - 23 Settembre Compito A Esercizio n.1 O Esercizio n. 2 O Facoltà di Ingegneria Prova scritta di Fisica II - 3 Settembre 003 - Compito A Esercizio n.1 Quattro cariche di uguale valore q, due positive e due negative, sono poste nei vertici di un quadrato di lato

Dettagli

Legge di Faraday. x x x x x x x x x x E x x x x x x x x x x R x x x x x x x x x x. x x x x x x x x x x. x x x x x x x x x x E B 1 Φ B.

Legge di Faraday. x x x x x x x x x x E x x x x x x x x x x R x x x x x x x x x x. x x x x x x x x x x. x x x x x x x x x x E B 1 Φ B. Φ ε ds ds dφ = dt Legge di Faraday E x x x x x x x x x x E x x x x x x x x x x R x x x x x x x x x x 1 x x x x x x x x x x E x x x x x x x x x x E Schema Generale Elettrostatica moto di q in un campo E

Dettagli

Magnete. Campo magnetico. Fenomeni magnetici. Esempio. Esempio. Che cos è un magnete? FENOMENI MAGNETICI

Magnete. Campo magnetico. Fenomeni magnetici. Esempio. Esempio. Che cos è un magnete? FENOMENI MAGNETICI Magnete FENOMENI MAGNETICI Che cos è un magnete? Un magnete è un materiale in grado di attrarre pezzi di ferro Prof. Crosetto Silvio 2 Prof. Crosetto Silvio Quando si avvicina ad un pezzo di magnetite

Dettagli

Dati numerici: f = 200 V, R 1 = R 3 = 100 Ω, R 2 = 500 Ω, C = 1 µf.

Dati numerici: f = 200 V, R 1 = R 3 = 100 Ω, R 2 = 500 Ω, C = 1 µf. ESERCIZI 1) Due sfere conduttrici di raggio R 1 = 10 3 m e R 2 = 2 10 3 m sono distanti r >> R 1, R 2 e contengono rispettivamente cariche Q 1 = 10 8 C e Q 2 = 3 10 8 C. Le sfere vengono quindi poste in

Dettagli

Fenomeni Magnetici. Campo Magnetico e Forza di Lorentz. Moto di cariche in campo magnetico. Momento e campo magnetico di una spira.

Fenomeni Magnetici. Campo Magnetico e Forza di Lorentz. Moto di cariche in campo magnetico. Momento e campo magnetico di una spira. Fenomeni Magnetici Campo Magnetico e Forza di Lorentz Moto di cariche in campo magnetico Momento e campo magnetico di una spira Legge di Ampère Solenoide Campo Magnetico I fenomeni magnetici possono essere

Dettagli

Interazioni di tipo magnetico

Interazioni di tipo magnetico INGEGNERIA GESTIONALE corso di Fisica Generale Prof. E. Puddu Interazioni di tipo magnetico 1 Il campo magnetico In natura vi sono alcune sostanze, quali la magnetite, in grado di esercitare una forza

Dettagli

CORSO DI BIOFISICA IL MATERIALE CONTENUTO IN QUESTE DIAPOSITIVE E AD ESCLUSIVO USO DIDATTICO PER L UNIVERSITA DI TERAMO

CORSO DI BIOFISICA IL MATERIALE CONTENUTO IN QUESTE DIAPOSITIVE E AD ESCLUSIVO USO DIDATTICO PER L UNIVERSITA DI TERAMO CORSO DI IOFISICA IL MATERIALE CONTENUTO IN QUESTE DIAPOSITIVE E AD ESCLUSIVO USO DIDATTICO PER L UNIVERSITA DI TERAMO LE IMMAGINE CONTENUTE SONO STATE TRATTE DAL LIRO FONDAMENTI DI FISICA DI D. HALLIDAY,

Dettagli

Prof. F.Soramel Elementi di Fisica 2 - A.A. 2010/11 1

Prof. F.Soramel Elementi di Fisica 2 - A.A. 2010/11 1 Induzione La legge dell induzione di Faraday combina gli effetti dei campi elettrici e delle correnti, infatti sappiamo che Corrente + campo magnetico momento torcente motore elettrico Momento torcente

Dettagli

Appunti di elettromagnetismo

Appunti di elettromagnetismo Appunti di elettromagnetismo Andrea Biancalana ottobre 1999 1 Magneti e correnti elettriche Magneti: esistono materiali che manifestano interazioni non-gravitazionali e non-elettriche; caratteristica dei

Dettagli

LA LEGGE DI FARADAY-HENRY O DELL INDUZIONE ELETTROMAGNETICA

LA LEGGE DI FARADAY-HENRY O DELL INDUZIONE ELETTROMAGNETICA LA LEGGE DI FARADAY-HENRY O DELL INDUZIONE ELETTROMAGNETICA Se un magnete è posto vicino ad un circuito conduttore chiuso, nel circuito si manifesta una f.e.m. quando il magnete è messo in movimento. Tale

Dettagli

FISICA SPERIMENTALE II! Corso di laurea in Chimica (6CFU, 48 ORE)!

