Modellistica. Cos è un modello Caratteristiche dei modelli Metodi formali Esempi per sistemi semplici

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Modellistica. Cos è un modello Caratteristiche dei modelli Metodi formali Esempi per sistemi semplici"

Transcript

1 odellistica Cos è un modello Caratteristiche dei modelli etodi formali Esempi per sistemi semplici 26-febbraio-02 Terza Universita degli studi di Roma G.U -FdA- odelli di Processi Descrizione o realizzazione di un fenomeno o di un oggetto, che evidenzia alcuni aspetti di interesse ESEPI odello in scala odello analogico odello grafico odello matematico* Realismo Astrazione * gli unici manipolabili in calcolatore. QUANTO DEVE ESSERE DETTAGLIATO UN ODELLO? Dipende dallo specifico caso. Esistono poche regole e l esperienza. Spesso si inizia con un modello semplice poi si è costretti ad affinarlo. x& = f(x,u) G.U -FdA- 2

2 Statici Una tassonomia dei odelli Dinamici Deterministici Param. concentrati Stocastici P. distribuiti Studiamo questi Stazionari Lineari Nonlineari Tempo-varianti Tempo discreto Tempo continuo semplicità d uso aderenza alla realtà G.U -FdA- 3 odelli Deterministici e non Il modello è deterministico quando sono ben noti tutti gli ingressi applicati τ(t) τ(t) pressione esercitata dal vento Esempio di situazione deterministica: pendolo soggetto a una coppia τ(t) nota, descrivibile come funzione. Esempio di situazione non deterministica: pendolo soggetto a una coppia τ(t) derivante dalla pressione dal vento (caos dovuto a vorticosità). Caso non deterministico: non si può/interessa determinare con esattezza il moto del pendolo istante per istante, si usa una modellazione stocastica: si usano grandezze statistiche, invece di quelle istantanee (ad es. la media, la varianza, ecc..). Il modello matematico è lo stesso, cambia il modo di impiegarlo G.U -FdA- 4

3 out lineare Linearità Sulle caratteristiche statiche (a regime) non lineare in y=f(x) LINEARE y = kx y = y =z dx x è lineare se y = f ( ax+ bx2) = af ( x) + bf ( x2) = ay+ by2 detto PRINCIPIO DI SOVRAPPOSIZIONE NON LINEARE 2 y = x y = x y = sign( x) y = e x G.U -FdA- 5 x(t) Utilità Della Linearità y(t) da x(t) y(t) x(t) y(t) e Kx(t) si deduce Ky(t) Kx(t) si deduce Ky(t) stessa frequenza!!!! Si intuisce che la conoscenza necessaria sul sistema si riduce notevolmente: il modello può essere compattato G.U -FdA- 6

4 Altre proprietà Tempo varianti (non stazionari) y = k( t) x F = () t a (analogo ad un missile che consuma il propellente) Tempo discreto Tc t Tc t Invece di eq. differenziali, eq. alle differenze: Es. Programmi di simulazione sul computer. x + = bx + au k k k G.U -FdA- 7 in out causale G.U -FdA- 8

5 Parametri Distribuiti t x x 2 T t 2 t T=T(x,t) x x 2 Es.: barretta riscaldata ad un estremità Equazione differenziale alle derivate parziali Difficilissima da trattare in generale x T x, x 2 =sensori di temperatura F HG f T T T,, t x I KJ = Soluzione Considerare N elementi(detti elementi finiti) con T= costante all interno T T 2 T 3 T 4... T N Per ognuno scrivere un equazione ottenendo N equazioni differenziali ordinarie G.U -FdA- 9 modello grafico f ES: Sistema assa - Smorzatore x,v D v = x& livello di astrazione equazione dv = ( f vd ) diagrammi f v Si perde il meccanismo FISICO odello in scala: non riportabile qui in quanto non è informazione G.U -FdA- 0

