Rap a p p o p r o to o I n I c n r c em e e m n e t n al a e Def. rapporto incrementale nel punto x incremento h Nota:

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Rap a p p o p r o to o I n I c n r c em e e m n e t n al a e Def. rapporto incrementale nel punto x incremento h Nota:"

Transcript

1 Rpporto Icrmtl α Δ Δy y m tα y. Il rpporto icrmtl dll uzio l puto rltivo d u icrmto è il coicit olr dll sct l rico dll uzio i puti di sciss d Not: Nll smpio rico è riportto > m, i rl, può ssr c tivo.

2 rivt rivt. rivt dll uzio i u puto itro dll isim di diizio è: : : : d d S sist FINITO. L uzio è dtt drivbil l puto. Nl cso i cui il prdtto it si iiito si dirà c l drivt è iiit i. Es. Clcolr l drivt di i d i u rico puto.

3 rivt i u puto uzio drivt Pr l drivt i u puto si ps issto il puto p.s o, si costruisc il rpporto icrmtl si ttu l oprzio di it qudo l icrmto td zro. Ossrvimo c il it è ttuto sull icrmto o sul puto i cui clcolimo l drivt, il qul rim isso o dipdt dll vribil su cui è ttuto il it. Il vlor dl it quidi dll drivt o dipd, ovvimt, é d com cimimo l vribil c rpprst l icrmto o Δ é dipd,com risultto,dll icrmto il risultto dl it o coti cioè é é Δ. Possimo llor crr u rlzio tr il puto prcdtmt issto i cui clcolimo l drivt dll uzio d il vlor stsso dl it cioè dll drivt S idicimo ricmt tl puto co, vrmo l rlzio: Qust rlzio è, i rl, u uzio cui si d il om di drivt prim dll uzio si idic co. :

4 Siiicto Gomtrico α Δ Δy : L drivt dll uzio l puto rpprst il coicit olr dll rtt tt l rico dll uzio l puto di sciss. Equzio rtt tt l rico dll uzio l puto di sciss. Fscio di rtt pr, y m Si po m y 4

5 Siiicto Gomtrico Es. Scrivr l quzio dll rtt tt l rico dll uzio ^ i y y y y 5

6 Siiicto Gomtrico :iprbol Es. Mostrr c l r dl triolo ottuto dll rtt tt d u iprbol quiltr di puti di itrszio dll tt co li ssi crtsii smpr r uul. y y P, y Q, Q P Not: curv simmtric risptto ll bisttric I-III 6

7 lo c rivt Fuzioi Elmtri l lo s cos cos s l rcs rccos rct t t 7

8 Rol di rivzio Rol di rivzio [ ] SOMMA PROOTTO [ ] I prticolr s c [ ] c c Proprità di dditività Proprità di omoità 8 Proprità di lirità dll drivt NOTA. rivzio di poliomi: rzi ll proprità di lirità è u drivzio trmi trmi QUOZIENTE [ ] Proprità di dditività Proprità di omoità

9 Co imostrtivo rivt Somm di Fuzioi Co imostrtivo rivt Somm di Fuzioi [ ] Torm Proprità di dditività im. ] [ 9 [ ]

10 Co imostrtivo rivt Prodotto di Fuzioi Co imostrtivo rivt Prodotto di Fuzioi Torm im. [ ] Pssdo l it si otti l ssrto.

11 Co imostrtivo rivt Rpporto di Fuzioi Co imostrtivo rivt Rpporto di Fuzioi Torm im. [ ] Pssdo l it si otti l ssrto.

12 Appliczioi Appliczioi rivzio di poliomi 4 6 rivzio di rdici [ ] [ ] PROOTTO [ ] QUOZIENTE [ ] cos cos cos cos ] [t s s s [ ] cos t cos cos s PROOTTO ] [ ] [ ] [

13 rivzio uzio modulo Appliczioi s > [ ] [ ] s < [ ] o è drivbil i. L uzio sium [s] così diit: s : N rpprst l drivt pr > pr < [ ] s s pr pr

14 Clcolo rivt Fuzioi Elmtri Clcolo rivt Fuzioi Elmtri c c c 4

15 Clcolo rivt Fuzioi Elmtri Clcolo rivt Fuzioi Elmtri lo lo lo lo lo l si si si cos cos si si si cos si cos cos si 5

16 cos Clcolo rivt Fuzioi Elmtri cos cos cos cos si si cos cos cos si si si 6

17 Espozil Espozil y Proprità: y y b b Costruzio sri spozil...!...! y 7...!...! y...!...!

18 rivt Fuzio Compost Torm Si l uzio compost di d. Si drivbil i drivbil i llor è drivbil i vl: [ ] [ ] o [ ] [ ] [ ] l [ l ] l l l [ ] l l 8

19 rivt Fuzio Compost: smpi si si cos si si si cos l p l p l l l 9

20 rivt Fuzio Compost: smpi l l pr l s s s [ ] l si lsi lsi si [ ] [ ] [ ] lsi si si cos

21 Clcolo rivt Fuzioi Ivrs Si cosidri p, l uzio ivrs è l. Ess o il rico simmtrico risptto ll bisttric dl primo trzo qudrt. Si cosidri l rtt tt l rico l i. A;l y l Pr simmtri, l rtt tt l rico di p, l puto Bl;, simmtrico di A risptto ll bisttric I-III qudrt, c quzio: Avrà rico simmtrico risptto ll bisttric I-III. y l NOTA: u rtt co coicit olr opposto pssti pr l orii soo simmtric risptto ll bisttric I-III li oli c ormo co l ss soo complmtri. Qul è l rlzio tr i coiciti olri dll tti? B NOTA: l y y p l A l

22 Fuzioi Ivrs Clcolo rivt Fuzioi Ivrs y y y rcsi y rcsi y y si rcsiy si cos rcsi y rcsi y y y rct y rct y y t rct y t rct t y rct y y

23 Fuzioi Ivrs Clcolo rivt Fuzioi Ivrs y y y rccos y rccos y y cos rccos y cos rccos y si rccos y y Oppur si cosidri c rccos y π rcsi y E si pplicio l rol di drivzio. π rccos rcsi y π π α rccos y ; π, β rcsi y ; π π y cos α si β si α β α kπ π α β y [ ]

24 d dy dy d Clcolo rivt Fuzioi Ivrs Libiz Attzio:L du drivt soo clcolt i puti divrsi!!! y t rct y π π ; y R d dy dy d t y y si rcsi y d dy dy cos π π ; [ ; ] cos si y d y y cos rccos y si cos d dy dy d si y [ ; π ] [ ; ] y 4

25 d dy dy d Clcolo rivt Fuzioi Ivrs Libiz Attzio:L du drivt soo clcolt i puti divrsi!!! L rol può ssr pplict pr clcolr l drivt dll uzio ivrs sz c di qust s coosc l orm splicit L uzio è ivrtibil è strttmt mooto crsct su tutto R, si l uzio, ivrs si clcoli y co y ; ; 5