FISICA SPERIMENTALE II! Corso di laurea in Chimica (6CFU, 48 ORE)! FISICA SPERIMENTALE II! Corso di laurea in Chimica (6CFU, 48 ORE)! ì Docente: Claudio Melis, Ricercatore a tempo determinato presso il Dipartimento di Fisica! Email: claudio.melis@dsf.unica.it!! Telefono

Dettagli

Esistono alcune sostanze che manifestano la capacità di attirare la limatura di ferro, in particolare, la magnetite

Esistono alcune sostanze che manifestano la capacità di attirare la limatura di ferro, in particolare, la magnetite 59 Esistono alcune sostanze che manifestano la capacità di attirare la limatura di ferro, in particolare, la magnetite Questa proprietà non è uniforme su tutto il materiale, ma si localizza prevelentemente

Dettagli

Induzione magne-ca. La legge di Faraday- Neumann- Lenz e l indu7anza

Induzione magne-ca. La legge di Faraday- Neumann- Lenz e l indu7anza Induzione magne-ca a legge di Faraday- Neumann- enz e l indu7anza egge di Faraday Un filo percorso da corrente crea un campo magnetico. Con un magnete si può creare una corrente? a risposta è naturalmente

Dettagli

Interazioni di tipo magnetico II

Interazioni di tipo magnetico II INGEGNERIA GESTIONALE corso di Fisica Generale Prof. E. Puddu Interazioni di tipo magnetico II 1 Forza magnetica su una carica in moto Una particella di carica q in moto risente di una forza magnetica

Dettagli

Campo magnetico terrestre

Campo magnetico terrestre Magnetismo Vicino a Magnesia, in Asia Minore, si trovava una sostanza capace di attrarre il ferro Due sbarrette di questo materiale presentano poli alle estremità, che si attraggono o si respingono come

Dettagli

Storia delle scoperte del campo magnetico

Storia delle scoperte del campo magnetico Storia delle scoperte del campo magnetico Prof. Daniele Ippolito Liceo Scientifico Amedeo di Savoia di Pistoia VI secolo a.c. Talete osserva che la magnetite, un minerale composto al 72% di ferro, estratto

Dettagli

Riassunto lezione 11

Riassunto lezione 11 Riassunto lezione 11 Forza di Coloumb attrattiva o repulsiva F A B = 1 4 π ϵ 0 q A q B r 2 Consideriamo effetto di una carica sola campo elettrico: E Q = F Qq q = 1 4 π ϵ 0 Q r 2 ^u A B Come si rappresenta?

Dettagli

1 Prove esami Fisica II

1 Prove esami Fisica II 1 Prove esami Fisica II Prova - 19-11-2002 Lo studente risponda alle seguenti domande: 1) Scrivere il teorema di Gauss (2 punti). 2) Scrivere, per un conduttore percorso da corrente, il legame tra la resistenza

Dettagli

Università del Salento Corso di Laurea Triennale in Ingegneria Industriale Secondo esonero di FISICA GENERALE 2 del 16/01/15

Università del Salento Corso di Laurea Triennale in Ingegneria Industriale Secondo esonero di FISICA GENERALE 2 del 16/01/15 Università del Salento Corso di Laurea Triennale in Ingegneria Industriale Secondo esonero di FISICA GENERALE 2 del 16/01/15 Esercizio 1 (7 punti): Nella regione di spazio compresa tra due cilindri coassiali

Dettagli

Esercizi di Fisica LB: Induzione Elettromagnetica

Esercizi di Fisica LB: Induzione Elettromagnetica Esercizi di Fisica LB: Induzione Elettromagnetica Esercizio 1 Esercitazioni di Fisica LB per ingegneri - A.A. 23-24 Una sbarra conduttrice di lunghezza l è fissata ad un estremo ed è fatta ruotare con

Dettagli

Il magnetismo. Il campo magnetico

Il magnetismo. Il campo magnetico Il magnetismo Un magnete (o calamita) è un corpo che genera intorno a sé un campo di forza che attrae il ferro Un magnete naturale è un minerale contenente magnetite, il cui nome deriva dal greco "pietra

Dettagli

Indice 3. Note di utilizzo 9. Ringraziamenti 10. Introduzione 11

Indice 3. Note di utilizzo 9. Ringraziamenti 10. Introduzione 11 Indice Indice 3 Note di utilizzo 9 Ringraziamenti 10 Introduzione 11 Capitolo 1 Grandezze fisiche e schematizzazione dei sistemi materiali 13 1.1 Grandezze fisiche ed operazione di misura 13 1.2 Riferimento

Dettagli

La forza di Lorentz è: una forza conservativa. una forza radiale. una forza a distanza. tutte le le risposte precedenti.