6 ES: Sistema assa - Smorzatore ATTENZIONE al livello di dettaglio fenomeni molto lenti: f D dv 0 f = v D fenomeni molto veloci f Ke m e inoltre F non è costante con la velocità di spostamento Il modello ottimo va determinato in base alle esigenze del problema G.U -FdA- ES2: Circuito RL R L anche questo è un modello POSSIBILI ODELLI v(t) = Ri(t) + L di v i t Quello in scala ha l inconveniente di non essere informazione pura G.U -FdA- 2

7 ES2: Circuito RL A: Se la frequenza è molto bassa Se la frequenza è molto alta ed esistono altre varianti importanti Il modello ottimo va determinato in base alle esigenze del problema capacità parassita G.U -FdA- 3 ES3: assa molla smorzatore f K molla: f e = - K x x smorzatore: x=0 riposo della molla G.U -FdA- 4

8 ES4: 2 masse molla ( ) mx && = f+ K x x Dx& mx && = Kx ( x) Dx& G.U -FdA- 5

9 Pendolo u θ L Coppie input gravità inerzia u τ g L = Lsinθ 2 g θ=0 g (pendoli al lavoro) bilanciamento delle coppie: J & ω = coppie J&& θ = u glsinθ equazione NON lineare ma valida per ogni θ G.U -FdA- 8 Passi per modellare un Σ Diagramma schematico del sistema e definizione delle variabili Derivazione delle equazioni matematiche dei componenti elementari (blocchi). Interconnessione dei modelli elementari Validazione sperimentale (confronto tra simulazioni e esperimenti) eq. di equilibrio Kirchoff: Σ elettrici Lagrange: Σ meccanici Bernoulli: Σ idraulici utili ALTERNATIVAENTE Identificazione del modello dalle misure (legame ingresso-uscita) G.U -FdA- 9

10 Le equazioni di Lagrange d L L q& q i i = u i L = T U T : en. cinetica U : en. potenziale ES7: Un Σ meccanico Indispensabili nel caso dei robot industriali q i : coord. Lagrangiane (posizioni) q: angolo dalla verticale u: coppia al fulcro 2 T = Iq& U = U0 gd cos q 2 d L d T d = = aiq& f = Iq&& q& i q& i L U = = gdsinaf q q q af af Iq&& + gd sin q = u( t) d Anche qui si possono scrivere 2 eqs del ord G.U -FdA- 20 v = 0 t L di + C i(τ)dτ+v c(0) + Ri(t) = v i (t) 0 L d 2 i 2 + R di + C i(t) = dv i v u = Ri(t) ES8: Un Σ elettrico v i + L C i + v c R Un eq. del 2 ordine Oppure... v u L di = v ( c (t) + Ri )+ v i (t) C dv c = i(t) v u = Ri(t) Due eq. del ordine G.U -FdA- 2

11 Due formati standard a) Un equazione differenziale di ordine N a d N y d u N + L+ a y t b but N 0 () = + L+ 0 () Tipi di odelli matematici Relazione ingresso - uscita R S T b) N equazioni differenziali di ordine N x& = a x + b u h h k k N x& = a x + b u N Nh h Nk k dove X è lo STATO Relazione ingresso - stato per ora assumiamo che l uscita sia uno degli stati a lo stato è qualcosa di più di una sostituzione di variabili... G.U -FdA- 22 Ingresso G( ) Deriva da un'equazione differenziale in cui compaiono l'ingresso u(t) e l'uscita y(t) Rappr. Ingresso-Uscita Uscita un operatore lineare (e.g. risposta armonica) a d n y t a d y t ayt b d m () () u () t b dut () n n + L () = m m + L + + but 0 () Per sistemi relativamente semplici Grande semplicità di impiego x SISO; esteso a IO diviene complesso Possibilità di incorporare semplicemente dati sperimentali etodi grafici Requisito essenziale: LINEARITA' G.U -FdA- 23

