ESERCIZI SULLE SUCCESSIONI NUMERICHE-SOLUZIONI

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "ESERCIZI SULLE SUCCESSIONI NUMERICHE-SOLUZIONI"

Transcript

1 ESERCIZI SULLE SUCCESSIONI NUMERICHE-SOLUZIONI Esrcizio ( (i Razioalizziamo: ( ( ( [ ( ( ] ( + ( [ ( + [( + ] ( ] + ( + ( ( + [( + ] ( ( + ( + Dividiamo umrator domiator pr 3, la frazio divta: ( + ( ( ( + + passado a it si otti (ii l [ ( + a l a l a + l ] a + ( a + Il primo trmi é sattamt l a, mtr il scodo td a zro, dato ch a, quidi l ( a + < l (l (iii +l + (l +l ( (l +l +

2 Il trmi ( (l +l td a zro prché < D altra part, studiado sparatamt la radic spot di : (l + l l Quidi (l +l + Quidi il it iizial é 0 (l +l l + 0 (l (l + l (l l 0 (iv + Qusto it molto simil al prcdt, c u 0 al posto di, ma i ralta il risultato molto divrso prch +, qullo ch quidi cota il rapporto tra la bas dll spozial, 0 oppur ch ivc la bas dl logaritmo atural a cui td la radic all spot Si procd com l it prcdt pr cui il trmi ( (l 0 +l mtr l altro trmi td a zro co lo stsso ordi di Ci troviamo di frot ad ua forma idtrmiata Poich la radic (l + l ha lo stsso adamto di l, com spigato ll srcizio prcdt, si puo riscrivr il it com: ( l 0 ( lg 0 0 l 0 l + ( l 0 0 l + l ultimo passaggio ti coto dl fatto ch l 0 > + + ( (v + ta ( + ta ta ta Si tuto coto di iti otvoli ( + a a s a 0, si (vi arcta( cos π π π 0 ( (vii + 3+l ( + 3 l 3 + (viii cot 3 + cos 3 si cot ( (ix Utilizzado il risultato dll srcizio prcdt si otti: ( 3 ( + ( l + cos si

3 ( cot (x risultato (xi risultato 0 (xii risultato (xiii risultato 0 (xiv risultato + (xv risultato: pr x Z la succssio é idticamt ugual ad, mtr pr tutti gli altri x rali td a 0 (xvi riscriviamo il it pr sfruttar i iti otvoli: si (l ( + si + (l + si + (l (xvii utilizziamo il prodotto otvol a 3 b 3 (a b(a + ab + b co a ( + 3 b 3 Quidi il it divta ( + ( (( ( (( Abbiamo ottuto u quozit di poliomi di grado al umrator 3 domiator, quidi il it é 0 al (xviii riscriviamo il it pr sfruttar i iti otvoli: ( + ( + + ( + ( + ( + + ( (xix vogliamo ricodurci ad ua forma dl tipo + a a co a ( +, poi usar il it otvol + a a Risolviamo quidi l quazio + a +, ch é vrificata s a + ( pr Quidi ( [( + + a ] a + a + 3

4 (xx riscriviamo il it com Usiamo i torma di carabiiri: (( ( (( + 3( Prtato tutta la succssio td a 3 (xxi riscriviamo il it com ( ( ( + (xxii usiamo il Torma di Carabiiri pr provar ch il it é D altra part si ha + 4 < ( + Quidi: > + ( + 0 Esrcizio Richiamiamo la dfiizio di it: L fiito: a L ε > 0 : a L < ε > L ifiito: a + M > 0 : a > M > (a + M > 0 : > M ( pr > > M 4M, risolvdo l quazio di scodo grado, troviamo ch la disuguagliaza é vrificata pr valori di stri all itrvallo dll radici, ch chiamrmo x x, quidi s > x (s x > x sicuramt la disuguagliaza é vrificata cosí la dfiizio di it (b l( + 0 ε > 0 : l( + < ε > 4

5 Tdo coto ch l( + > 0, qusta disuguagliaza é vrificata s + < ε > ε (c + ε > 0 : + < ε Tdo coto ch + >, si ha + ε < ε < + ( < l + ε > l ( + ε Esrcizio 3 Cosidriamo la succssio: x a ( ( + si la frazio td a (, pr cui il it é sicuramt idtrmiato s a Ifatti s a ± x (, s s a > x ± Ivc s a < il it é 0 Esrcizio 5 S la succssio a ammtt it, tutt l succssioi stratt dvoo ammttr lo stsso it, quidi u implicazio é ovvia D altra part, s a k a k covrgoo allo stsso it l, si avrá: a k l < ε >, a k l < ε > Quidi, s > max(,, risulta a l < ε, quidi a td a l Ossrvazio importat: i gral s du sottosuccssioi stratt da ua succssio data tdoo al mdsimo it l, o é affatto dtto ch la succssio di partza covrga ad l Pró, s l succssioi statt soo tali da saurir tutti i possibili idici aturali, com accad pr l succssioi dgli idici pari dispari, allora si puó cocludr ch la succssio di partza td allo stsso it dll du sottosuccssioi Esrcizio 6 Essdo mooto, l du succssioi a a sicuramt ammttoo it, fiito o ifiito Pr ipotsi (a a 0 a a l IR {, + }, quidi grazi all srcizio prcdt, a ammtt it d sso é ugual ad l 5

6 Esrcizio 7 Vogliamo trovar ua succssio a ch ammtt it, ma l du sottosuccssioi dgli idici pari dispari, pur ssdo mooto, quidi ammttdo it, o vrificao la propritá (a a 0 Basta scglir a, ssa ha it +, ma (a a + 6

Analisi Matematica I Soluzioni del tutorato 4

Analisi Matematica I Soluzioni del tutorato 4 Corso di laura i Fisica - Ao Accadmico 07/08 Aalisi Matmatica I Soluzioi dl tutorato 4 A cura di David Macra Esrcizio ( i) Domiio di dfiizio: La fuzio o è dfiita s è tal ch l argomto sotto radic sia gativo,

Dettagli

ESERCIZI SULLE SUCCESSIONI. a n := 2n + 3 3n 7. n n cos 2 n + 2. (3) Dimostrare, attraverso la definizione, che la successione

ESERCIZI SULLE SUCCESSIONI. a n := 2n + 3 3n 7. n n cos 2 n + 2. (3) Dimostrare, attraverso la definizione, che la successione ESERCIZI SULLE SUCCESSIONI VALENTINA CASARINO Esrcizi pr il corso di Aalisi Matmatica, Iggria Gstioal, dll Iovazio dl Prodotto, Mccaica Mccatroica, Uivrsità dgli studi di Padova) ) Vrificar, attravrso