La forza di Lorentz è: una forza conservativa. una forza radiale. una forza a distanza. tutte le le risposte precedenti. La forza di Lorentz è: una forza conservativa. una forza radiale. una forza a distanza. tutte le le risposte precedenti. 1 / 1 La forza di Lorentz è: una forza conservativa. una forza radiale. una forza

Dettagli

0 : costante dielettrica nel vuoto

0 : costante dielettrica nel vuoto 0 : costante dielettrica nel vuoto Φ Flusso del campo elettrico E dφ E E da EdAcosθ Se la superficie è chiusa (superficie gaussiana) il flusso si calcola come integrale chiuso: Φ E dφ E E da v EdAcosθ

Dettagli

Induzione magnetica 1

Induzione magnetica 1 l flusso concatenato nduzione magnetica 1 è solenoidale è definito il flusso di concatenato con una linea chiusa e orientata Φ () n d (verso della normale n indotto dalla percorrenza della linea secondo

Dettagli

L INDUZIONE ELETTROMAGNETICA. V Scientifico Prof.ssa Delfino M. G.

L INDUZIONE ELETTROMAGNETICA. V Scientifico Prof.ssa Delfino M. G. L INDUZIONE ELETTROMAGNETICA V Scientifico Prof.ssa Delfino M. G. INDUZIONE E ONDE ELETTROMAGNETICHE 1. Il flusso del vettore B 2. La legge di Faraday-Neumann-Lenz 3. Induttanza e autoinduzione 4. I circuiti

Dettagli

QUINTA LEZIONE: corrente elettrica, legge di ohm, carica e scarica di un condensatore, leggi di Kirchoff

QUINTA LEZIONE: corrente elettrica, legge di ohm, carica e scarica di un condensatore, leggi di Kirchoff QUINTA LEZIONE: corrente elettrica, legge di ohm, carica e scarica di un condensatore, leggi di Kirchoff Esercizio Un conduttore cilindrico in rame avente sezione di area S = 4mm è percorso da una corrente

Dettagli

Formulario per Fisica con Esercitazioni (LT Chimica Industriale - Bologna)

Formulario per Fisica con Esercitazioni (LT Chimica Industriale - Bologna) Formulario per Fisica con Esercitazioni (LT Chimica Industriale - Bologna) 7 giugno 2013 1 Errori di misura Errore sulle misure dirette: Errore massimo (il risultato della misura non fluttua): 1 oppure

Dettagli

FISICA (modulo 1) PROVA SCRITTA 23/06/2014

FISICA (modulo 1) PROVA SCRITTA 23/06/2014 FISICA (modulo 1) PROVA SCRITTA 23/06/2014 ESERCIZI E1. Un corpo puntiforme di massa m = 2 Kg si muove su un percorso che ha la forma di un quarto di circonferenza di raggio R = 50 cm ed è disposta su

Dettagli

CAMPO MAGNETICO E FORZA DI LORENTZ

CAMPO MAGNETICO E FORZA DI LORENTZ QUESITI 1 CAMPO MAGNETICO E FORZA DI LORENTZ 1. (Da Medicina e Odontoiatria 2013) Un cavo percorso da corrente in un campo magnetico può subire una forza dovuta al campo. Perché tale forza non sia nulla

Dettagli

Università degli studi di Trento Facoltà di Ingegneria Corso di Laurea in Viticoltura ed Enologia

Università degli studi di Trento Facoltà di Ingegneria Corso di Laurea in Viticoltura ed Enologia Università degli studi di Trento Facoltà di Ingegneria Corso di Laurea in Viticoltura ed Enologia Prof. Dino Zardi Dipartimento di Ingegneria Civile, Ambientale e Meccanica Fisica Componenti elementari

Dettagli

df = I dl B df = dq v B

df = I dl B df = dq v B Forza Magnetica su un conduttore Forza magnetica agente su un filo percorso da corrente Consideriamo un filo percorso da una corrente in presenza di un campo magnetico. Agirà una forza su ciascuna delle

Dettagli

IL CAMPO MAGNETICO. V Classico Prof.ssa Delfino M. G.

IL CAMPO MAGNETICO. V Classico Prof.ssa Delfino M. G. IL CAMPO MAGNETICO V Classico Prof.ssa Delfino M. G. UNITÀ - IL CAMPO MAGNETICO 1. Fenomeni magnetici 2. Calcolo del campo magnetico 3. Forze su conduttori percorsi da corrente 4. La forza di Lorentz LEZIONE

Dettagli

Fisica Generale Modulo di Fisica II A.A Ingegneria Meccanica - Edile - Informatica Esercitazione 6 INDUZIONE ELETTROMAGNETICA

Fisica Generale Modulo di Fisica II A.A Ingegneria Meccanica - Edile - Informatica Esercitazione 6 INDUZIONE ELETTROMAGNETICA Fisica enerale Modulo di Fisica II A.A. 05-6 INDUZIONE EETTOMANETIA Eb. Una spira rettangolare di altezza l 0 cm è 0. T completata da un contatto mobile che viene spostato verso destra alla velocità costante

Dettagli

1.11.3 Distribuzione di carica piana ed uniforme... 32

1.11.3 Distribuzione di carica piana ed uniforme... 32 Indice 1 Campo elettrico nel vuoto 1 1.1 Forza elettromagnetica............ 2 1.2 Carica elettrica................ 3 1.3 Fenomeni elettrostatici............ 6 1.4 Legge di Coulomb.............. 9 1.5 Campo