12 Rappresentaz. Ingresso - Stato - Uscita Basato sulla descrizione dei processi nel dominio del tempo. Ingressi Sistema di eq. differenz. Stato Combinaz. istantanea Uscite stessa trattazione per sistemi IO e SISO enfasi sui fenomeni interni al processo (e.g. istabilità di grandezze non "osservabili") procedure di calcolo automatizzato (per ottenere prestazioni migliori) estensione a sistemi non-stazionari e non-lineari G.U -FdA- 24 Variabili di Stato 26-febbraio-02 Terza Universita degli studi di Roma G.U -FdA-

13 Cosa sono le VdS? Per il principio di causalità, esiste un insieme (minimo) di variabili fisiche che, ad un dato istante, determinano l'evoluzione futura del sistema, in assenza di eccitazioni esterne. Queste sono le Variabili di Stato del sistema. G.U -FdA- 26

14 odelli con le VdS Σ non lineare & RST x& = f( x, u) y= g( x, u) G.U -FdA- 28

15 Linearizzazione 26-febbraio-02 Terza Universita degli studi di Roma G.U -FdA- Si opera attorno ad un punto di equilibrio. Per modelli nello stato:.equilibrio: calcolare x& = f ( x, u) x, u : f ( x, u ) = Linearizzazione 2.variazioni x = x + x, u= u + u espansione in serie di Taylor equazioni linearizzate f ( x, u) = f ( x, u ) + f ( x, u ) x + f ( x, u ) u Se #(var. di stato) o #(ingressi) >, f x e f u sono jacobiani 0 0 x 0 0 u 0 0 f x = R S T f f L x xn V O f fn fn x x G.U -FdA- 3 n U W u = R S T f u f u n L O f u n f u n n U V W

16 Pendolo linearizzato u θ L J & ω = coppie J&& θ = u glsinθ q& = ω & ω = glsin( q) + u θ=0 g pto di equilibrio per u 0 dato u0 ω0 = 0; q0 = arcsin gl variazioni intorno all equil. equaz. linearizzate dsin( q) q= q q ; ω = ω ω ; u = u u ; q& = ω & ω = gl cos( q0) q + u dq = q q0 G.U -FdA- 33 La linearizzazione operata dalla controreazione Relazione lineare desiderata: y=x Relazione non lineare reale: y=v+0.v 3 =f(v) v Open loop f(v) y x + - e v y K v+0.v 3 Closed loop: e=x-y v=ke K(x-y)+0.K 3 (x-y) 3 -y Risolvere per K si ha (x-y) 3 =0 x=y! altra soluzione a f a f 3 K x y y x y + 3 = 0 0. K y = x K Kx y y 0. 3 a f Diminuisce quando K diminuisce G.U -FdA- 34

17 20 y...risultati Numerici open closed K= x 5 x open K=0 K= G.U -FdA- 35

Fondamenti di Automatica

Fondamenti di Automatica Fondamenti di Automatica Introduzione e modellistica dei sistemi Introduzione allo studio dei sistemi Modellistica dei sistemi dinamici elettrici Modellistica dei sistemi dinamici meccanici Modellistica

Dettagli

SISTEMI DINAMICI A TEMPO CONTINUO. Classificazione dei sistemi dinamici

SISTEMI DINAMICI A TEMPO CONTINUO. Classificazione dei sistemi dinamici SISTEMI DINAMICI A TEMPO CONTINUO Concetti fondamentali Classificazione dei sistemi dinamici Movimento ed equilibrio Sistemi lineari Linearizzazione Stabilità Illustrazioni dal Testo di Riferimento per

Dettagli

Modellistica. Cos è un modello Caratteristiche dei modelli Metodi formali Esempi per sistemi semplici

Modellistica. Cos è un modello Caratteristiche dei modelli Metodi formali Esempi per sistemi semplici Modellstca Cos è un modello Caratterstche de modell Metod formal Esemp per sstem semplc (ved Marro par. 1.1, 1.4) (ved Vtell-Petternella par. I.1, I.1.1, I.1.2, I.2, I.2.1 ) Automatca ROMA TRE Stefano