26 rivbilità Cotiuità Torm S u uzio :AR è drivbil i,puto itro dl cmpo di sistz, llor tl uzio è cotiu i Essr drivbil è codizio suicit pr ssr cotiu i u puto m o cssri. Es. L uzio è cotiu m o drivbil i. ± ± ± Esistoo il it dstro siistro m o soo uuli.. rivt str. rivt Siistr Aicé u uzio si drivbil i u puto dvoo sistr iit drivt dstr siistr dvoo ssr uuli. 6

27 rivbilità Cotiuità: dimostrzio rivbilità Cotiuità: dimostrzio Torm S u uzio :AR è drivbil i,puto itro dl cmpo di sistz, llor tl uzio è cotiu i im. [ ] [ ] 7 d cui su l cotiuità dll uzio i

28 Puti Aolosi. U puto si dic oloso s i tl puto l uzio sist, è cotiu, sistoo iit l drivt dstr siistr m ss o soo uuli. Not: I u puto oloso l uzio o è drivbil. U puto oloso ssomili u discotiuità slto di I spci pr l uzio drivt prim. Si t coto tuttvi c l uzio o è ivi drivbil duqu l uzio drivt o sist i tl puto. 8

29 Puti Aolosi: smpio Puti Aolosi: smpio Es. > > < L uzio è cotiu i 9 y y Tt dstr Tt siistr

30 Flssi Tt Vrticl. U puto si dic lsso tt vrticl s i sso l uzio sist, è cotiu, sistoo iiit l drivt dstr siistr d o so uul. ± Es. Flsso tt vrticl discdt

31 Puti Cuspidli. U puto si dic cuspidl o cuspid s i sso l uzio sist, è cotiu, d sistoo iiit l drivt dstr siistr m o so opposto. Not: I u puto cuspidl l uzio o è drivbil. U puto cuspidl rpprst u discotiuità di II spci dll drivt prim. ± m Es. s Not:

32 rivt Succssiv rivt Succssiv. rivt Scod t u uzio c mmtt drivt prim ll itoro di u puto, si diisc drivt scod il sut it s sist iito Alomt si diiscoo drivt trz, drivt qurt iv così vi. Pr il clcolo ci si comport pplicdo i succssio l rol di drivzio: Pr il clcolo ci si comport pplicdo i succssio l rol di drivzio: Es. Clcolr l drivt prim, scod trz dll sut uzio [ ] [ ] 4 [ ]

33 Esrcizio su rivbilità Es. trmir s sistoo vlori rli di prmtri,b i modo c l sut uzio si cotiu drivbil i R b > Cotiuità b b Cotiuità b b 4? b rivbilità b > < 4 > < 4 b b Soluzio: pr b- l uzio dt risult ssr cotiu drivbil su tutto R

( a) 1 a + Es. Data la funzione:

( a) 1 a + Es. Data la funzione: Es. Dt l uzio: ' ' ( Esrcizi Complmtri. A( ( b. Dtrmir pr quli vlori di b l uzio mmtt u puto di mssimo d u puto di miimo pr quli vlori l uzio o mmtt tli puti.. Dtrmir i vlori di b i modo ch l uzio prsti

Dettagli

x ; sin x log 1 x ; 4 0 0,0.

x ; sin x log 1 x ; 4 0 0,0. .. Pr quli vlori dl prmtro l sri S (i uzio dl prmtro ). q ch covrg s solo s q. q Ricordimo ch pr q è q q q q q h soluzio pr tli vlori l sri covrg S E' u sri gomtric di rgio covrg? Pr tli vlori sprimi l

Dettagli

dell'intervallo in cui si hanno discontinuità di prima o terza specie. Supponiamo, per semplicità (ma b ed ivi continua b h lim c h b ] e si pone

dell'intervallo in cui si hanno discontinuità di prima o terza specie. Supponiamo, per semplicità (ma b ed ivi continua b h lim c h b ] e si pone INTEGRALI IMPROPRI L tori dll'itgrzio di u fuzio f cotiu i u itrvllo ciuso itto [ ] si può stdr sostitudo l'ipotsi di cotiuità i [ ] dll fuzio f co qull dll ittzz I tl cso si ffrot il prolm dll'itgrzio

Dettagli

( )( ) ( ) ( ) k. Appunti di Skuola.it. Analisi matematica. Calcolo combinatorio. (0 k n) diff. Per un elemento o per l ordine

( )( ) ( ) ( ) k. Appunti di Skuola.it. Analisi matematica. Calcolo combinatorio. (0 k n) diff. Per un elemento o per l ordine Aisi ttic Apputi di Suo.it Ccoo cobitorio Disposizioi spici D (-)(-)...(-) ( ) di. Pr u to o pr ordi co riptizio D r N di. Pr du. Dist. Ch occupo o stsso posto Prutzioi spici P D ti riptuti... (...) P

Dettagli

Successioni numeriche

Successioni numeriche 08//05 uccssioi umrich uccssioi umrich Dfiizio U succssio è u fuzio ch d ogi umro turl ssoci u umro rl 0 : 0 : Es. 08//05 uccssioi umrich Dfiizio Il it dll succssio ch ch covrg d ) si idic è il umro rl

Dettagli

se ne costruisca un altra s 1 L operazione che fa passare dalla prima successione alla seconda è detta serie e si indica con il

se ne costruisca un altra s 1 L operazione che fa passare dalla prima successione alla seconda è detta serie e si indica con il 07 SERIE NUMERICHE Dt l succssio,,...,,... s costruisc u ltr s, s,..., s,... tl ch: s... s... s... L oprzio ch f pssr dll prim succssio ll scod è dtt sri si idic co il simbolo...... k. k Gli k si dicoo

Dettagli

I LIMITI DI FUNZIONI - CALCOLO

I LIMITI DI FUNZIONI - CALCOLO Autor: Erico Mfucci - // I LIMITI DI FUNZIONI - CALCOLO Dopo vr studito l tori di iti, dobbimo dsso vdr com si clcolo. Storicmt il clcolo di iti vi smplificto d u procsso ch prd il om di ritmtizzzio dll

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO Tema di MATEMATICA a. s

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO Tema di MATEMATICA a. s WWWMATEMATICAMENTEIT Corso di ordimto - Sssio ordiri - s 9- ROBLEMA ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO Tm di MATEMATICA s 9- Si ABCD u qudrto di lto, u puto di AB γ l circofrz di

Dettagli

1 Studio di funzioni, sviluppi di Taylor e serie

1 Studio di funzioni, sviluppi di Taylor e serie Studio di fuzioi, sviluppi di Taylor sri. Esrcizi. Sia fx = x +. Dtrmiar l isim di dfiizio. Studiar il sgo. Calcolar i iti agli strmi dll isim di dfiizio. Dir s ci soo asitoti. Dtrmiar l isim di cotiuità

Dettagli

Rapporto Incrementale Def. rapporto incrementale nel punto x incremento h Nota:

Rapporto Incrementale Def. rapporto incrementale nel punto x incremento h Nota: Rapporto Incrmntal + α Δ= Δ m tan +. Il rapporto incrmntal dlla unzion nl punto rlativo ad un incrmnto è il coicint anolar dlla scant al raico dlla unzion ni punti di ascissa d + Nota: Nll smpio raico

Dettagli

Es. Data la funzione:

Es. Data la funzione: Es. D l uzio: Esrcizi Complmri. A b. Drmir pr quli vlori di b l uzio mm u puo di mssimo d u puo di miimo pr quli vlori l uzio o mm li pui.. Drmir i vlori di b i modo ch l uzio prsi u mssimo rlivo co ordi

Dettagli

Nome Cognome classe 5D 16 Dicembre VERIFICA di MATEMATICA PROBLEMA

Nome Cognome classe 5D 16 Dicembre VERIFICA di MATEMATICA PROBLEMA Nom Cognom cls D 6 Dicmr 8 VERIFICA di MATEMATICA PROBLEMA Considr l unzion, studin l ndmnto trccin il grico proil punti: Di l dinizion di unzion inittiv Sull dl grico proil ch hi trccito, l unzion è inittiv?