Dettagli

Serie Numeriche e Convergenza Puntuale di Serie di Funzioni

Serie Numeriche e Convergenza Puntuale di Serie di Funzioni Sri umrich sri di fuzioi Sri Numrich Covrgza Putual di Sri di Fuzioi Suto- Il lavoro coti la risoluzio di alcui srcizi sullo studio dl carattr di sri umrich sulla covrgza putual di sri di fuzioi. Gli srcizi

Dettagli

Esercizi per il corso Matematica clea

Esercizi per il corso Matematica clea Esrcizi pr il corso Matmatica cla Dail Ritlli ao accadmico 008/009 Lzio : Succssioi Sri gomtrica Esrcizi svolti. Provar ch: + ) /. Provar ch: + ) + ) 0. Provar ch: + 4. Provar ch 5. Provar ch + ) + ) 4

Dettagli

Università di Camerino Corso di Laurea Fisica Indirizzo Tecnologie per l Innovazione Appunti di Calcolo Prof. Angelo Angeletti

Università di Camerino Corso di Laurea Fisica Indirizzo Tecnologie per l Innovazione Appunti di Calcolo Prof. Angelo Angeletti Uivrsità di Camrio Corso di Laura Fisica Idirizzo Tcologi pr l Iovazio Apputi di Calcolo Prof. Aglo Agltti Formula di Taylor Si ricordrà ch l quazio dlla tagt ad ua curva di quazio y f() i u puto è data

Dettagli

1 Studio di funzioni, sviluppi di Taylor e serie

1 Studio di funzioni, sviluppi di Taylor e serie Studio di fuzioi, sviluppi di Taylor sri. Esrcizi. Sia fx = x +. Dtrmiar l isim di dfiizio. Studiar il sgo. Calcolar i iti agli strmi dll isim di dfiizio. Dir s ci soo asitoti. Dtrmiar l isim di cotiuità

Dettagli

( ) ε > 0, δ 0. +, con 1. ) si può centrare in c prendendo δ = min { δ1, , δ > 0. I c. c R un punto di I e f una funzione definita in \{ }

( ) ε > 0, δ 0. +, con 1. ) si può centrare in c prendendo δ = min { δ1, , δ > 0. I c. c R un punto di I e f una funzione definita in \{ } Alcu cosidrazioi sulla dfiizio di limit Alcu cosidrazioi sui limiti di fuzioi Itori di u puto U itoro (complto) di u puto è u qualsiasi itrvallo aprto cui il puto apparti Esmpi: (,3) è u itoro di [,3)

Dettagli

Limiti di successioni - svolgimenti

Limiti di successioni - svolgimenti Limiti di succssioi - svolgimti Scrivrmo a b quado a b =. Calcoliamo qusto it, raccoglido il fattor al umrator al domiator. Si ha 2 + 2 4 = + 2 2 3! 4 3!. Iazitutto, ricordiamo ch Ioltr, si ha utilizzado

Dettagli

Prova scritta di Analisi Matematica 1 14/1/ (tutti) Determinare l area della porzione di piano delimitata dall asse delle x con

Prova scritta di Analisi Matematica 1 14/1/ (tutti) Determinare l area della porzione di piano delimitata dall asse delle x con Prova scritta di Aalisi Matmatica A 4//4 (tutti) Illustrado tutti i passaggi, disgar il grafico dlla fuzio l f ( ),, (tutti) Dtrmiar l ara dlla porzio di piao ditata dall ass dll co dal grafico dlla fuzio

Dettagli

c) Calcolare la probabilità P{N 120 = 36, N 180 = 48} = b) Calcolare la probabilità condizionata P{M 120 = 6 N 120 = 36} =

c) Calcolare la probabilità P{N 120 = 36, N 180 = 48} = b) Calcolare la probabilità condizionata P{M 120 = 6 N 120 = 36} = Laura Trial i Matmatica, Uivrsità La Sapiza Corso di Probabilità 2, A.A. 26/27 Prova scritta dl 26 Giugo 27 Soluzioi dgli srcizi proposti Esrcizio. Gli arrivi di mssaggi -mail ad u dato idirizzo di posta

Dettagli

Esercitazioni di Calcolo delle Probabilità (04/04/2012) Soluzioni

Esercitazioni di Calcolo delle Probabilità (04/04/2012) Soluzioni Esrcitazioi di Calcolo dll Probabilità (4/4/) Soluzioi Esrcizio. Si trovi il valor dlla costat pr cui f, (>,

Dettagli

ln( t + ) dt, calcolare i punti critici di F(x) e

ln( t + ) dt, calcolare i punti critici di F(x) e Prova scritta di Aalisi Matmatica I (VO) or 6/0/0 ) Dfiizio di fuzio cotiua i u puto classificazio di puti di discotiuità Utilizzado la dfiizio dir pr quali valori di k è cotiua i =0 la sgut fuzio l 0

Dettagli

Lezione 3. Omomorfismi di gruppi

Lezione 3. Omomorfismi di gruppi Lzio 3 Prrquisiti: Applicazioi tra isimi. Rlazioi di quivalza. Lzio. Omomorismi di gruppi I qusta lzio itroduciamo uo strumto util a corotar l struttur di gruppi distiti. Diizio 3. Siao (, (, gruppi. U'applicazio

Dettagli

ENUNCIATI DI ESAMI DI ANALISI MATEMATICA 1

ENUNCIATI DI ESAMI DI ANALISI MATEMATICA 1 ENUNCIATI DI ESAMI DI ANALISI MATEMATICA ENUNCIATI DI ESAMI DI ANALISI MATEMATICA Euciar dimostrar il torma di Lagrag Dir s è f ( ) applicabil alla fuzio ( ) ll itrvallo [,] motivado la risposta Euciar

Dettagli

03 FUNZIONI ELEMENTARI

03 FUNZIONI ELEMENTARI 03 FUNZIONI ELEMENTARI I qusto paragrafo dfiiamo l più usuali fuzioi di ua variabil, a partir dall quali, co l oprazioi algbrich la composizio di fuzioi, si ottrrao la maggior part dgli smpi ch icotrrmo.