Dettagli

Controlli Automatici LA Introduzione all'analisi dei sistemi dinamici

Controlli Automatici LA Introduzione all'analisi dei sistemi dinamici Introduzione all'analisi dei sistemi dinamici lineari Prof. Carlo Rossi DEIS-Università di Bologna Tel. 5 2932 Email: crossi@deis.unibo.it URL: www-lar.deis.unibo.it/~crossi. 2. movimento e stabilità del

Dettagli

Controlli Automatici LA Introduzione all'analisi dei sistemi dinamici lineari

Controlli Automatici LA Introduzione all'analisi dei sistemi dinamici lineari Controlli Automatici LA Introduzione all'analisi dei sistemi dinamici lineari Prof. Carlo Rossi DEIS-Università di Bologna Tel. 051 2093020 Email: crossi@deis.unibo.it URL: www-lar.deis.unibo.it/~crossi

Dettagli

La Retroazione. automatica ROMA TRE Stefano Panzieri- 1

La Retroazione. automatica ROMA TRE Stefano Panzieri- 1 La Retroazione Catena aperta e catena chiusa Regolazione / Asservimento Controllo del moto e controllo di processo Sensibilità alle variazioni parametriche Banda Critica Controllo ad alto guadagno Influenza

Dettagli

Fondamenti di Automatica. Unità 3 Equilibrio e stabilità di sistemi dinamici

Fondamenti di Automatica. Unità 3 Equilibrio e stabilità di sistemi dinamici Fondamenti di Automatica Unità 3 Equilibrio e stabilità di sistemi dinamici Equilibrio e stabilità di sistemi dinamici Equilibrio di sistemi dinamici Linearizzazione di sistemi dinamici Stabilità interna

Dettagli

Sistemi e modelli matematici

Sistemi e modelli matematici 0.0. 1.1 1 Sistemi e modelli matematici L automazione è un complesso di tecniche volte a sostituire l intervento umano, o a migliorarne l efficienza, nell esercizio di dispositivi e impianti. Un importante

Dettagli

Sistemi Dinamici a Tempo Continuo

Sistemi Dinamici a Tempo Continuo Parte 2 Aggiornamento: Febbraio 2012 Parte 2, 1 T Sistemi Dinamici a Tempo Continuo Ing. Roberto Naldi DEIS-Università di Bologna Tel. 051 2093876 Email: roberto.naldi@unibo.it URL: www-lar.deis.unibo.it/~rnaldi

Dettagli

Fondamenti di Automatica

Fondamenti di Automatica Equilibrio e stabilità di sistemi dinamici Linearizzazione di sistemi dinamici Stabilità interna di sistemi dinamici Stabilità interna di sistemi dinamici LTI Criteri di stabilità per sistemi dinamici

Dettagli

01AYS / 07AYS - FONDAMENTI DI AUTOMATICA Tipologia degli esercizi proposti nel compito del 16/XI/2007

01AYS / 07AYS - FONDAMENTI DI AUTOMATICA Tipologia degli esercizi proposti nel compito del 16/XI/2007 1 01AYS / 07AYS - FONDAMENTI DI AUTOMATICA Tipologia degli esercizi proposti nel compito del 16/XI/2007 Esercizio 1 - Date le matrici A = 2p 1 1 2p 2 C = 1 p di un modello LTI in variabili di stato a tempo

Dettagli

Equazioni differenziali. Elisabetta Colombo

Equazioni differenziali. Elisabetta Colombo Corso di Approfondimenti di Matematica per Biotecnologie, Anno Accademico 2018-2019, http://users.mat.unimi.it/users/colombo/programmabio.html Eq. diff. 1 2 Un equazione differenziale e un equazione che

Dettagli

Sistemi dinamici Introduzione Descrizione Soluzione Funzione di trasferimento Stabilità Regime permanente

Sistemi dinamici Introduzione Descrizione Soluzione Funzione di trasferimento Stabilità Regime permanente Controlli Automatici (AUT) - 09AKSBL Sistemi dinamici Introduzione Descrizione Soluzione Funzione di trasferimento Stabilità Regime permanente Sistemi dinamici - Introduzione Concetto di sistema. Si parla