Dettagli

ln( t + ) dt, calcolare i punti critici di F(x) e

ln( t + ) dt, calcolare i punti critici di F(x) e Prova scritta di Aalisi Matmatica I (VO) or 6/0/0 ) Dfiizio di fuzio cotiua i u puto classificazio di puti di discotiuità Utilizzado la dfiizio dir pr quali valori di k è cotiua i =0 la sgut fuzio l 0

Dettagli

ESERCITAZIONE DIECI: INTEGRALI DEFINITI E FORMULA DI TAYLOR

ESERCITAZIONE DIECI: INTEGRALI DEFINITI E FORMULA DI TAYLOR ESERCITAZIONE DIECI: INTEGRALI DEFINITI E FORMULA DI TAYLOR Tizin Rprlli 5/5/8 RICHIAMI DI TEORIA Proposizion.. Si f C ([, b]) g C ([, b]), llor f(x)g(x)dx = [F (x)g(x)] b F (x)g (x)dx. dov F (x) è un

Dettagli

FUNZIONI REALI TRASCENDENTI FRT. 1. Potenza a esponente reale

FUNZIONI REALI TRASCENDENTI FRT. 1. Potenza a esponente reale FRT FUNZIONI REALI TRASCENDENTI Potz spot rl Sppimo ch l fuzio rdic qudrt di è l'ivrs dll rstrizio dll fuzio ll'itrvllo [ 0 + [ mt l fuzio rdic cubic di è l'ivrs dll fuzio I modo o possimo iir l fuzio

Dettagli

Integrale indefinito

Integrale indefinito 04//05 Intgrl indinito unzion intgrl Dinizion Si un unzion intgrbil scondo Rimnn nll intrvllo [,b] [,b], si dinisc unzion intgrl di, l intgrl dinito: t 04//05 Torm ondmntl dl clcolo intgrl Si continu in

Dettagli

Corso di ordinamento - Sessione suppletiva - a.s. 2009-2010

Corso di ordinamento - Sessione suppletiva - a.s. 2009-2010 Corso di ordinmnto - Sssion suppltiv -.s. 9- PROBLEMA ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO SESSIONE SUPPLETIA Tm di: MATEMATICA. s. 9- Dt un circonrnz di cntro O rggio unitrio, si prndno

Dettagli

Studio di funzione. Pertanto nello studio di tali funzioni si esamino:

Studio di funzione. Pertanto nello studio di tali funzioni si esamino: Prof. Emnul ANDRISANI Studio di funzion Funzioni rzionli intr n n o... n n Crttristich: sono funzioni continu drivbili in tutto il cmpo rl D R quindi non sistono sintoti vrticli D R quindi non sistono

Dettagli

Analisi Matematica I Soluzioni del tutorato 4

Analisi Matematica I Soluzioni del tutorato 4 Corso di laura i Fisica - Ao Accadmico 07/08 Aalisi Matmatica I Soluzioi dl tutorato 4 A cura di David Macra Esrcizio ( i) Domiio di dfiizio: La fuzio o è dfiita s è tal ch l argomto sotto radic sia gativo,

Dettagli

Compito sugli integrali definiti e impropri (1)

Compito sugli integrali definiti e impropri (1) Compito sugli intgrli dfiniti impropri () Esrcizio Clcolr i sgunti intgrli dfiniti: () () d d ; Esrcizio Stilir s i sgunti intgrli impropri convrgono d, in cso ffrmtivo, scrivr qul vlor: () () d ; d Esrcizio

Dettagli

Le derivate. = 5 si traccino due rette qualsiasi passanti entrambe per il corrispondente punto della funzione e per

Le derivate. = 5 si traccino due rette qualsiasi passanti entrambe per il corrispondente punto della funzione e per L drivt Il problm di introdurr il conctto di drivt consist nl trsmttr l id di ciò c si st rontndo, nl snso c s d un punto di vist orml è possibil introdurr l dinizion di qusto conctto in trmini rigorosi,

Dettagli

Note di Matematica Generale

Note di Matematica Generale This is pg i Printr: Opqu this Not di Mtmtic Gnrl Robrto Mont Dcmbr 13, 2005 ii ABSTRACT Ths nots r still work in progrss nd r intndd to b for intrnl us. Pls, don t cit or quot. Contnts This is pg iii

Dettagli

( ) ε > 0, δ 0. +, con 1. ) si può centrare in c prendendo δ = min { δ1, , δ > 0. I c. c R un punto di I e f una funzione definita in \{ }

( ) ε > 0, δ 0. +, con 1. ) si può centrare in c prendendo δ = min { δ1, , δ > 0. I c. c R un punto di I e f una funzione definita in \{ } Alcu cosidrazioi sulla dfiizio di limit Alcu cosidrazioi sui limiti di fuzioi Itori di u puto U itoro (complto) di u puto è u qualsiasi itrvallo aprto cui il puto apparti Esmpi: (,3) è u itoro di [,3)

Dettagli

INTEGRALI. 1. Integrali indefiniti

INTEGRALI. 1. Integrali indefiniti INTEGRALI. Intgrli indiniti Si un unzion ontinu in [, ]. Un unzion F dinit ontinu in [, ], drivil in ], [, disi primitiv di in [, ] s F, ], [. Tormi. S F è un primitiv di in [, ] llor nh G F, on R, è un

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO

ESAME DI STATO DI LICEO SCIENTIFICO Sssio straordiaria 8 Lico di ordiamto ESAME DI STATO DI LICEO SCIENTIFICO Corso di ordiamto sssio straordiaria 8 Sssio straordiaria 8 Lico di ordiamto PROBLEMA Puto. Il passaggio pr A(-) comporta la codizio

Dettagli

ENUNCIATI DI ESAMI DI ANALISI MATEMATICA 1

ENUNCIATI DI ESAMI DI ANALISI MATEMATICA 1 ENUNCIATI DI ESAMI DI ANALISI MATEMATICA ENUNCIATI DI ESAMI DI ANALISI MATEMATICA Euciar dimostrar il torma di Lagrag Dir s è f ( ) applicabil alla fuzio ( ) ll itrvallo [,] motivado la risposta Euciar