Dettagli

ANALISI DI FOURIER. Segnali Tempo Discreti:

ANALISI DI FOURIER. Segnali Tempo Discreti: AALISI DI FOURIER Sgali Tmpo Discrti: - Trasformata Discrta di Fourir -Squza priodica - Taratura dgli assi frquziali - TDF di ua squza fiita - Campioamto i Frquza - Algoritmi fft: srcitazioi Matlab -Zro

Dettagli

se ne costruisca un altra s 1 L operazione che fa passare dalla prima successione alla seconda è detta serie e si indica con il

se ne costruisca un altra s 1 L operazione che fa passare dalla prima successione alla seconda è detta serie e si indica con il 07 SERIE NUMERICHE Dt l succssio,,...,,... s costruisc u ltr s, s,..., s,... tl ch: s... s... s... L oprzio ch f pssr dll prim succssio ll scod è dtt sri si idic co il simbolo...... k. k Gli k si dicoo

Dettagli

Successioni numeriche

Successioni numeriche 08//05 uccssioi umrich uccssioi umrich Dfiizio U succssio è u fuzio ch d ogi umro turl ssoci u umro rl 0 : 0 : Es. 08//05 uccssioi umrich Dfiizio Il it dll succssio ch ch covrg d ) si idic è il umro rl

Dettagli

x x e o 1 < x < e 3 ; log x DISEQUAZIONI ESPONENZIALI E LOGARITMICHE 21 + ; 2) ; 8) 9 ) 3logx - < 5 ; DISEQUAZIONI IRRAZIONALI:

x x e o 1 < x < e 3 ; log x DISEQUAZIONI ESPONENZIALI E LOGARITMICHE 21 + ; 2) ; 8) 9 ) 3logx - < 5 ; DISEQUAZIONI IRRAZIONALI: DISEQUAZIONI ESPONENZIALI E LOGARITMICHE ) 5 5 < ) > (8) (6) ) log( ) log( 6) 5. 5) < log ( ) 6) log < 7) < 8) 7 7 < 7 9 ) log - < 5 log RISULTATI: ) > - / ) < - o > ) / < o 5 5) / 6) < - o > 7)

Dettagli

e k Queste sono funzioni oscillanti, periodiche di periodo N/k.

e k Queste sono funzioni oscillanti, periodiche di periodo N/k. Vr.. ot pr Aalisi di Fourir di Squz co l ausilio dl Matlab Cosidriamo ua squza ifiita priodica di priodo, x[t] tal pr cui x[t+t]x[t]. Pr rapprstar tal squza si possoo utilizzar fuzioi complss dl tipo jπ

Dettagli

dell'intervallo in cui si hanno discontinuità di prima o terza specie. Supponiamo, per semplicità (ma b ed ivi continua b h lim c h b ] e si pone

dell'intervallo in cui si hanno discontinuità di prima o terza specie. Supponiamo, per semplicità (ma b ed ivi continua b h lim c h b ] e si pone INTEGRALI IMPROPRI L tori dll'itgrzio di u fuzio f cotiu i u itrvllo ciuso itto [ ] si può stdr sostitudo l'ipotsi di cotiuità i [ ] dll fuzio f co qull dll ittzz I tl cso si ffrot il prolm dll'itgrzio

Dettagli

Svolgimento di alcuni esercizi

Svolgimento di alcuni esercizi Svolgimnto di alcuni srcizi Si ha ch dal momnto ch / tnd a pr ch tnd a (la frazion formata da un numro, in qusto caso il numro, fratto una quantità ch tnd a ±, in qusto caso, tnd smpr a ) S facciamo tndr

Dettagli

INGEGNERIA E TECNOLOGIE DEI SISTEMI DI CONTROLLO Richiami su sistemi lineari discreti

INGEGNERIA E TECNOLOGIE DEI SISTEMI DI CONTROLLO Richiami su sistemi lineari discreti INGEGNERIA E ECNOLOGIE DEI SISEMI DI CONROLLO su sistmi liari discrti Prof. Carlo Rossi DEIS - Uivrsità di Bologa l: 5 29324 mail: crossi@dis.uibo.it Sistmi mpo-discrti I qusti sistmi i sgali hao com bas

Dettagli

Limite Inferiore per l Ordinamento. Algoritmi e Strutture Dati (Mod. A) Limite Inferiore per l Ordinamento. Limite Inferiore per l Ordinamento

Limite Inferiore per l Ordinamento. Algoritmi e Strutture Dati (Mod. A) Limite Inferiore per l Ordinamento. Limite Inferiore per l Ordinamento Limit Ifrior pr l Ordiamto Ma quato può ssr fficit, i pricipio, u algoritmo di ordiamto? Algoritmi Struttur Dati (Mod. A) Limit Ifrior pr l Ordiamto Qusta è ua dll domad più ambizios itrssati ma ach ua

Dettagli

Appendice 1. Matrici. A1.1 Definizioni e concetti preliminari

Appendice 1. Matrici. A1.1 Definizioni e concetti preliminari Appdic 1. Matrici I qusta Appdic richiamrmo brvmt alcui coctti fodamtali riguardati l matrici, ch sarao impigati durat il Corso. Essi riguardao sostazialmt la diagoalizzazio la dcomposizio a valori sigolari

Dettagli

ANALISI DI FOURIER. Segnali Tempo Discreti:

ANALISI DI FOURIER. Segnali Tempo Discreti: ANALISI DI FOURIER Sgali mpo Discrti: - Ci alla rasormata di Fourir di ua squza - Rlazio co la CF - Codizio di Nyquist - Etto dl trocamto dl Sgal sulla F Cosidriamo ua squza x[]: l sguito cosidrrmo la

Dettagli

PRECORSO DI MATEMATICA EQUAZIONI ESPONENZIALI

PRECORSO DI MATEMATICA EQUAZIONI ESPONENZIALI CORSO DI LAUREA IN INFORMATICA APPLICATA PRECORSO DI MATEMATICA ESERCIZI SULLE EQUAZIONI ESPONENZIALI Esrcizio 1: Risolvr la sgunt quazion x+ = x+1. Svolgimnto: Dividndo il primo il scondo mmbro pr x+1

Dettagli

La formula di Taylor

La formula di Taylor La rmula di Taylr R.Argilas!! K I qusta dispsa prstiam il calcl di iti utilizzad gli sviluppi di Taylr Mac Lauri. N riprcrrrm la tria rlativa all apprssimazi di ua uzi i quat qusta è artata i maira sddisact

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO

ESAME DI STATO DI LICEO SCIENTIFICO Sssio straordiaria 8 Lico di ordiamto ESAME DI STATO DI LICEO SCIENTIFICO Corso di ordiamto sssio straordiaria 8 Sssio straordiaria 8 Lico di ordiamto PROBLEMA Puto. Il passaggio pr A(-) comporta la codizio

Dettagli

LE DERIVATE. derivata di un monomio (1) D a x = a x = na x ESEMPI. derivata di un monomio con n = 1. (2) D a x. ESEMPI, D x =