Dettagli

Equazioni differenziali. Elisabetta Colombo

Equazioni differenziali. Elisabetta Colombo Corso di Approfondimenti di Matematica per Biotecnologie, Anno Accademico 2011-2012, http://users.mat.unimi.it/users/colombo/programmabio.html Inversa Eq. diff. 1 Un equazione differenziale e un equazione

Dettagli

Lezione XXVI Sistemi vibranti a 1 gdl 9,%5$=,21,75$16,725,(

Lezione XXVI Sistemi vibranti a 1 gdl 9,%5$=,21,75$16,725,( ezione XXVI 9,%5$=,,75$6,75,( Quando un sistema dinamico viene sollecitato da una eccitazione non periodica applicata improvvisamente, come nel caso di un impulso, le risposte a tali eccitazioni sono dette

Dettagli

1 Equazioni Differenziali

1 Equazioni Differenziali Equazioni Differenziali Un equazione differenziale è un equazione che esprime un legame tra una variabile indipendente x (o t, quando ci riferiamo al tempo) una variabile dipendente y o incognita che sta

Dettagli

Applicazioni delle leggi della meccanica: moto armnico

Applicazioni delle leggi della meccanica: moto armnico Applicazioni delle leggi della meccanica: moto armnico Discutiamo le caratteristiche del moto armonico utilizzando l esempio di una molla di costante k e massa trascurabile a cui è fissato un oggetto di

Dettagli

Lezione 2. Sistemi dinamici a tempo continuo. F. Previdi - Automatica - Lez. 2 1

Lezione 2. Sistemi dinamici a tempo continuo. F. Previdi - Automatica - Lez. 2 1 Lezione 2. Sistemi dinamici a tempo continuo F. Previdi - Automatica - Lez. 2 1 Schema della lezione 1. Cos è un sistema dinamico? 2. Modellistica dei sistemi dinamici 3. Il concetto di dinamica 4. Sistemi

Dettagli

SISTEMI LINEARI E STAZIONARI A TEMPO CONTINUO

SISTEMI LINEARI E STAZIONARI A TEMPO CONTINUO SISTEMI LINEARI E STAZIONARI A TEMPO CONTINUO Movimento ed equilibrio Stabilità Illustrazioni dal Testo di Riferimento per gentile concessione degli Autori MOVIMENTO ED EQUILIBRIO Sistema lineare e stazionario

Dettagli

Modellistica dei Sistemi Elettrici

Modellistica dei Sistemi Elettrici 1 Corso di Fondamenti di Automatica A.A. 2017/18 Modellistica dei Sistemi Elettrici Prof. Carlo Cosentino Dipartimento di Medicina Sperimentale e Clinica Università degli Studi Magna Graecia di Catanzaro

Dettagli

Modellistica dei Sistemi Elettrici

Modellistica dei Sistemi Elettrici Prof. Carlo Cosentino Fondamenti di Automatica, A.A. 206/7 Corso di Fondamenti di Automatica A.A. 206/7 Modellistica dei Sistemi Elettrici Prof. Carlo Cosentino Dipartimento di Medicina Sperimentale e

Dettagli

Introduzione e modellistica dei sistemi

Introduzione e modellistica dei sistemi Introduzione e modellistica dei sistemi Modellistica dei sistemi dinamici meccanici Sistemi meccanici in traslazione: elementi base Sistemi in traslazione: equazioni del moto Sistemi in traslazione: rappresentazione

Dettagli

Teoria dei Sistemi Dinamici

Teoria dei Sistemi Dinamici Teoria dei Sistemi Dinamici 01GTG - 0GTG Soluzione dell Esame del 03/11/009 1 Esercizio 1 Sistema meccanico 1.1 Testo Si consideri il sistema meccanico planare schematizzato nella Fig. 1, descritto come

Dettagli

Ingegneria Elettrica Politecnico di Torino. Luca Carlone. ControlliAutomaticiI LEZIONE I