Dettagli

GEODESIA: PROPRIETA GEOMETRICHE DELL ELLISSOIDE

GEODESIA: PROPRIETA GEOMETRICHE DELL ELLISSOIDE GEODESIA: PROPRIETA GEOMETRICHE DELL ELLISSOIDE PROPRIETA GEOMETRICHE DELL ELLISSOIDE Al fin di stbilir un gomtri sull llissoid di rotzion è ncssrio non solo dfinir l quzioni dll curv idon d individur

Dettagli

S kx. e che è dispari in quanto

S kx. e che è dispari in quanto imulzion MIUR Esm di tto 09 - mtmtic Prolm f x 0, 0 i h immditmnt: 0 x 0 x f ' x 0 x lim f lim 0 lim f lim x x x x f 0 Il grfico riport l ndmnto; pplicndo ll curv l trslzion di vttor 0;, ovvro: x' x y

Dettagli

Metodi Matematici per la Fisica

Metodi Matematici per la Fisica Mtodi Mtmtici pr l Fisic Prov scritt - 7 sttmbr 011 Esrcizio 1 6 punti Si clcoli l intgrl I snx snhx dx Ci sono du mtodi, di sguito il primo Ci sono infiniti poli smplici inftti il sno iprbolico si nnull

Dettagli

Esercizi Svolti di Idrologia. Problemi di bilancio idrologico

Esercizi Svolti di Idrologia. Problemi di bilancio idrologico Esrcizi Svolti di drologi roblmi di bilcio idrologico roblm 1 All szio di ciusur di u bcio idrogrfico di 0 km di suprfici è stt rgistrt u portt mdi u di 0.m s -1. L prcipitzio totl u rgguglit sull r dl

Dettagli

α = α λ e Essendo ( ) , sostituendo nella (81) si ottiene: (83) 3 (86) Possiamo adesso scrivere la soluzione generale della (81): ~ 2

α = α λ e Essendo ( ) , sostituendo nella (81) si ottiene: (83) 3 (86) Possiamo adesso scrivere la soluzione generale della (81): ~ 2 Appunti dll lzion dl Prof Stfno D Mrchi dl //6 cur dl Prof Frnndo D Anglo Soluzion di un srcizio ssgnto nll scors lzion (srcizio h) (8) L soluzion gnrl dll quzion ssocit è dt d: (8) ( ) o Ossrvto ch il

Dettagli

tx P ty P 1 + t(z P 1)

tx P ty P 1 + t(z P 1) Esrcizi dll dcim sttimn - Soluzioni Indichimo con S R 3 l sfr unitri nll mtric Euclid di R 3, oro S {x, y, z R 3 x + y + z 1}. Indichimo con N S il polo nord il polo sud di S, rispttimnt, oro N,, 1 S,,

Dettagli

ESERCIZI SULLE SUCCESSIONI NUMERICHE-SOLUZIONI

ESERCIZI SULLE SUCCESSIONI NUMERICHE-SOLUZIONI ESERCIZI SULLE SUCCESSIONI NUMERICHE-SOLUZIONI Esrcizio ( (i + + + Razioalizziamo: ( + + + ( + + + + ( + + + + [ ( ( ] ( + ( + + + + + + + [ ( + [( + ] ( ] + ( + ( + + + + ( + [( + ] ( + + + ( + ( + Dividiamo

Dettagli

ESERCIZI SULLE SUCCESSIONI. a n := 2n + 3 3n 7. n n cos 2 n + 2. (3) Dimostrare, attraverso la definizione, che la successione

ESERCIZI SULLE SUCCESSIONI. a n := 2n + 3 3n 7. n n cos 2 n + 2. (3) Dimostrare, attraverso la definizione, che la successione ESERCIZI SULLE SUCCESSIONI VALENTINA CASARINO Esrcizi pr il corso di Aalisi Matmatica, Iggria Gstioal, dll Iovazio dl Prodotto, Mccaica Mccatroica, Uivrsità dgli studi di Padova) ) Vrificar, attravrso

Dettagli

ANALISI DI FOURIER. Segnali Tempo Discreti:

ANALISI DI FOURIER. Segnali Tempo Discreti: ANALISI DI FOURIER Sgali mpo Discrti: - Ci alla rasormata di Fourir di ua squza - Rlazio co la CF - Codizio di Nyquist - Etto dl trocamto dl Sgal sulla F Cosidriamo ua squza x[]: l sguito cosidrrmo la

Dettagli

SCUOLE ITALIANE ALL ESTERO ESAMI DI STATO DI LICEO SCIENTIFICO Sessione Ordinaria 2003 Calendario australe SECONDA PROVA SCRITTA Tema di Matematica

SCUOLE ITALIANE ALL ESTERO ESAMI DI STATO DI LICEO SCIENTIFICO Sessione Ordinaria 2003 Calendario australe SECONDA PROVA SCRITTA Tema di Matematica Sssio ordiri Esro - Soluzio cur di Nicol D Ros SCUOLE ITALIANE ALL ESTERO ESAMI DI STATO DI LICEO SCIENTIFICO Sssio Ordiri Cldrio usrl SECONDA PROVA SCRITTA Tm di Mmic Il cdido risolv uo di du prolmi 4

Dettagli

Università di Camerino Corso di Laurea Fisica Indirizzo Tecnologie per l Innovazione Appunti di Calcolo Prof. Angelo Angeletti

Università di Camerino Corso di Laurea Fisica Indirizzo Tecnologie per l Innovazione Appunti di Calcolo Prof. Angelo Angeletti Uivrsità di Camrio Corso di Laura Fisica Idirizzo Tcologi pr l Iovazio Apputi di Calcolo Prof. Aglo Agltti Formula di Taylor Si ricordrà ch l quazio dlla tagt ad ua curva di quazio y f() i u puto è data

Dettagli

Dove la suddivisione dell intervallo [a,b] è individuata dai punti

Dove la suddivisione dell intervallo [a,b] è individuata dai punti 04//205 Clcolo itegrle per fuzioi di u vriile Clcolo itegrle Itegrle defiito Si f:[,] R, limitt ξ ξ 2 ξ 3 ξ 4 ξ 5 0 = 2 3 4 5 = Costruimo l somm di Cuchy-Riem S f f Dove l suddivisioe dell itervllo [,]

Dettagli

Esonero di Materia Condensata del 28 Gennaio 2009

Esonero di Materia Condensata del 28 Gennaio 2009 Esoro di Mtri Codst dl 8 Gio 9 Risolvr du srcizi sclt fr i tr proposti. Proff. Polo Clvi Mrio Cpizzi º Esrcizio U ct lir è ftt di N toi di ss M 6 u.., ltrti N toi di ss M 8 u.. Lugo l ct si propgo soltto

Dettagli

Teoria. Tale retta limite non sempre esiste. Si veda il grafico sottostante. Matematica 1

Teoria. Tale retta limite non sempre esiste. Si veda il grafico sottostante. Matematica  1 LA ERVATA UNA FUNZONE Toria l problma dlla tangnt Uno di problmi classici c portano al conctto di drivata è qullo dlla dtrminazion dlla rtta tangnt a una curva in un punto. La tangnt ad una circonfrnza