LE DERIVATE. derivata di un monomio (1) D a x = a x = na x ESEMPI. derivata di un monomio con n = 1. (2) D a x. ESEMPI, D x = LE DERIVATE. GENERALITÀ Dfiizio.) La drivata è u oprator ch ad ua fuzio f associa u altra fuzio ch obbdisc all sguti rgol: () D a a a 0 0 0 D 6 D 0 D drivata di u moomio () D a a 0 0 drivata di u moomio

Dettagli

LE DERIVATE. derivata di un monomio (1) D a x = a x = na x ESEMPI. derivata di un monomio con n = 1. (2) D a x. ESEMPI, D x =

LE DERIVATE. derivata di un monomio (1) D a x = a x = na x ESEMPI. derivata di un monomio con n = 1. (2) D a x. ESEMPI, D x = LE DERIVATE. GENERALITÀ Dfiizio.) La drivata è u oprator ch ad ua fuzio f associa u altra fuzio ch obbdisc all sguti rgol: () D a a a 0 0 0 D 6 D 0 D drivata di u moomio () D a a 0 0 drivata di u moomio

Dettagli

Liceo scientifico comunicazione opzione sportiva

Liceo scientifico comunicazione opzione sportiva PRVA D ESAME SESSINE RDINARIA Lico scitifico comuicazio opzio sportiva Il cadidato risolva uo di du problmi rispoda a qusiti dl qustioario Durata massima dlla prova: 6 or È costito l uso dlla calcolatric

Dettagli

Una ED ordinaria è una equazione in cui l incognita è una funzione y = y(x)

Una ED ordinaria è una equazione in cui l incognita è una funzione y = y(x) EQUAZIONI DIFFERENZIALI ORDINARIE La stsura di qust disps vata il cotributo di mii carissimi amici Giulia 5 Matto Fracsco ch rigrazio Ua ED ordiaria è ua quazio i cui l icogita è ua fuzio () ch compar

Dettagli

2.4 Criteri di convergenza per le serie

2.4 Criteri di convergenza per le serie 2.4 Criteri di covergeza per le serie Come si è già acceato i precedeza, spesso è facile accertare la covergeza di ua serie seza cooscere la somma. Ciò è reso possibile da alcui comodi criteri che foriscoo

Dettagli

Risoluzione dei problemi

Risoluzione dei problemi Risoluzion di problmi a) f rapprsnta un fascio di funzioni omografich, al variar dl paramtro a in R, s si vrifica la condizion: a$ (- a) +! 0 " a!! S a!! il grafico rapprsnta iprboli quilatr di asintoti

Dettagli

LIMITI DI SUCCESSIONI

LIMITI DI SUCCESSIONI LIMITI DI SUCCESSIONI Formalmete, ua successioe di elemeti di u dato isieme A è u'applicazioe dall'isieme N dei umeri aturali i A: L'elemeto a della successioe è quidi l'immagie a = f) del umero secodo

Dettagli

PRIMI ESERCIZI SULLE FUNZIONI DERIVABILI. (1) Applicando la definizione di derivata, calcolare la derivata in x = 0 delle funzioni:

PRIMI ESERCIZI SULLE FUNZIONI DERIVABILI. (1) Applicando la definizione di derivata, calcolare la derivata in x = 0 delle funzioni: PRIMI ESERCIZI SULLE FUNZIONI DERIVABILI VALENTINA CASARINO Esrcizi pr il corso di Analisi Matmatica (Inggnria Gstional, dll Innovazion dl Prodotto, Mccanica Mccatronica, Univrsità dgli studi di Padova)

Dettagli

( a) 1 a + Es. Data la funzione:

( a) 1 a + Es. Data la funzione: Es. Dt l uzio: ' ' ( Esrcizi Complmtri. A( ( b. Dtrmir pr quli vlori di b l uzio mmtt u puto di mssimo d u puto di miimo pr quli vlori l uzio o mmtt tli puti.. Dtrmir i vlori di b i modo ch l uzio prsti

Dettagli

Risposta al gradino di un circuito RLC

Risposta al gradino di un circuito RLC Ripota al gradio di circito RL Si motra i fig. il circito i am. Fig. ircito RL ri da valtar pr tr divri valori di R. Idichiamo co Vi la tio di igro dl grator co V la tio di cita prlvata l codator. Alla

Dettagli

g ( x )dx e se ne dia l interpretazione geometrica.

g ( x )dx e se ne dia l interpretazione geometrica. ESAME DI STATO DI LICEO SCIENTIFICO Sssio Ordiaria 9 PIANO NAZIONALE INFORMATICA Problma Sia f la fuzio dfiita da Dov è u itro positivo....!! I. Si vrifichi ch la drivata di è:!. Si dica s la fuzio f ammtt

Dettagli

SERIE NUMERICHE Esercizi risolti. (log α) n, α > 0 c)

SERIE NUMERICHE Esercizi risolti. (log α) n, α > 0 c) SERIE NUMERICHE Esercizi risolti. Calcolare la somma delle segueti serie telescopiche: a) b). Verificare utilizzado la codizioe ecessaria per la covergeza) che le segueti serie o covergoo: a) c) ) log

Dettagli

Capitolo 11 Regressione con variabile dipendente binaria

Capitolo 11 Regressione con variabile dipendente binaria Capitolo Rgrssio co variabil dipdt biaria.. (a) La statistica t pr il cofficit di Expric è 0,03/0,009 3,44, sigificativa al livllo dll %. (b) z 0,72 0,030,022; (,022) 0,847 Matthw (c) z 0,72 0,03 0 0,72;

Dettagli

SIMULAZIONE DELLA PROVA DI MATEMATICA DELL ESAME DI STATO

SIMULAZIONE DELLA PROVA DI MATEMATICA DELL ESAME DI STATO ANNO SCOLASTICO 00 - SIMULAZIONE DELLA PROVA DI MATEMATICA DELL ESAME DI STATO INDIRIZZO: SCIENTIFICO CORSO SPERIMENTALE RISOLUZIONI PROBLEMA Il domiio dlla fuzio l s f ( ) a s D 0; è l isim [ ] > 0 0

Dettagli

Esercizi sui limiti di successioni

Esercizi sui limiti di successioni AM0 - AA 03/4 ALFONSO SORRENTINO Esercizi sui iti di successioi Esercizio svolto a) Usado la defiizioe di ite, dimostare che: + 3 si π cos e ) e b) 0 Soluzioe Comiciamo da a) Vogliamo dimostrare che: ε