Dettagli

Elettricità e Magnetismo. M. Cobal, Università di Udine

Elettricità e Magnetismo. M. Cobal, Università di Udine Elettricità e Magnetismo M. Cobal, Università di Udine Forza di Coulomb Principio di Sovrapposizione Lineare Campo Ele8rico Linee di campo Flusso, teorema di Gauss e applicazioni Condu8ori Energia potenziale

Dettagli

Unità 9. Il campo magnetico

Unità 9. Il campo magnetico Unità 9 Il campo magnetico 1. La forza di Lorentz Se un fascio catodico è in un campo magnetico: La forza di Lorentz Gli elettroni risentono di una forza magnetica anche se non sono in un filo metallico;

Dettagli

2. Si pone una carica elettrica in prossimità di un filo percorso da corrente; cosa accadrà?

2. Si pone una carica elettrica in prossimità di un filo percorso da corrente; cosa accadrà? 1. Dei principali fenomeni dell elettromagnetismo può essere data una descrizione a diversi livelli ; in quale dei seguenti elenchi essi sono messi in ordine, dal più intuitivo al più astratto? (a) Forza,

Dettagli

Campo magnetico B e correnti

Campo magnetico B e correnti Campo magnetico B e correnti Dalle lezioni precedenti appare evidente che: corrente elettrica B corrente elettrica Pertanto è importante saper calcolare il campo magnetico a partire da una distribuzione

Dettagli

FORMULARIO ELETTROMAGNETISMO

FORMULARIO ELETTROMAGNETISMO FORMULARIO ELETTROMAGNETISMO Forza di Coulomb : forza che intercorre tra due particelle cariche Campo elettrico : quantità vettoriale generata da una carica Densità di carica superficiale, volumetrica

Dettagli

Conservazione della carica elettrica

Conservazione della carica elettrica Elettrostatica La forza elettromagnetica è una delle interazioni fondamentali dell universo L elettrostatica studia le interazioni fra le cariche elettriche non in movimento Da esperimenti di elettrizzazione

Dettagli

Istituto Villa Flaminia 27 Aprile 2015 IV Scientifico Simulazione Prova di Fisica (400)

Istituto Villa Flaminia 27 Aprile 2015 IV Scientifico Simulazione Prova di Fisica (400) Istituto Villa Flaminia 27 Aprile 2015 IV Scientifico Simulazione Prova di Fisica (400) 1 Teoria In questa prima parte le domande teoriche; in una seconda parte troverete un paio di esempi di esercizi.

Dettagli

Forze su cariche nei fili: il motore elettrico

Forze su cariche nei fili: il motore elettrico Forze su cariche nei fili: il motore elettrico In presenza di un campo magnetico B, un tratto di filo (d l) percorsa da una corrente i è soggetto ad una forza F = id l B. Un tratto rettilineo di filo di

Dettagli

Perchè non si è semplicemente assunto che il campo magnetico B abbia la direzione della forza magnetica agente su di un filo percorso da corrente?

Perchè non si è semplicemente assunto che il campo magnetico B abbia la direzione della forza magnetica agente su di un filo percorso da corrente? Perchè non si è semplicemente assunto che il campo magnetico B abbia la direzione della forza magnetica agente su di un filo percorso da corrente? Si abbia una molla verticale al cui estremo inferiore

Dettagli

Fisica Generale II (prima parte)

Fisica Generale II (prima parte) Corso di Laurea in Ing. Medica Fisica Generale II (prima parte) Cognome Nome n. matricola Voto 4.2.2011 Esercizio n.1 Determinare il campo elettrico in modulo direzione e verso generato nel punto O dalle

Dettagli

APPENDICE 1 CAMPI CONSERVATIVI CIRCUITAZIONE DI UN VETTORE LUNGO UNA LINEA CHIUSA CORRENTE DI SPOSTAMENTO

APPENDICE 1 CAMPI CONSERVATIVI CIRCUITAZIONE DI UN VETTORE LUNGO UNA LINEA CHIUSA CORRENTE DI SPOSTAMENTO APPENDICE 1 CAMPI CONSERVATIVI CIRCUITAZIONE DI UN VETTORE LUNGO UNA LINEA CHIUSA CORRENTE DI SPOSTAMENTO Quando un punto materiale P si sposta di un tratto s per effetto di una forza F costante applicata

Dettagli

Il Corso di Fisica per Scienze Biologiche

Il Corso di Fisica per Scienze Biologiche Il Corso di Fisica per Scienze Biologiche Ø Prof. Attilio Santocchia Ø Ufficio presso il Dipartimento di Fisica (Quinto Piano) Tel. 075-585 2708 Ø E-mail: attilio.santocchia@pg.infn.it Ø Web: http://www.fisica.unipg.it/~attilio.santocchia

Dettagli

Le 4 forze della natura:

Le 4 forze della natura: Le 4 forze della natura: Forze elettromagnetiche Forze gravitazionali Forze nucleari forti Forze nucleari deboli Meccanica: Che cosa fanno le forze? le forze producono accelerazioni, cioè cambiamenti di

Dettagli

Lez. 20 Magnetismo. Prof. Giovanni Mettivier

Lez. 20 Magnetismo. Prof. Giovanni Mettivier Lez. 20 Magnetismo Prof. Giovanni Mettivier 1 Dott. Giovanni Mettivier, PhD Dipartimento Scienze Fisiche Università di Napoli Federico II Compl. Univ. Monte S.Angelo Via Cintia, I-80126, Napoli mettivier@na.infn.it

Dettagli

Il campo magnetico. 1. Fenomeni magnetici 2. Calcolo del campo magnetico 3. Forze su conduttori percorsi da corrente 4. La forza di Lorentz

Il campo magnetico. 1. Fenomeni magnetici 2. Calcolo del campo magnetico 3. Forze su conduttori percorsi da corrente 4. La forza di Lorentz Il capo agnetico 1. Fenoeni agnetici 2. Calcolo del capo agnetico 3. Forze su conduttori percorsi da corrente 4. La forza di Lorentz Prof. Giovanni Ianne 1/21 Fenoeni agnetici La agnetite è un inerale

Dettagli

Unità 8. Fenomeni magnetici fondamentali

Unità 8. Fenomeni magnetici fondamentali Unità 8 Fenomeni magnetici fondamentali 1. La forza magnetica e le linee del campo magnetico Già ai tempi di Talete (VI sec. a.c.) era noto che la magnetite, un minerale di ferro, attrae piccoli oggetti

Dettagli

Campo magnetico e forza di Lorentz (II)

Campo magnetico e forza di Lorentz (II) Campo magnetico e forza di Lorentz (II) Moto di particelle cariche in un campo magnetico Seconda legge elementare di Laplace Principio di equivalenza di Ampere Effetto Hall Galvanometro Moto di una particella

Dettagli

LICEO SCIENTIFICO STATALE G. MARCONI FOGGIA

LICEO SCIENTIFICO STATALE G. MARCONI FOGGIA LICEO SCIENTIFICO STATALE G. MARCONI FOGGIA PROGRAMMA DI Fisica Classe VB Anno Scolastico 2014-2015 Insegnante: Prof.ssa La Salandra Incoronata 1 FORZA E CAMPI ELETTRICI (Richiami) Teoria sui vettori I

Dettagli

MODULO DI ELETTROMAGNETISMO Prova Pre-Esame del 28 GENNAIO 2009 A.A

MODULO DI ELETTROMAGNETISMO Prova Pre-Esame del 28 GENNAIO 2009 A.A MODULO D ELETTROMAGNETSMO Prova Pre-Esame del 28 GENNAO 2009 A.A. 2008-2009 FSCA GENERALE Esercizi FS GEN: Punteggio in 30 esimi 1 8 Fino a 4 punti COGNOME: NOME: MATR: 1. Campo elettrostatico La sfera

Dettagli

Fisica II. 7 Esercitazioni

Fisica II. 7 Esercitazioni Esercizi svolti Esercizio 7.1 Il campo magnetico che agisce perpendicolarmente ad un circuito costituito da 3 spire di 3 cm di diametro, passa da un valore di.4t a -.65T in 18 msec. Calcolare la tensione

Dettagli

Cap 31 - Induzione e induttanza. 31.2 Due esperimenti

Cap 31 - Induzione e induttanza. 31.2 Due esperimenti N.Giglietto A.A. 2002/03-31.2 Due esperimenti - 1 Cap 31 - Induzione e induttanza Sappiamo che una spira percorsa da corrente e immersa in un campo magnetico è soggetta ad un momento torcente. Proviamo

Dettagli

Olimpiadi di Fisica 2015 Campo elettrico Franco Villa

Olimpiadi di Fisica 2015 Campo elettrico Franco Villa 1 Olimpiadi di Fisica 015 ampo elettrico Franco illa 1. ate le cariche Q = -1 µ e Q = - µ (ale in cm O=0, O=10, =10, O=0) determinare: il potenziale elettrico ed il campo elettrico E (modulo, direzione

Dettagli

Il flusso del campo magnetico

Il flusso del campo magnetico Il flusso del campo magnetico Il flusso del campo magnetico attraverso una superficie si definisce in modo analogo al flusso del campo elettrico. ( B) BScos Con α angolo compreso tra B e S. L unità di

Dettagli

Prova Scritta di Elettricità e Magnetismo e di Elettromagnetismo A. A Febbraio 2008 (Proff. F.Lacava, C.Mariani, F.Ricci, D.