Dettagli

dove il Sia p( x ) un polinomio di grado n. Si dimostri che la sua derivata n esima è coefficiente a è il coefficiente di

dove il Sia p( x ) un polinomio di grado n. Si dimostri che la sua derivata n esima è coefficiente a è il coefficiente di Quesiti ord 010 Pgi 1 di 5 Si p( ) u poliomio di grdo. Si dimostri che l su derivt esim è coefficiete è il coefficiete di ( p ) ( ) =! dove il 1 Si p( ) = + 1 +... + 0 Applicdo l regol di derivzioe delle

Dettagli

SUCCESSIONI IN R esercizi. R. Argiolas. lim = n

SUCCESSIONI IN R esercizi. R. Argiolas. lim = n SUCCESSIONI IN R srcizi R. Argiols L? Qust piccol rccolt di srcizi sull succssioi l cmpo di rli è rivolt tutti gli studti dl corso di lisi mtmtic I, m è prcisr fi d or ch possdr svolgr gli srcizi di qust

Dettagli

Liceo scientifico comunicazione opzione sportiva

Liceo scientifico comunicazione opzione sportiva PRVA D ESAME SESSINE RDINARIA Lico scitifico comuicazio opzio sportiva Il cadidato risolva uo di du problmi rispoda a qusiti dl qustioario Durata massima dlla prova: 6 or È costito l uso dlla calcolatric

Dettagli

Prova scritta di Analisi Matematica 1 14/1/ (tutti) Determinare l area della porzione di piano delimitata dall asse delle x con

Prova scritta di Analisi Matematica 1 14/1/ (tutti) Determinare l area della porzione di piano delimitata dall asse delle x con Prova scritta di Aalisi Matmatica A 4//4 (tutti) Illustrado tutti i passaggi, disgar il grafico dlla fuzio l f ( ),, (tutti) Dtrmiar l ara dlla porzio di piao ditata dall ass dll co dal grafico dlla fuzio

Dettagli

L IPERBOLE. x a. y b

L IPERBOLE. x a. y b L IPERBOLE ± ARGOMENTI TRATTATI L quzio coic dll iprol Qustioi silri 3 Qustioi rltiv ll rtt tgti Curv dduciili dll iprol 5 L fuzio omogrfic 6 Discussio sistmi grdo co prmtro 7 Proprità ottic dll iprol

Dettagli

Scuole Italiane all'estero ESAMI DI STATO DI LICEO SCIENTIFICO Sessione SECONDA PROVA SCRITTA Tema di Matematica

Scuole Italiane all'estero ESAMI DI STATO DI LICEO SCIENTIFICO Sessione SECONDA PROVA SCRITTA Tema di Matematica Sssion ordinri Estro Scuol Itlin llestro ESAMI DI STATO DI LICEO SCIENTIFICO Sssion SECONDA PROVA SCRITTA Tm di Mtmtic PROBLEMA E ssnto un cilindro quiltro Q il cui rio di bs misur. ) Si dtrmini il cono

Dettagli

c) Calcolare la probabilità P{N 120 = 36, N 180 = 48} = b) Calcolare la probabilità condizionata P{M 120 = 6 N 120 = 36} =

c) Calcolare la probabilità P{N 120 = 36, N 180 = 48} = b) Calcolare la probabilità condizionata P{M 120 = 6 N 120 = 36} = Laura Trial i Matmatica, Uivrsità La Sapiza Corso di Probabilità 2, A.A. 26/27 Prova scritta dl 26 Giugo 27 Soluzioi dgli srcizi proposti Esrcizio. Gli arrivi di mssaggi -mail ad u dato idirizzo di posta

Dettagli

g ( x )dx e se ne dia l interpretazione geometrica.

g ( x )dx e se ne dia l interpretazione geometrica. ESAME DI STATO DI LICEO SCIENTIFICO Sssio Ordiaria 9 PIANO NAZIONALE INFORMATICA Problma Sia f la fuzio dfiita da Dov è u itro positivo....!! I. Si vrifichi ch la drivata di è:!. Si dica s la fuzio f ammtt

Dettagli

Soluzioni. Capitolo 2 (, 0 3] [2.1] A B = {1, 3, 4, 6, 7, 8}, A B = {4, 7}, A\B = {1, 3, 6}, B\A = {8}.

Soluzioni. Capitolo 2 (, 0 3] [2.1] A B = {1, 3, 4, 6, 7, 8}, A B = {4, 7}, A\B = {1, 3, 6}, B\A = {8}. Soluzioni Capitolo [.] A B = {,,,, 7, 8}, A B = {, 7}, A\B = {,, }, B\A = {8}. [.] I) [, 0] V) VI) V [, 0] (, 0) V IX) [, 00) X) ( [, ],(, 00) (, 00) (, 0 + ) (, 0 ], ), (, 0 + ) [.] B\A = {} {b = n +,

Dettagli

di Enzo Zanghì 1

di Enzo Zanghì 1 M@t_cornr d Enzo Zngì Intgrl ndfnto S dc c l funzon F () è un prmtv dll funzon f (), contnu nll'ntrvllo I s F '( ) f ( ) S un funzon mmtt n un ntrvllo I un prmtv, llor n mmtt nfnt c dffrscono tr loro mno

Dettagli

Calcolo differenziale per funzioni di una variabile

Calcolo differenziale per funzioni di una variabile Clcolo dierenzile per unzioni di un vribile Derivt di un unzione Siniicto eometrico dell derivt in un punto e equzione dell rett tnente Si, b: +, b rpporto incrementle tβ coe. nolre di r y + B. r A. β

Dettagli

L INTEGRALE DEFINITO b f (x) d x a 1

L INTEGRALE DEFINITO b f (x) d x a 1 L INTEGRALE DEFINITO ( ) d ARGOMENTI. Il Trpezoide re del Trpezoide. L itegrle deiito de. Di Riem. Proprietà dell itegrle deiito teorem dell medi. L uzioe itegrle teorem di Torricelli-Brrow e corollrio

Dettagli

Corso di Automi e Linguaggi Formali Parte 3

Corso di Automi e Linguaggi Formali Parte 3 Esmpio Sdo il pumping lmm sist tl ch ogni prol di tin un sottostring non vuot ch puo ssr pompt o tglit rpprsntrl com Invc non in dv ssr in posso Corso di Automi Linguggi Formli Gnnio-Mrzo 2002 p.3/22 Corso

Dettagli

CORSO DI TOPOGRAFIA A - A.A. 2006-2007 ESERCITAZIONI - 09.05.07 ALLEGATO al file Esercizi di geodesia. r a. Z c. nella quale

CORSO DI TOPOGRAFIA A - A.A. 2006-2007 ESERCITAZIONI - 09.05.07 ALLEGATO al file Esercizi di geodesia. r a. Z c. nella quale CORSO DI TOPOGRAFIA A - A.A. 6-7 ESERCITAZIONI - 9.5.7 ALLEGATO l fil Esrcizi di godsi Ellissoid trrstr Fin dll scond mtà dl VII scolo (su propost di Nwton) l suprfici più dtt ssr ssunt com suprfici di