Dettagli

lim x 3 lim Servendosi della definizione, verifica l esattezza dei limiti seguenti Esercizio no.1 Esercizio no.2 Esercizio no.3 Esercizio no.

lim x 3 lim Servendosi della definizione, verifica l esattezza dei limiti seguenti Esercizio no.1 Esercizio no.2 Esercizio no.3 Esercizio no. Edutcnica.it Dfinizion di it Srvndosi dlla dfinizion, vrifica l sattzza di iti sgunti Esrcizio no. Soluzion a pag. ( ) Esrcizio no. Soluzion a pag. Esrcizio no. Soluzion a pag. ( ) Esrcizio no. Soluzion

Dettagli

SISTEMI DINAMICI DEL SECONDO ORDINE

SISTEMI DINAMICI DEL SECONDO ORDINE SISTEMI DINAMICI DEL SECONDO ORDINE I sistmi diamici dl scodo ordi soo sistmi diamici SISO rapprstati da quazioi diffrziali liari a cofficiti costati di ordi : a d y(t dy(t d x(t dx(t + a + ay(t b + b

Dettagli

Modello 2/B/SG UNEP. Registro delle spese prenotate a debito. (articolo 161, lettera b), DPR 30 maggio 2002, n. 115)

Modello 2/B/SG UNEP. Registro delle spese prenotate a debito. (articolo 161, lettera b), DPR 30 maggio 2002, n. 115) Modello 2/B/SG UNEP Registro delle spese prenotate a debito (articolo 161, lettera b), DPR 30 maggio 2002, n. 115) 1 NOTE ESPLICATIVE SUL REGISTRO DELLE SPESE PRENOTATE A DEBITO DA PORRE IN USO PRESSO

Dettagli

Esercizi sulla Geometria Analitica

Esercizi sulla Geometria Analitica Esrcizi sulla Gomtria Analitica Esrcizio Siano dat l rtt di quazion x + y + 4 0 x + y 0 Dir s ciascuna dll sgunti affrmazioni è vra o falsa: a) l rtt sono paralll b) l du rtt si intrscano nl punto (, 5

Dettagli

0.1. CIRCONFERENZA 1. La 0.1.1, espressa mediante la formula per la distanza tra due punti, diviene:

0.1. CIRCONFERENZA 1. La 0.1.1, espressa mediante la formula per la distanza tra due punti, diviene: 0.1. CIRCONFERENZA 1 0.1 Circonfrnza Considriamo una circonfrnza di cntro P 0 (x 0, y 0 ) raggio r, cioè il luogo di punti dl piano P (x, y) pr i quali si vrifica la rlazion: 0.1.1. P 0 P = r. La 0.1.1,

Dettagli

INSERTO SPECIALE IN QUESTO NUMERO

INSERTO SPECIALE IN QUESTO NUMERO INSERTO SPECIALE IN QUESTO NUMERO Proponiamo all attenzione dei nostri lettori la sintesi del manuale Cannabis e danni alla salute, pubblicazione scientifica prodotta dal Dipartimento per le Politiche

Dettagli

LEZIONE 17. Esercizio Trovare la soluzione delle seguenti equazioni differenziali di Bernoulli, ciascuna con condizione iniziale y(0) = 2.

LEZIONE 17. Esercizio Trovare la soluzione delle seguenti equazioni differenziali di Bernoulli, ciascuna con condizione iniziale y(0) = 2. 7 LEZIOE 7 Esrcizio 7 Trovar la soluzion dll sgunti quazioni diffrnziali di Brnoulli, ciascuna con condizion inizial y) = La prima quazion è y x) =yx) y x) Si può dividr pr il trmin di grado più alto in

Dettagli

( ) ( ) exp 2 X. m m CV m CV. Complementi di Idrologia Appello del 1 Febbraio Problema n 1 (8 punti)

( ) ( ) exp 2 X. m m CV m CV. Complementi di Idrologia Appello del 1 Febbraio Problema n 1 (8 punti) Colti di Idrologia Allo dl Fbbraio 0 Probla (8 uti. Si cosidri la fuzio =l(. La variabil è distribuita scodo ua oral N(,. Qual è la distribuzio di il suo doiio di dfiizio?. Posto ch = l + l = ( l, drivar

Dettagli

Analisi Matematica I Soluzioni tutorato 8

Analisi Matematica I Soluzioni tutorato 8 Corso di laura in Fisica - Anno Accadmico 7/8 Analisi Matmatica I Soluzioni tutorato 8 A cura di David Macra Esrcizio (i) abbiamo ch R( i) I( i), quindi inoltr,dividndo pr il modulo i (R( i)) + (I( i))

Dettagli

ϕ (non necessariamente in numero finito), e in

ϕ (non necessariamente in numero finito), e in Spazi di uzioi ll sciz gograich, i particolar i godsia, vgoo studiat dll gradzz isich uzioi di puto sulla suprici trrstr, ad smpio il campo dlla gravità o l odulazio dl goid Qust uzioi soo i lia di pricipio

Dettagli

spettroscopie ottiche

spettroscopie ottiche spttroscopi ottich Itrazio dl campo lttrico co il momto di dipolo lttrico molcolar assa dgli lttroi molto più piccola dlla massa di ucl i sparazio di moti uclari da qulli lttroici spttroscopi rotazioali

Dettagli

Y557 - ESAME DI STATO DI LICEO SCIENTIFICO

Y557 - ESAME DI STATO DI LICEO SCIENTIFICO Y557 - ESAME DI STATO DI LICEO SCIENTIFICO PIANO NAZIONALE DI INFORMATICA CORSO SPERIMENTALE Tma di: MATEMATICA (Sssion suppltiva 00) QUESTIONARIO. Da un urna contnnt 90 pallin numrat s n straggono quattro

Dettagli

CONOSCENZE. 1. La derivata di una funzione y = f (x)

CONOSCENZE. 1. La derivata di una funzione y = f (x) ESAME D STATO ESEMP D QUEST D MATEMATCA PER LA TERZA PROVA CONOSCENZE. La drivata di una funzion y f (), in un punto intrno al suo dominio, : il it, s sist d è finito, dl rapporto incrmntal pr h, f ( h)

Dettagli

Esercizi sull estremo superiore ed inferiore

Esercizi sull estremo superiore ed inferiore AM0 - A.A. 03/4 ALFONSO SORRENTINO Esercizi sull estremo superiore ed iferiore Esercizio svolto. Dire se i segueti isiemi soo limitati iferiormete o superiormete ed, i caso affermativo, trovare l estremo

Dettagli

Soluzioni. Capitolo 2 (, 0 3] [2.1] A B = {1, 3, 4, 6, 7, 8}, A B = {4, 7}, A\B = {1, 3, 6}, B\A = {8}.