Prova Scritta di Elettricità e Magnetismo e di Elettromagnetismo A. A Febbraio 2008 (Proff. F.Lacava, C.Mariani, F.Ricci, D. Prova Scritta di Elettricità e Magnetismo e di Elettromagnetismo A. A. 2006-07 - 1 Febbraio 2008 (Proff. F.Lacava, C.Mariani, F.Ricci, D.Trevese) Modalità: - Prova scritta di Elettricità e Magnetismo:

Dettagli

1 CAMPI MAGNETICI PRODOTTI DA COR- RENTI STAZIONARIE. 2 Il campo magnetico prodotto da una carica in moto uniforme

1 CAMPI MAGNETICI PRODOTTI DA COR- RENTI STAZIONARIE. 2 Il campo magnetico prodotto da una carica in moto uniforme 1 CAMPI MAGNETICI PRODOTTI DA COR- RENTI STAZIONARIE Abbiamo studiato gli effetti di un campo B, prodotto da un magnete su cariche in moto e su circuiti percorsi da corrente. Abbiamo visto che le spire

Dettagli

PROBLEMA N.2 Il motorino elettrico

PROBLEMA N.2 Il motorino elettrico PROBLEMA N.2 Il motorino elettrico Obiettivi Determinare la f.e.m. indotta agli estremi di un conduttore rettilineo in moto in un campo magnetico Applicare il secondo principio della dinamica in presenza

Dettagli

FENOMENI MAGNETICI NATURALI

FENOMENI MAGNETICI NATURALI MAGNETISMO l Il magnetismo è una caratteristica di certi corpi, detti magneti, grazie alla quale essi esercitano una forza a distanza su sostanze come il ferro, attirandole. FENOMENI MAGNETICI NATURALI

Dettagli

LICEO SCIENTIFICO STATALE A. VALLISNERI Classe 5A 2 o periodo/ 1 a verifica scritta 6 febbraio Campo magnetico e suoi effetti

LICEO SCIENTIFICO STATALE A. VALLISNERI Classe 5A 2 o periodo/ 1 a verifica scritta 6 febbraio Campo magnetico e suoi effetti LICEO SCIENTIFICO STATALE A. VALLISNERI Classe 5A 2 o periodo/ 1 a verifica scritta 6 febbraio 2012 Campo magnetico e suoi effetti Alunno:................................................ Domande a risposta

Dettagli

Il campo magnetico. Le prime osservazioni dei fenomeni magnetici

Il campo magnetico. Le prime osservazioni dei fenomeni magnetici Il campo magnetico Le prime osservazioni dei fenomeni magnetici la magnetite (Fe 3 O 4 ) attira la limatura di ferro un ago magnetico libero di ruotare intorno ad un asse verticale si orienta con una delle

Dettagli

INTERPRETAZIONE CINEMATICA DELLA DERIVATA

INTERPRETAZIONE CINEMATICA DELLA DERIVATA INTERPRETAZIONE CINEMATICA DELLA DERIVATA Consideriamo un punto mobile sopra una qualsiasi linea Fissiamo su tale linea un punto O, come origine degli archi, e un verso di percorrenza come verso positivo;

Dettagli

Magnetismo. Fisica x Biologi 2017 Fabio Bernardini

Magnetismo. Fisica x Biologi 2017 Fabio Bernardini Magnetismo Il magnetismo entra nella nostra esperiemza a partire dalla bussola. Si può verificare che lʼorientamento dellʼago della bussola può essere modificato in due modi: avvicinando un magnete alla

Dettagli

1.5 Calcolo di erenziale vettoriale Derivata ordinaria Gradiente Esempio n. 3 - Gradiente di 1

1.5 Calcolo di erenziale vettoriale Derivata ordinaria Gradiente Esempio n. 3 - Gradiente di 1 Indice 1 ANALISI VETTORIALE 1 1.1 Scalari e vettori......................... 1 1.1.1 Vettore unitario (versore)............... 2 1.2 Algebra dei vettori....................... 3 1.2.1 Somma di due vettori.................

Dettagli

Indice. Fisica: una introduzione. Il moto in due dimensioni. Moto rettilineo. Le leggi del moto di Newton

Indice. Fisica: una introduzione. Il moto in due dimensioni. Moto rettilineo. Le leggi del moto di Newton Indice 1 Fisica: una introduzione 1.1 Parlare il linguaggio della fisica 2 1.2 Grandezze fisiche e unità di misura 3 1.3 Prefissi per le potenze di dieci e conversioni 7 1.4 Cifre significative 10 1.5

Dettagli

Esercitazione 1. Invece, essendo il mezzo omogeneo, il vettore sarà espresso come segue

Esercitazione 1. Invece, essendo il mezzo omogeneo, il vettore sarà espresso come segue 1.1 Una sfera conduttrice di raggio R 1 = 10 cm ha una carica Q = 10-6 C ed è circondata da uno strato sferico di dielettrico di raggio (esterno) R 2 = 20 cm e costante dielettrica relativa. Determinare

Dettagli

1. Tre fili conduttori rettilinei, paralleli e giacenti sullo stesso piano, A, B e C, sono percorsi da correnti di intensità ia = 2 A,

1. Tre fili conduttori rettilinei, paralleli e giacenti sullo stesso piano, A, B e C, sono percorsi da correnti di intensità ia = 2 A, ebbraio 1. L intensità di corrente elettrica che attraversa un circuito in cui è presente una resistenza R è di 4 A. Se nel circuito si inserisce una ulteriore resistenza di 2 Ω la corrente diventa di