Dettagli

Scuole italiane all estero (Santiago del Cile) 2010 Quesiti QUESITO 1

Scuole italiane all estero (Santiago del Cile) 2010 Quesiti QUESITO 1 www.mtefili.it Scuole itlie ll estero (Stigo del Cile) 21 Quesiti QUESITO 1 Si f(x) = { x2 5, se x 3 x + 2, se x > 3 Si trovi: lim f(x) ; x 3 lim f(x) ; x 3 + lim f(x). x 3 lim f(x) = lim x 3 x 3 (x2 5)

Dettagli

Teorema fondamentale del calcolo integrale

Teorema fondamentale del calcolo integrale Clcolo integrle Proprietà dell integrle deinito Teorem dell medi integrle Corollri del Teorem ond. clc. int. Regole di integrzione deinit Clcolo di ree 2 26 Politecnico di Torino 1 Estensione dell integrle

Dettagli

e una funzione g ε S f tali che = sup g : g S f tale che h ε f < ε/2; analogamente, per

e una funzione g ε S f tali che = sup g : g S f tale che h ε f < ε/2; analogamente, per C.13 ntgrl di Rimnn Prmttimo il sgunt risultto. Lmm C.13.1 Si f un funzion limitt su = [, b]. Allor f è intgrbil s solo s pr ogni ε > 0 sistono un funzion h ε S + f un funzion g ε S f tli h h ε g ε < ε.

Dettagli

PROGRAMMA DI RIPASSO ESTIVO

PROGRAMMA DI RIPASSO ESTIVO ISTITUTO TECNICO PER IL TURISMO EUROSCUOLA ISTITUTO TECNICO PER GEOMETRI BIANCHI SCUOLE PARITARIE PROGRAMMA DI RIPASSO ESTIVO CLASSI MATERIA PROF. QUARTA TURISMO Matmatica Andra Brnsco Làvor ANNO SCOLASTICO

Dettagli

L equazione del reticolo cristallino

L equazione del reticolo cristallino Chmc sc supror Modulo L quzo dl rtcolo crstllo Srgo Brutt Rchmo d mtmtc: l sr d ourr U quluqu uzo () può ssr rpprstt spso d Tylor purchè l uzo () s drzbl - volt : ( )!... Nl cso cu ()=g() s u uzo prodc

Dettagli

Risolvere gli esercizi proposti e rispondere a 4 quesiti scelti all interno del questionario. sin = x

Risolvere gli esercizi proposti e rispondere a 4 quesiti scelti all interno del questionario. sin = x Risolvere gli esercizi proposti e rispondere quesiti scelti ll interno del questionrio Clcolre l derivt delle seguenti unzioni cos cos sin sin ( cos ) cos ( cos )( sin ) sin sin cos sin cos ( cos ) ( cos

Dettagli

ma non sono uguali fra loro

ma non sono uguali fra loro Defiizioe U fuzioe f defiit i D (doiio) si dice cotiu i u puto c D se esiste i tle puto (è cioè possiile clcolre f (c)); se esiste, fiito, il ite dell fuzioe per che tede c e se il vlore del ite coicide

Dettagli

ESERCIZI PARTE I SOLUZIONI

ESERCIZI PARTE I SOLUZIONI UNIVR Facoltà di Economia Corso di Matmatica finanziaria 008/09 ESERCIZI PARTE I SOLUZIONI Domini di funzioni di du variabili Esrcizio a f, = log +. L unica condizion di sistnza è data dalla disquazion

Dettagli

SESSIONE SUPPLETIVA PROBLEMA 2

SESSIONE SUPPLETIVA PROBLEMA 2 www.matfilia.it SESSIONE SUPPLETIVA 8 - PROBLEMA f k () = k ln() g k () = k, k > ) L invrsa di y = k ln() si ottin nl sgunt modo: y k = ln(), y k =, da cui, scambiando con y, y = g k () = k Quindi l invrsa

Dettagli

ϕ (non necessariamente in numero finito), e in

ϕ (non necessariamente in numero finito), e in Spazi di uzioi ll sciz gograich, i particolar i godsia, vgoo studiat dll gradzz isich uzioi di puto sulla suprici trrstr, ad smpio il campo dlla gravità o l odulazio dl goid Qust uzioi soo i lia di pricipio

Dettagli

. La n a indica il valore assoluto della radice.

. La n a indica il valore assoluto della radice. RADICALI Defiizioe: U umero irrziole è u umero decimle illimitto o periodico. Esempio:, 0, π Per clcolre il vlore pprossimto di u espressioe coteete rdici coviee mipolre l espressioe per ridurre l mssimo

Dettagli

Matematica. Indice lezione. (Esercitazioni) dott. Francesco Giannino dott. Valeria Monetti. Funzione esponenziale

Matematica. Indice lezione. (Esercitazioni) dott. Francesco Giannino dott. Valeria Monetti. Funzione esponenziale Mtmtic (Esrcitzioni) Equzioni Disquzioni sponnzili - ritmich dott. Frncsco Ginnino dott. Vlri Montti Indic lzion Funzion sponnzil Equzioni disquzioni sponnzili Funzion ritmo Equzioni disquzioni ritmich

Dettagli

Studio di funzione. R.Argiolas

Studio di funzione. R.Argiolas Studio di unzion R.Argiolas Introduzion Prsntiamo lo studio dl graico di alcun unzioni svolt durant l srcitazioni dl corso di analisi matmatica I assgnat nll prov scritt. Ringrazio anticipatamnt tutti

Dettagli

DEFINIZIONE SUCCESSIONE NUMERICA Una successione numerica è una funzione che ha per dominio l insieme dei numeri naturali { 0;1;2;3;...

DEFINIZIONE SUCCESSIONE NUMERICA Una successione numerica è una funzione che ha per dominio l insieme dei numeri naturali { 0;1;2;3;... SUCCESSIONI DEFINIZIONE SUCCESSIONE NUMERICA U successioe ueric è u fuzioe che h per doiio l isiee dei ueri turli { 0;;;; } N o u suo sottoisiee e coe codoiio R, o u suo sottoisiee I vlori che ssue tle

Dettagli

La formula di Taylor

La formula di Taylor La rmula di Taylr R.Argilas!! K I qusta dispsa prstiam il calcl di iti utilizzad gli sviluppi di Taylr Mac Lauri. N riprcrrrm la tria rlativa all apprssimazi di ua uzi i quat qusta è artata i maira sddisact

Dettagli

PROBLEMA 1 In un sistema di assi cartesiani ortogonali O x y una curva γ ha per equazione

PROBLEMA 1 In un sistema di assi cartesiani ortogonali O x y una curva γ ha per equazione ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO LICEO DELLA COMUNICAZIONE SESSIONE SUPPLETIVA Tm di: MATEMATICA. s. 9- PROBLEMA In un sistm di ssi crtsini ortogonli O y un curv γ h pr quzion y.