Soluzioni. Capitolo 2 (, 0 3] [2.1] A B = {1, 3, 4, 6, 7, 8}, A B = {4, 7}, A\B = {1, 3, 6}, B\A = {8}. Soluzioni Capitolo [.] A B = {,,,, 7, 8}, A B = {, 7}, A\B = {,, }, B\A = {8}. [.] I) [, 0] V) VI) V [, 0] (, 0) V IX) [, 00) X) ( [, ],(, 00) (, 00) (, 0 + ) (, 0 ], ), (, 0 + ) [.] B\A = {} {b = n +,

Dettagli

DIRITTO CIVILE DIRITTO PROCESSUALE CIVILE

DIRITTO CIVILE DIRITTO PROCESSUALE CIVILE SOMMARIO DIRITTO CIVILE I. Le fonti del diritto. 3 II. L attività giuridica. 8 III. I soggetti del diritto. 18 IV. I diritti assoluti. 40 V. Obbligazioni e contratti. 60 VI. La famiglia e le unioni civili.

Dettagli

Definizione e proprietà dei numeri complessi

Definizione e proprietà dei numeri complessi umr complss Dfo proprtà d umr complss Rapprstao gomtrca d umr complss Espoal d u umro complsso Cougao d u umro complsso Radc -sm dll utà Dfo proprtà d umr complss U umro complsso é ua coppa ordata d umr

Dettagli

PARTE I DELLA CONSULENZA TECNICA E DEL CONSULENTE TECNICO NEL PROCESSO CIVILE E PREVIDENZIALE IN PARTICOLARE

PARTE I DELLA CONSULENZA TECNICA E DEL CONSULENTE TECNICO NEL PROCESSO CIVILE E PREVIDENZIALE IN PARTICOLARE IX Presentazione di P. Ricci.... VII PARTE I DELLA CONSULENZA TECNICA E DEL CONSULENTE TECNICO NEL PROCESSO CIVILE E PREVIDENZIALE IN PARTICOLARE Sezione 1 DELLA CONSULENZA TECNICA D UFFICIO E DEL CONSULENTE

Dettagli

Es. Data la funzione:

Es. Data la funzione: Es. D l uzio: Esrcizi Complmri. A b. Drmir pr quli vlori di b l uzio mm u puo di mssimo d u puo di miimo pr quli vlori l uzio o mm li pui.. Drmir i vlori di b i modo ch l uzio prsi u mssimo rlivo co ordi

Dettagli

Prova scritta di Algebra 23 settembre 2016

Prova scritta di Algebra 23 settembre 2016 Prova scritta di Algbra 23 sttmbr 2016 1. Si considri la sgunt applicazion: { Z21 Z ϕ : 3 Z 7 [x] 21 ([2x] 3, [x] 7 ) a) Vrificar ch ϕ è bn dfinita. b) Dir s ([1] 3, [5] 7 ) Imϕ in tal caso trovarn la

Dettagli

AM110 - ESERCITAZIONI V - VI. Esercizio svolto 1. Dimostrare che ogni insieme finito ha un massimo ed un minimo.

AM110 - ESERCITAZIONI V - VI. Esercizio svolto 1. Dimostrare che ogni insieme finito ha un massimo ed un minimo. AM110 - ESERCITAZIONI V - VI 16-18 OTTOBRE 2012 Esercizio svolto 1. Dimostrare che ogi isieme fiito ha u massimo ed u miimo. Sia A = {a 1,..., a } R. Dimostriamo che A ha u massimo si procede i maiera

Dettagli

SUCCESSIONI IN R esercizi. R. Argiolas. lim = n

SUCCESSIONI IN R esercizi. R. Argiolas. lim = n SUCCESSIONI IN R srcizi R. Argiols L? Qust piccol rccolt di srcizi sull succssioi l cmpo di rli è rivolt tutti gli studti dl corso di lisi mtmtic I, m è prcisr fi d or ch possdr svolgr gli srcizi di qust

Dettagli

I LIMITI DI FUNZIONI - CALCOLO

I LIMITI DI FUNZIONI - CALCOLO Autor: Erico Mfucci - // I LIMITI DI FUNZIONI - CALCOLO Dopo vr studito l tori di iti, dobbimo dsso vdr com si clcolo. Storicmt il clcolo di iti vi smplificto d u procsso ch prd il om di ritmtizzzio dll

Dettagli

SOLLECITAZIONI COMPOSTE

SOLLECITAZIONI COMPOSTE Sussidi didattici pr il corso di COSTRUZIOI EDILI Prof. Ig. Fracsco Zaghì SOLLECITZIOI COPOSTE GGIORETO 14/10/011 Corso di COSTRUZIOI EDILI Prof. Ig. Fracsco Zaghì FLESSIOE DEVIT Si ha flssio dviata quado

Dettagli

ANALISI 2 ESERCITAZIONE DEL 06/12/2010 PUNTI CRITICI

ANALISI 2 ESERCITAZIONE DEL 06/12/2010 PUNTI CRITICI ANALISI ESERCITAZIONE DEL 06//00 PUNTI CRITICI Un punto critico è un punto in cui la funzion è diffrnziabil il piano tangnt al grafico è orizzontal Riconosciamo qusti punti prché il gradint è il vttor

Dettagli

Diodo: V D > 0 RCS. p n (x) p n0. x n. Figura 1

Diodo: V D > 0 RCS. p n (x) p n0. x n. Figura 1 CORRENI NE IOO Pr il calcolo dlla corrt l diodo i rsza di ua tsio di olarizzazio stra facciamo l sguti iotsi smlificativ: 1. i cotatti mtallo-smicoduttor co l zo d soo di tio ohmico, ovvrosia ad ssi è

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO Sessione Ordinaria 2007 PIANO NAZIONALE INFORMATICA. Problema 1

ESAME DI STATO DI LICEO SCIENTIFICO Sessione Ordinaria 2007 PIANO NAZIONALE INFORMATICA. Problema 1 ESAME DI STATO DI LICEO SCIENTIFICO Sssio Ordiaria 7 PIANO NAZIONALE INFORMATICA Problma Puo Pr sudiar la moooia dlla fuzio I g( ) g ( ) a la a la l a (a a ). Essdo, pr iposi, a >, occorr disigur i sgui

Dettagli

ANALISI MATEMATICA PROVA SCRITTA. Libri, appunti e calcolatrici non ammessi

ANALISI MATEMATICA PROVA SCRITTA. Libri, appunti e calcolatrici non ammessi Nom, Cognom... Matricola... ANALISI MATMATICA PROA SCRITTA CORSO DI LAURA IN INGGNRIA MCCANICA A.A. 7/8 Libri, appunti calcolatrici non ammssi Prima part - Lo studnt scriva solo la risposta, dirttamnt