Dettagli

FORMULARIO DI FISICA 3 MOTO OSCILLATORIO

FORMULARIO DI FISICA 3 MOTO OSCILLATORIO FORMULARIO DI FISICA 3 MOTO OSCILLATORIO Corpo attaccato ad una molla che compie delle oscillazioni Calcolare la costante elastica della molla 2 2 1 2 2 ω: frequenza angolare (Pulsazione) ; T: Periodo

Dettagli

isolanti e conduttori

isolanti e conduttori 1. ELETTROMAGNETISMO 1.1. Carica elettrica 1.1.1. Storia: Franklin Thomson Rutherford Millikan 1.1.2. L atomo: struttura elettroni di valenza (legame metallico) isolanti e conduttori ATOMO legge di conservazione

Dettagli

Quesiti di Fisica Generale

Quesiti di Fisica Generale Quesiti di Fisica Generale 3. Elettromagnetismo prof. Domenico Galli, prof. Umberto Marconi 3 aprile 2012 I compiti scritti di esame del prof. D. Galli e del prof. U. Marconi propongono 4 quesiti, sorteggiati

Dettagli

1 Elettromagnetismo. Fig.1.1) Una bussola orienta il suo asse sempre secondo la direzione Nord-Sud dei poli geografici.

1 Elettromagnetismo. Fig.1.1) Una bussola orienta il suo asse sempre secondo la direzione Nord-Sud dei poli geografici. 1 Elettromagnetismo Generalità - Il magnetismo ha riguardato, in origine, i fenomeni di attrazione naturale fra particolari minerali ferrosi come la magnetite ed erano già noti a Talete fin dal 600 A.C.

Dettagli

Rispondere per iscritto ai seguenti quesiti sul foglio protocollo. Tempo della prova: 55 minuti. 1

Rispondere per iscritto ai seguenti quesiti sul foglio protocollo. Tempo della prova: 55 minuti. 1 Liceo Scientifico L. Cremona - Milano. Classe: TEST DI FISICA. Magnetismo. Docente: M. Saita Cognome: Nome: Dicembre 2015 ispondere per iscritto ai seguenti quesiti sul foglio protocollo. Tempo della prova:

Dettagli

Facoltà di Ingegneria Prova scritta di Fisica II - VO 15-Aprile-2003

Facoltà di Ingegneria Prova scritta di Fisica II - VO 15-Aprile-2003 Facoltà di Ingegneria Prova scritta di Fisica II - VO 5-Aprile-003 Esercizio n. Un campo magnetico B è perpendicolare al piano individuato da due fili paralleli, cilindrici e conduttori, distanti l uno

Dettagli

1. Il moto della sbarretta (OLIMPIADI della FISICA 1991)

1. Il moto della sbarretta (OLIMPIADI della FISICA 1991) 1. Il moto della sbarretta (OLIMPIADI della FISICA 1991) Obiettivi Determinare la f.e.m. indotta agli estremi di un conduttore rettilineo in moto in un campo magnetico Applicare il secondo principio della

Dettagli

LISTA PROVVISIORIA DELLE DOMANDE D'ESAME FISICA GENERALE 2 A/A

LISTA PROVVISIORIA DELLE DOMANDE D'ESAME FISICA GENERALE 2 A/A LISTA PROVVISIORIA DELLE DOMANDE D'ESAME FISICA GENERALE 2 A/A 2017-2018 Prof. P. Monaco e F. Longo 01) Cos'e' la quantizzazione della carica elettrica. 02) Cosa stabilisce il principio di conservazione

Dettagli

z σrdr Il campo E(z) è nullo per z = 0, è una funzione dispari di z, cresce con z e per z diventa, come da aspettarsi, E = σ

z σrdr Il campo E(z) è nullo per z = 0, è una funzione dispari di z, cresce con z e per z diventa, come da aspettarsi, E = σ Esame scritto di Elettromagnetismo del 4 Luglio 20 - a.a. 200-20 proff. S. Giagu, F. Lacava, F. Ricci Elettromagnetismo 0 o 2 crediti: esercizi,3,4 tempo 3 h e 30 min; Elettromagnetismo 5 crediti: esercizio

Dettagli

LA PRODUZIONE DI CORRENTE ELETTRICA ALTERNATA

LA PRODUZIONE DI CORRENTE ELETTRICA ALTERNATA Magnetismo LA PRODUZIONE DI CORRENTE ELETTRICA ALTERNATA Il magnetismo è la proprietà di alcuni corpi di attirare oggetti di natura ferrosa. I corpi che hanno questa proprietà sono detti magneti o calamite

Dettagli

FISICA (modulo 1) PROVA SCRITTA 21/02/2014

FISICA (modulo 1) PROVA SCRITTA 21/02/2014 ESERCIZI FISICA (modulo 1) PROVA SCRITTA 21/02/2014 E1. Due corpi di massa m 1 = 1000 Kg e m 2 = 1200 Kg collidono proveniendo da direzioni perpendicolari. L urto è perfettamente anelastico e i due corpi

Dettagli

Soluzioni della prova scritta di Fisica Generale

Soluzioni della prova scritta di Fisica Generale Scienze e Tecnologie dell Ambiente Soluzioni della prova scritta di Fisica Generale 9 Luglio 2010 Parte 1 Esercizio 1 Un astronauta di massa m=80 Kg atterra su un pianeta dove il suo peso vale P=200 N.