Dettagli

ANALISI MATEMATICA 1

ANALISI MATEMATICA 1 ANALISI MATEMATICA [Apputi per u Igegere] A CURA DI ALESSANDRO PAGHI Riepilogo su: - Vlore Assoluto, Poteze, Logritmi; - Rziolizzzioe; - Grdezze Trigoometriche; - Limiti Notevoli e Forme Idetermite; -

Dettagli

LE SUCCESSIONI. ovvero: 1, 2, 1.5, 1., 1.6, 1.625,... I valori ottenuti si avvicinano alla sezione aurea: =

LE SUCCESSIONI. ovvero: 1, 2, 1.5, 1., 1.6, 1.625,... I valori ottenuti si avvicinano alla sezione aurea: = LE SUCCESSIONI Si cosideri l seguete sequez di umeri:,,, 3, 5, 8, 3,, 34, 55, 89, 44, 33, detti di Fibocci. Ess rppreset il umero di coppie di coigli preseti ei primi mesi i u llevmeto! Si cosideri l sequez

Dettagli

Esercizi Circuiti Resistivi

Esercizi Circuiti Resistivi srcizi Circuiti sistivi srcizio n isolvr il circuito in figur: v v v v 4 4 5 4 0 0Ω 5Ω 5Ω 4 5Ω Ω 5 v 5 5 4 () isolvr un circuito signific in gnrl dtrminr tnsioni corrnti in tutti i lti dl circuito. Trsformimo

Dettagli

STUDI DI FUNZIONI. Dunque : y=1 è asintoto orizzontale sia sinistro che destro. x=0 è asintoto verticale ( solo a sinistra di zero )

STUDI DI FUNZIONI. Dunque : y=1 è asintoto orizzontale sia sinistro che destro. x=0 è asintoto verticale ( solo a sinistra di zero ) ESERCITAZIONI 7-8- 9- STUDI DI FUNZIONI A) Esrcizi svolti. Studiar il dominio d il comportamnto agli strmi dl dominio dll sgunti funzioni. Calcolarn splicitamnt vntuali asintoti orizzontali o vrticali.

Dettagli

y = ln x ln x x x Studiare e disegnare il grafico delle seguenti funzioni Esercizio no.1 Soluzione a pag.2 Esercizio no.2 Soluzione a pag.

y = ln x ln x x x Studiare e disegnare il grafico delle seguenti funzioni Esercizio no.1 Soluzione a pag.2 Esercizio no.2 Soluzione a pag. Edutcnica.it Studio di funzioni Studiar disgnar il grafico dll sgunti funzioni Esrcizio no. Soluzion a pag. Esrcizio no. Soluzion a pag. atg Esrcizio no. Soluzion a pag. Esrcizio no. Soluzion a pag.9 ln

Dettagli

Svolgimento a cura di Nicola de Rosa. Punto 1 Consideriamo la figura sottostante rappresentante la geometyria del problema. M N t

Svolgimento a cura di Nicola de Rosa. Punto 1 Consideriamo la figura sottostante rappresentante la geometyria del problema. M N t Svolgimnto cur di Nicol d Ros PROBLMA Punto Considrimo l figur sottostnt rpprsntnt l gomtri dl prolm. M N t K P A H O B Q L suprfici ltrl dl solido ottnuto dll rotzion dl trpzio isoscl PQNM ttorno ll rtt

Dettagli

Lezione 3. Omomorfismi di gruppi

Lezione 3. Omomorfismi di gruppi Lzio 3 Prrquisiti: Applicazioi tra isimi. Rlazioi di quivalza. Lzio. Omomorismi di gruppi I qusta lzio itroduciamo uo strumto util a corotar l struttur di gruppi distiti. Diizio 3. Siao (, (, gruppi. U'applicazio

Dettagli

LE SUCCESSIONI. ovvero: 1, 2, 1.5, 1., 1.6, 1.625,... I valori ottenuti si avvicinano alla sezione aurea: =

LE SUCCESSIONI. ovvero: 1, 2, 1.5, 1., 1.6, 1.625,... I valori ottenuti si avvicinano alla sezione aurea: = Si cosideri l seguete sequez di umeri:,,, 3, 5, 8, 3,, 34, 55, 89, 44, 33, detti di Fibocci. Ess rppreset il umero di coppie di coigli preseti ei primi mesi i u llevmeto! Si cosideri l sequez otteut dividedo

Dettagli

CALCOLO DI LIMITI PER LE FUNZIONI CONTINUE. Saper calcolare semplici limiti, in particolare delle funzioni razionali intere e fratte.

CALCOLO DI LIMITI PER LE FUNZIONI CONTINUE. Saper calcolare semplici limiti, in particolare delle funzioni razionali intere e fratte. CALCOLO DI LIMITI PER LE FUNZIONI CONTINUE OBIETTIVI MINIMI: Sper idividure le fuzioi cotiue Sper pplicre i teorei sui iti Sper idividure le fore ideterite Sper clcolre seplici iti, i prticolre delle fuzioi

Dettagli

Esercizi per il corso Matematica clea

Esercizi per il corso Matematica clea Esrcizi pr il corso Matmatica cla Dail Ritlli ao accadmico 008/009 Lzio : Succssioi Sri gomtrica Esrcizi svolti. Provar ch: + ) /. Provar ch: + ) + ) 0. Provar ch: + 4. Provar ch 5. Provar ch + ) + ) 4

Dettagli

DERIVATE.. Si chiama rapporto incrementale della f (x) relativo al punto x

DERIVATE.. Si chiama rapporto incrementale della f (x) relativo al punto x DERIVATE Si f ( ; Se e soo due puti del suo domiio, si cim icremeto dell fuzioe il vlore f = f( f( Si cim rpporto icremetle dell f ( reltivo l puto e ll'icremeto il rpporto: y = u fuzioe rele defiit ell'itervllo

Dettagli

Integrali in senso generalizzato

Integrali in senso generalizzato Itegrli i seso geerlizzto Pol Rubbioi Itegrzioe di fuzioi o itte Deizioe.. Dt f : [; b[! R cotiu ed ilitt i prossimit di b, ovvero tle che!b f () = + oppure!b f () =, ess si dice itegrbile i seso geerlizzto

Dettagli

Funzione esponenziale e logaritmo. Proprietà di esponenziale e logaritmo.

Funzione esponenziale e logaritmo. Proprietà di esponenziale e logaritmo. Funzion sponnzil ritmo. Proprità di sponnzil ritmo. 6. Funzion sponnzil ritmo. Proprità di sponnzil ritmo. Funzion sponnzil f ( ) fissto f : ( + ) è l bs dll funzion sponnzil d è fisst è l sponnt dll funzion

Dettagli

FUNZIONI IPERBOLICHE

FUNZIONI IPERBOLICHE FUNZIONI IPERBOLICHE L funzioni iprbolich sono funzioni spcili dott di proprità formlmnt simili qull di cui sono dott l funzioni goniomtrich ordinri. Anch l loro dfinizion in trmini gomtrici è molto simil

Dettagli

2 x = 64 (1) L esponente (x) a cui elevare la base (2) per ottenere il numero 64 è detto logaritmo (logaritmo in base 2 di 64), indicato così:

2 x = 64 (1) L esponente (x) a cui elevare la base (2) per ottenere il numero 64 è detto logaritmo (logaritmo in base 2 di 64), indicato così: Considerimo il seguente problem: si vuole trovre il numero rele tle che: = () L esponente () cui elevre l bse () per ottenere il numero è detto ritmo (ritmo in bse di ), indicto così: In prticolre in questo