Dettagli

Università degli Studi di Bergamo Facoltà di Ingegneria. Corso di Elettrotecnica Scritto del 15 giugno 2001

Università degli Studi di Bergamo Facoltà di Ingegneria. Corso di Elettrotecnica Scritto del 15 giugno 2001 Univrsità dgli Studi di Brgamo Facoltà di nggnria Corso di lttrotcnica Scritto dl 5 giugno Soluzion a cura di: Balada Marco srcizio. La prima cosa da far è analizzar il circuito trovar l possibili smplificazioni,

Dettagli

2n + 1 = + [Verif.] n + 2 n + 2

2n + 1 = + [Verif.] n + 2 n + 2 Esrcizi.. Matmatica dl discrto Dir s i sgunti limiti sono vrificati: n. lim n [Vrif.]. lim n n [Vrif.] n. lim [Vrif.]. lim n ( ) n n [Non vrif.]. lim ( ) n n [Vrif.]. lim n n n [Non vrif.] n n. lim [Vrif.]

Dettagli

Registro delle attività Analisi 1 _ elettronici _ Lorenzetti Elisabetta _ settembre - dicembre

Registro delle attività Analisi 1 _ elettronici _ Lorenzetti Elisabetta _ settembre - dicembre Rgistro dll attività Aalisi _ lttroici _ Lorztti Elisabtta _ sttmbr - dicmbr 5 Corso di Aalisi Doct Prof. ssa Elisabtta Lorztti Part torica applicativa. Gli isimi. Rlazioi tra gli isimi. L'isim vuoto l'isim

Dettagli

SOMMARIO TEORIA DIRITTO AMMINISTRATIVO PARTE I LE FONTI

SOMMARIO TEORIA DIRITTO AMMINISTRATIVO PARTE I LE FONTI SOMMARIO TEORIA DIRITTO AMMINISTRATIVO PARTE I LE FONTI CAPITOLO I LE FONTI DEL DIRITTO AMMINISTRATIVO 5 CAPITOLO II LE FONTI DELL ORDINAMENTO NAZIONALE 9 CAPITOLO III LA FUNZIONE AMMINISTRATIVA 15 PARTE

Dettagli

Lemma 2. Se U V é un sottospazio vettoriale di V allora 0 U.

Lemma 2. Se U V é un sottospazio vettoriale di V allora 0 U. APPUNTI d ESERCIZI PER CASA di GEOMETRIA pr il Corso di Laura in Chimica, Facoltà di Scinz MM.FF.NN., UNICAL (Dott.ssa Galati C.) Rnd, 3 April 2 Sottospazi di uno spazio vttorial, sistmi di gnratori, basi

Dettagli

Seminario. tenuto dalla prof. Mariangela Usai. II parte. (ultimo aggiornamento 14/04/2016)

Seminario. tenuto dalla prof. Mariangela Usai. II parte. (ultimo aggiornamento 14/04/2016) Smiario Aalii di traitori circuitali co il imulator Ppic. tuto dalla prof. Mariagla Uai Facoltà di Iggria dll Uivrità dgli Studi di Cagliari II part Studio di traitori co il mtodo dll traformat di Laplac

Dettagli

Illustrare il teorema di de L Hôpital e applicarlo per dimostrare che: 4

Illustrare il teorema di de L Hôpital e applicarlo per dimostrare che: 4 Matatica pr la uova aturità scitifica A. Brardo M. Pdo 99 Qustioario Qusito Illustrar il tora di d L Hôpital applicarlo pr diostrar ch: 4 li = a +. Tora di D L Hôpital S l fuzioi f() g() soo drivabili

Dettagli

Esercizi di Analisi Matematica 1 utili per la preparazione all esame scritto. File con soluzioni.

Esercizi di Analisi Matematica 1 utili per la preparazione all esame scritto. File con soluzioni. Esercizi di Aalisi Matematica. Paola Gervasio Es. Esercizi di Aalisi Matematica utili per la preparazioe all esame scritto. File co soluzioi. a.5.5.5.5 b 4 3.5 3.5.5.5 5 5 Figura 5 5.5 a 3 b 4 5.5 6 5

Dettagli

Numeri complessi - svolgimento degli esercizi

Numeri complessi - svolgimento degli esercizi Numri complssi - svolgimnto dgli srcizi ) Qusto srcizio richid di calcolar la potnza n-sima (n 45) di un numro complsso. Scriviamo z nlla forma sponnzial z ρ iθ dov ) ( ) ρ ( + θ π 6 dato ch sin θ cos

Dettagli

Soluzioni degli esercizi del corso di Analisi Matematica I

Soluzioni degli esercizi del corso di Analisi Matematica I Soluzioi degli esercizi del corso di Aalisi Matematica I Prof. Pierpaolo Natalii Roberta Biachii & Marco Pezzulla ovembre 015 FOGLIO 1 1. Determiare il domiio e il sego della fuzioe ( ) f(x) = arccos x

Dettagli

Quesito 8. x + 2x 1 (ln (8 + 2 x ) ln(4 + 2 x )) è uguale a: A 2 B 1 4. Quesito 9.

Quesito 8. x + 2x 1 (ln (8 + 2 x ) ln(4 + 2 x )) è uguale a: A 2 B 1 4. Quesito 9. Qusito 8. orso di ln 8 + ) ln + )) Analisi Matmatica I inggnria, lttr: KAA-MAZ docnt:. allgari Prova simulata n. A.A. 8- Ottobr 8. Introduzion Qui di sguito ho riportato tsti, svolgimnti dlla simulazion

Dettagli

lim β α e detto infinitesimo una qualsiasi quantita tendente a zero quando una dati due infinitesimi α e β non esiste

lim β α e detto infinitesimo una qualsiasi quantita tendente a zero quando una dati due infinitesimi α e β non esiste Infinitsimi dtto infinitsimo una qualsiasi quantita tndnt a zro quando una opportuna variabil tnd ad assumr un dtrminato valor dati du infinitsimi α β α β non sono paragonabili tra loro s il lim β α non

Dettagli

Rap a p p o p r o to o I n I c n r c em e e m n e t n al a e Def. rapporto incrementale nel punto x incremento h Nota:

Rap a p p o p r o to o I n I c n r c em e e m n e t n al a e Def. rapporto incrementale nel punto x incremento h Nota: Rpporto Icrmtl α Δ Δy y m tα y. Il rpporto icrmtl dll uzio l puto rltivo d u icrmto è il coicit olr dll sct l rico dll uzio i puti di sciss d Not: Nll smpio rico è riportto > m, i rl, può ssr c tivo. rivt

Dettagli

Capitolo 2 - DFT (parte I)

Capitolo 2 - DFT (parte I) Apputi di Elaborazio umrica di sgali apitolo - DF (part I DF (Discrt im Fourir rasorm... DF (Discrt Fourir rasorm...5 Itroduzio...5 Formul di trasormazio atitrasormazio...9 Vriica dlla ormula di atitrasormazio...