Ingegneria Elettrica Politecnico di Torino. Luca Carlone. ControlliAutomaticiI LEZIONE I Ingegneria Elettrica Politecnico di Torino Luca Carlone ControlliAutomaticiI LEZIONE I Sommario LEZIONE I Introduzione al concetto di sistema Notazione e tassonomia Rappresentazione in variabili di stato

Dettagli

Oscillazioni. Si produce un oscillazione quando un sistema viene perturbato rispetto a una posizione di equilibrio stabile

Oscillazioni. Si produce un oscillazione quando un sistema viene perturbato rispetto a una posizione di equilibrio stabile Oscillazioni Si produce un oscillazione quando un sistema viene perturbato rispetto a una posizione di equilibrio stabile Caratteristica più evidente del moto oscillatorio è di essere un moto periodico,

Dettagli

SISTEMI ELEMENTARI. Prof. Laura Giarré https://giarre.wordpress.com/ca/ Sistemi Elementari CA Prof.

SISTEMI ELEMENTARI. Prof. Laura Giarré https://giarre.wordpress.com/ca/ Sistemi Elementari CA Prof. SISTEMI ELEMENTARI Prof. Laura Giarré Laura.Giarre@UNIMORE.IT https://giarre.wordpress.com/ca/ Sistemi Elementari CA 2017 2018 Prof. Laura Giarré 1 Principi di modellistica Problema: determinare il modello

Dettagli

ẋ 1 = 2x 1 + (sen 2 (x 1 ) + 1)x 2 + 2u (1) y = x 1

ẋ 1 = 2x 1 + (sen 2 (x 1 ) + 1)x 2 + 2u (1) y = x 1 Alcuni esercizi risolti su: - calcolo dell equilibrio di un sistema lineare e valutazione delle proprietà di stabilità dell equilibrio attraverso linearizzazione - calcolo del movimento dello stato e dell

Dettagli

01. Modelli di Sistemi

01. Modelli di Sistemi Controlli Automatici 01. Modelli di Sistemi Prof. Cesare Fantuzzi Ing. Cristian Secchi Ing. Federica Ferraguti ARSControl - DISMI - Università di Modena e Reggio Emilia E-mail: {nome.cognome}@unimore.it

Dettagli

Meccanica Applicata alle Macchine

Meccanica Applicata alle Macchine Meccanica Applicata alle Macchine 06-11-013 TEMA A 1. Un cilindro ed una sfera omogenei di uguale massa m ed uguale raggio r sono collegati tra loro da un telaio di massa trascurabile mediante coppie rotoidali

Dettagli

equazioni DOCENTE: Vincenzo Pappalardo MATERIA: Matematica differenziali

equazioni DOCENTE: Vincenzo Pappalardo MATERIA: Matematica differenziali equazioni DOCENTE: Vincenzo Pappalardo MATERIA: Matematica differenziali definizione equazione differenziale Equazioni differenziali del 1 ordine esempio 2y + y' = 4x FORMA NORMALE y' = 4x 2y Data l

Dettagli

Sistemi Dinamici. Corrado Santoro

Sistemi Dinamici. Corrado Santoro ARSLAB - Autonomous and Robotic Systems Laboratory Dipartimento di Matematica e Informatica - Università di Catania, Italy santoro@dmi.unict.it Programmazione Sistemi Robotici Definizione di Sistema Un

Dettagli

Modellistica dei Sistemi Meccanici

Modellistica dei Sistemi Meccanici 1 Prof. Carlo Cosentino Fondamenti di Automatica, A.A. 016/17 Corso di Fondamenti di Automatica A.A. 016/17 odellistica dei Sistemi eccanici Prof. Carlo Cosentino Dipartimento di edicina Sperimentale e

Dettagli

Modelli matematici di sistemi dinamici

Modelli matematici di sistemi dinamici Modelli matematici di sistemi dinamici Modelli di sistemi dinamici lineari, tempo-invarianti Sistemi di equazioni differenziali lineari a coefficienti costanti Similarita` nel modellare fenomeni fisici