Dettagli

0.1. CIRCONFERENZA 1. La 0.1.1, espressa mediante la formula per la distanza tra due punti, diviene:

0.1. CIRCONFERENZA 1. La 0.1.1, espressa mediante la formula per la distanza tra due punti, diviene: 0.1. CIRCONFERENZA 1 0.1 Circonfrnza Considriamo una circonfrnza di cntro P 0 (x 0, y 0 ) raggio r, cioè il luogo di punti dl piano P (x, y) pr i quali si vrifica la rlazion: 0.1.1. P 0 P = r. La 0.1.1,

Dettagli

La condizione richiesta è soddisfatta quando il primo massimo della curva, di ascissa x, si trova sulla

La condizione richiesta è soddisfatta quando il primo massimo della curva, di ascissa x, si trova sulla Esam di Stato 8 sssion suppltiva Problma La condizion richista è soddisfatta quando il primo massimo dlla curva, di ascissa, si trova sulla bisttric dl primo quadrant, pr cui (tutt l misur linari sono

Dettagli

( x) x x. Integrali (di Paolo Urbani febbraio 2011) Indice in ultima pagina Integrale indefinito. Area=

( x) x x. Integrali (di Paolo Urbani febbraio 2011) Indice in ultima pagina Integrale indefinito. Area= ( ) Cso : r fr du fuzioi oiu sgo divrso. Il prodio o i. Espio: Clolr l r oprs fr l fuzioi y r ( ) y ll irvllo [ ;]. r ( ) ( ) 9 0 6 Idi Igrl idfiio... Clolo dll igrl.... Prodoo fr os fuzio.... So/Diffrz

Dettagli

x 1 x 2 Studiare e disegnare il grafico delle seguenti funzioni Esercizio no.1 Soluzione a pag.2 Esercizio no.2 Soluzione a pag.4

x 1 x 2 Studiare e disegnare il grafico delle seguenti funzioni Esercizio no.1 Soluzione a pag.2 Esercizio no.2 Soluzione a pag.4 Edutcnica.it Studio di funzioni Studiar disgnar il grafico dll sgunti funzioni Esrcizio no. Soluzion a pag. Esrcizio no. Soluzion a pag. y 5 y Esrcizio no. Soluzion a pag.6 Esrcizio no. Soluzion a pag.8

Dettagli

Esercizi di Analisi Matematica 1 utili per la preparazione all esame scritto. File con soluzioni.

Esercizi di Analisi Matematica 1 utili per la preparazione all esame scritto. File con soluzioni. Esercizi di Aalisi Matematica. Paola Gervasio Es. Esercizi di Aalisi Matematica utili per la preparazioe all esame scritto. File co soluzioi. a.5.5.5.5 b 4 3.5 3.5.5.5 5 5 Figura 5 5.5 a 3 b 4 5.5 6 5

Dettagli

Analisi Matematica I Soluzioni tutorato 8

Analisi Matematica I Soluzioni tutorato 8 Corso di laura in Fisica - Anno Accadmico 7/8 Analisi Matmatica I Soluzioni tutorato 8 A cura di David Macra Esrcizio (i) abbiamo ch R( i) I( i), quindi inoltr,dividndo pr il modulo i (R( i)) + (I( i))

Dettagli

Considerata la funzione f avente insieme di esistenza A diremo che x 0 è un punto di massimo assoluto (minimo assoluto) se:

Considerata la funzione f avente insieme di esistenza A diremo che x 0 è un punto di massimo assoluto (minimo assoluto) se: Puti Stziori. Estremti locli e ssoluti. De. Cosidert l uzioe deiit i u itoro U di diremo ce è u puto di mssimo locle miimo locle se: U U De. Cosidert l uzioe vete isieme di esistez A diremo ce è u puto

Dettagli

Funzioni Continue. se (e solo se) 0

Funzioni Continue. se (e solo se) 0 : A R R A ' Funzioni Continu La unzion si dic continua in ( ( s ( solo s A N sguono tr proprità ainché ( sia continua in :. Dvono sistr initi il it dstro sinistro di ( in. Tali iti dvono ssr uguali tra

Dettagli

Esercitazioni di Calcolo delle Probabilità (04/04/2012) Soluzioni

Esercitazioni di Calcolo delle Probabilità (04/04/2012) Soluzioni Esrcitazioi di Calcolo dll Probabilità (4/4/) Soluzioi Esrcizio. Si trovi il valor dlla costat pr cui f, (>,

Dettagli

Ellisse. L ellisse è il luogo geometrico dei punti del piano tali che la somma delle distanze da due punti fissi. definizione. P semidistanza focale

Ellisse. L ellisse è il luogo geometrico dei punti del piano tali che la somma delle distanze da due punti fissi. definizione. P semidistanza focale Elliss dfinizion L lliss è il luogo gomtrio di punti dl pino tli h l somm dll distnz d du punti fissi F1 F2 dtti fuohi è ostnt, ioè: smiss mggior smiss minor P smidistnz fol F 2 smidistnz fol F 1 F 2 smiss

Dettagli

Il problema delle aree. Metodo di esaustione.

Il problema delle aree. Metodo di esaustione. INTEGRALE DEFINITO. DEFINIZIONE E SIGNIFICATO GEOMETRICO. PROPRIETA DELL INTEGRALE DEFINITO. FUNZIONE INTEGRALE. TEOREMA DELLA MEDIA. TEOREMA FONDAMENTALE DEL CALCOLO INTEGRALE. FORMULA DI LEIBNITZ NEWTON.

Dettagli

j Verso la scuola superiore Gli insiemi N, Z, Q, R

j Verso la scuola superiore Gli insiemi N, Z, Q, R j Vrso l suol suprior Gli insimi N, Z, Q, R Individu l rispost orrtt Un numro è divisor sondo di un numro s L oprzion è impossiil possiil in Z possiil in R Trdundo il tsto nll simologi mtmti si h ; pplindo

Dettagli

2.1 Il motore elettrico: considerazioni iniziali. Un motore è una macchina elettrica in cui la potenza di

2.1 Il motore elettrico: considerazioni iniziali. Un motore è una macchina elettrica in cui la potenza di Cpitolo Il motor lttrico. Il motor lttrico: cosidrzioi iizili U motor è u mcchi lttric i cui l potz di igrsso si di tipo lttrico qull di uscit si di tipo mccico [6]. I motori lttrici i corrt cotiu ho u

Dettagli

ANALISI MATEMATICA 1 Area dell Ingegneria dell Informazione. Appello del

ANALISI MATEMATICA 1 Area dell Ingegneria dell Informazione. Appello del ANALISI MATEMATICA Area dell Igegeria dell Iformazioe Appello del 7.9.8 Esercizio Si cosideri la fuzioe f() := TEMA {e 3 per per =. i) Determiare il domiio D, le evetuali simmetrie e studiare il sego di

Dettagli

03 FUNZIONI ELEMENTARI

03 FUNZIONI ELEMENTARI 03 FUNZIONI ELEMENTARI I qusto paragrafo dfiiamo l più usuali fuzioi di ua variabil, a partir dall quali, co l oprazioi algbrich la composizio di fuzioi, si ottrrao la maggior part dgli smpi ch icotrrmo.

Dettagli