Dettagli

Studio di funzione. R.Argiolas

Studio di funzione. R.Argiolas Studio di unzion R.Argiolas Introduzion Prsntiamo lo studio dl graico di alcun unzioni svolt durant l srcitazioni dl corso di analisi matmatica I assgnat nll prov scritt. Ringrazio anticipatamnt tutti

Dettagli

Esercizi di Analisi Matematica A utili per la preparazione all esame scritto. File con soluzioni.

Esercizi di Analisi Matematica A utili per la preparazione all esame scritto. File con soluzioni. Esercizi di Aalisi Matematica A: soluzioi Es. Esercizi di Aalisi Matematica A utili per la preparazioe all esame scritto. File co soluzioi. PSfrag replacemets a.5.5.5.5 PSfrag replacemets 5 5 a b 4 3.5

Dettagli

Università di Pisa - Corso di Laurea in Informatica Analisi Matematica A. Pisa, 12 febbraio 2018

Università di Pisa - Corso di Laurea in Informatica Analisi Matematica A. Pisa, 12 febbraio 2018 Univrsità di Pisa - Corso di Laura in Informatica Analisi Matmatica A Pisa, fbbraio 08 omanda A C log + 0 + = C omanda La funzion f : 0, + R dfinita da f = + A ha minimo ma non ha massimo è itata ma non

Dettagli

= l. x 0. In realtà può aversi una casistica più amplia potendo sia x che f ( x) tendere ad un elemento dell insieme

= l. x 0. In realtà può aversi una casistica più amplia potendo sia x che f ( x) tendere ad un elemento dell insieme LIMITI DI FUNZINI. CNCETT DI LIMITE Esula dallo scopo di qusto libro la trattazion dlla toria sui iti. Tuttavia, pnsando di far cosa gradita allo studnt, ch dv possdr qusta nozion com background, ritniamo

Dettagli

Distribuzione di probabilità di di Poisson

Distribuzione di probabilità di di Poisson Disribuzio di probabilià di di oisso Diizio i i La disribuzio di oisso dscriv procssi casuali rari co mdia diia. Si cosidri u vo casual ch si rip u cro umro di vol, o issao a priori, co ua rquza assolua

Dettagli

Svolgimento degli esercizi del Capitolo 4

Svolgimento degli esercizi del Capitolo 4 4. Michiel Bertsch, Roberta Dal Passo, Lorezo Giacomelli Aalisi Matematica 2 a edizioe Svolgimeto degli esercizi del Capitolo 4 Il limite segue dal teorema del cofroto: e / 0 per. 4.2 0

Dettagli

SISTEMI DINAMICI DEL SECONDO ORDINE

SISTEMI DINAMICI DEL SECONDO ORDINE SISTEMI DINAMICI DEL SECONDO ORDINE I sistmi diamici dl scodo ordi soo sistmi diamici SISO rarstati da quazioi diffrziali liari a cofficiti costati di ordi : d y(t dy(t d x(t dx(t a + a + ay(t b + b +

Dettagli

Teoria. Tale retta limite non sempre esiste. Si veda il grafico sottostante. Matematica 1

Teoria. Tale retta limite non sempre esiste. Si veda il grafico sottostante. Matematica  1 LA ERVATA UNA FUNZONE Toria l problma dlla tangnt Uno di problmi classici c portano al conctto di drivata è qullo dlla dtrminazion dlla rtta tangnt a una curva in un punto. La tangnt ad una circonfrnza

Dettagli

Analisi Matematica I modulo Soluzioni prova scritta preliminare n. 1

Analisi Matematica I modulo Soluzioni prova scritta preliminare n. 1 Aalisi Matematica I modulo Soluzioi prova scritta prelimiare 1 Corso di laurea i Matematica, aa 004-005 9 ovembre 004 1 (a) Calcolare il seguete limite: **A***** Soluzioe Si ha ( + log ) ( + log ) lim

Dettagli

x = QAR ˆ calcola il seguente limite: lim 0 x 180 con x 90 OA r = = cos x cos x lim = lim = lim = 0 2 r sen 2 AP = 2sen sen 2 r sen 2 sen x x

x = QAR ˆ calcola il seguente limite: lim 0 x 180 con x 90 OA r = = cos x cos x lim = lim = lim = 0 2 r sen 2 AP = 2sen sen 2 r sen 2 sen x x Problma Sia P un punto di un arco AB di una smicirconfrnza di cntro O raggio r. Sia T il punto in cui la smirtta OP incontra la tangnt in A all arco. Porr AOT ˆ PT AP P A AT P A AT AOT ˆ Limitazioni gomtrich

Dettagli

Studio dei transitori con il metodo delle trasformate di Laplace

Studio dei transitori con il metodo delle trasformate di Laplace Studio di traitori co il mtodo dll traformat di Laplac Apputi a cura dll Igg. Baoccu Gia Piro Marra Luca Tutor dl coro di ELETTROTECNICA pr mccaici chimici A. A 3/4 4/5 Facoltà di Iggria dll Uivrità dgli

Dettagli

Esercizi 3 Geometria lineare nello spazio

Esercizi 3 Geometria lineare nello spazio Esrcizi 3 Gomtria linar nllo spazio Ngli srcizi ch sguono si suppon fissato un sistma di rifrimnto (SdR) nllo spazio. S la bas (dllo spazio vttorial di vttori libri) di tal SdR è indicata con (i, j, k),

Dettagli

Università di Cassino Corso di Statistica 1 Esercitazione del 21/01/2008 Dott. Alfonso Piscitelli. Esercizio 1

Università di Cassino Corso di Statistica 1 Esercitazione del 21/01/2008 Dott. Alfonso Piscitelli. Esercizio 1 Uivrsità i Cassio Corso i Statistica Esrcitazio l /0/008 Dott. Alfoso Piscitlli Esrcizio Il sgut ata st riporta la rilvazio i alcui carattri su u collttivo i 0 soggtti. Soggtto Età Rsiza Rito (Migliaia

Dettagli