Dettagli

Compito di prova - risolti

Compito di prova - risolti Compito di prova - risolti A P B q A q P q B 1. La carica positiva mobile q P si trova tra le cariche positive fisse q A, q B dove AB = 1 m. Se q A = 2 C e all equilibrio AP = 0.333 m, la carica q B vale

Dettagli

L'intensità del campo magnetico nell'aria (o nel vuoto) H0 misurato in amperspire/m, può avere in alcuni casi espressioni particolarmente semplici:

L'intensità del campo magnetico nell'aria (o nel vuoto) H0 misurato in amperspire/m, può avere in alcuni casi espressioni particolarmente semplici: C A M P O M A G N E T I C O N E L L ' A R I A L'intensità del campo magnetico nell'aria (o nel vuoto) H0 misurato in amperspire/m, può avere in alcuni casi espressioni particolarmente semplici: 1] Intensità

Dettagli

FORZE MAGNETICHE SU CORRENTI ELETTRICHE

FORZE MAGNETICHE SU CORRENTI ELETTRICHE Fisica generale, a.a. 013/014 SRCTAZON D: FORZ MAGNTCH SU FORZ MAGNTCH SU CORRNT LTTRCH D.1. Una spira rettangolare di dimensioni a 10 cm e b 5 cm, percorsa da una corrente s 5 A, è collocata in prossimità

Dettagli

Nuova Forza. La forza Gravitazionale è attrattiva ed agisce su ogni MASSA La forza elettrica è attrattiva o repulsiva ed agisce sulle CARICHE

Nuova Forza. La forza Gravitazionale è attrattiva ed agisce su ogni MASSA La forza elettrica è attrattiva o repulsiva ed agisce sulle CARICHE Nuova Forza La forza Gravitazionale è attrattiva ed agisce su ogni MASSA La forza elettrica è attrattiva o repulsiva ed agisce sulle CARICHE Come Agisce? Può essere attrattiva Un metallo (la magnetite)

Dettagli

FISICA SPERIMENTALE II! Corso di laurea in Chimica (6CFU, 48 ORE)!

FISICA SPERIMENTALE II! Corso di laurea in Chimica (6CFU, 48 ORE)! FISICA SPERIMENTALE II Corso di laurea in Chimica (6CFU, 48 ORE) ì Docente: Claudio Melis, Ricercatore a tempo determinato presso il Dipartimento di Fisica Email: claudio.melis@dsf.unica.it Telefono Ufficio

Dettagli

L induzione elettromagnetica - Legge di Faraday-Lentz

L induzione elettromagnetica - Legge di Faraday-Lentz Ver. 1. del 7/1/9 L induzione elettromagnetica - Legge di Faraday-Lentz i osservano alcuni fatti sperimentali. 1 ) Consideriamo un filo metallico chiuso su se stesso (spira) tramite un misuratore di corrente

Dettagli

Induzione elettromagnetica

Induzione elettromagnetica Induzione elettromagnetica Una corrente elettrica produce un campo magnetico Un campo magnetico esercita una forza sui circuiti percorsi da corrente È possibile generare correnti per mezzo di campi magnetici?

Dettagli

DE MAGNETE. 1. Fino al 1820

DE MAGNETE. 1. Fino al 1820 DE MAGNETE 1. Fino al 1820 Che i magneti esistano lo sanno anche i sassi fin dai tempi dei greci. In particolare è assodato che: come accade per l elettricità, esistono anche due tipi di magnetismo; ciò

Dettagli

MOTO DI UNA PARTICELLA IN UN CAMPO ELETTRICO

MOTO DI UNA PARTICELLA IN UN CAMPO ELETTRICO MOTO DI UNA PARTICELLA IN UN CAMPO ELETTRICO Sappiamo che mettendo una carica positiva q chiamata carica di prova o carica esploratrice in un punto vicino all oggetto carico si manifesta un vettore campo

Dettagli

L ELETTROMAGNETISMO. Dr. Daniele Di Gioacchino Istituto Nazionale di Fisica Nucleare Laboratori Nazionali di Frascati

L ELETTROMAGNETISMO. Dr. Daniele Di Gioacchino Istituto Nazionale di Fisica Nucleare Laboratori Nazionali di Frascati forza elettrica di Coulomb Campo elettrico L ELETTROMAGNETISMO Dr. Daniele Di Gioacchino Istituto Nazionale di Fisica Nucleare Laboratori Nazionali di Frascati Campo magnetico Campo magnetico di un filo

Dettagli