Dettagli

Soluzione della prova scritta di Analisi Matematica II del 15 Aprile 2009 (Ingegneria Edile e Architettura)

Soluzione della prova scritta di Analisi Matematica II del 15 Aprile 2009 (Ingegneria Edile e Architettura) Soluzione della prova scritta di Analisi Matematica II del 5 Aprile 009 Ingegneria Edile e Architettura x. Calcolare J = ds essendo γ la curva ottenuta intersecando γ + y il cilindro di equazione x + y

Dettagli

Elementi di Teoria dei Sistemi

Elementi di Teoria dei Sistemi Parte 2, 1 Elementi di Teoria dei Sistemi Parte 2, 2 Definizione di sistema dinamico Parte 2, 3 Sistema dinamico a tempo continuo Ingresso Uscita Parte 2, 4 Cosa significa Dinamico?? e` univocamente determinata?

Dettagli

Esame di FONDAMENTI DI AUTOMATICA (9 CFU) SOLUZIONE

Esame di FONDAMENTI DI AUTOMATICA (9 CFU) SOLUZIONE Esame di FONDAMENTI DI AUTOMATICA (9 CFU) Prova scritta 9 giugno 2017 SOLUZIONE ESERCIZIO 1. Si consideri un altoparlante ad attrazione magnetica per la riproduzione sonora, rappresentato dalla seguente

Dettagli

Elementi di Teoria dei Sistemi. Definizione di sistema dinamico. Cosa significa Dinamico? Sistema dinamico a tempo continuo

Elementi di Teoria dei Sistemi. Definizione di sistema dinamico. Cosa significa Dinamico? Sistema dinamico a tempo continuo Parte 2, 1 Parte 2, 2 Elementi di Teoria dei Sistemi Definizione di sistema dinamico Parte 2, 3 Sistema dinamico a tempo continuo Cosa significa Dinamico? Parte 2, 4? e` univocamente determinata? Ingresso

Dettagli

Equazioni differenziali II. Elisabetta Colombo

Equazioni differenziali II. Elisabetta Colombo Corso di Approfondimenti di Matematica per Biotecnologie, Anno Accademico 2011-2012, http://users.mat.unimi.it/users/colombo/programmabio.html Eq. diff.ii Eq. diff.ii 1 2 I differenziali Esercizio Quali

Dettagli

Prova Scritta di di Meccanica Analitica. 11 febbraio Problema 1

Prova Scritta di di Meccanica Analitica. 11 febbraio Problema 1 Prova Scritta di di Meccanica Analitica 11 febbraio 019 Problema 1 Si consideri un punto materiale P di massa m vincolato a muoversi su una retta orizzontale e connesso mediante una molla di costante elastica

Dettagli

Compito 19 Luglio 2016

Compito 19 Luglio 2016 Compito 19 Luglio 016 Roberto onciani e Paolo Dore Corso di Fisica Generale 1 Università degli Studi di Roma La Sapienza Anno Accademico 015-016 Compito di Fisica Generale I per matematici 19 Luglio 016

Dettagli

Risposta temporale: esempi

Risposta temporale: esempi ...4 Risposta temporale: esempi Esempio. Calcolare la risposta al gradino unitario del seguente sistema: x(t) = u(t) s + 5 (s + )(s + ) y(t) Il calcolo della trasformata del segnale di uscita è immediato:

Dettagli

cos( ωt + ϕ)= Re v t = V o e jωt cos ωt + ϕ vt ()=V o e jϕ che è un numero complesso costante, di modulo V O ed e jωt = cos ωt + j sinωt

cos( ωt + ϕ)= Re v t = V o e jωt cos ωt + ϕ vt ()=V o e jϕ che è un numero complesso costante, di modulo V O ed e jωt = cos ωt + j sinωt . METODO SIMBOLIO, O METODO DEI FASORI..Introduzione Questo metodo applicato a reti lineari permanenti consente di determinare la soluzione in regime sinusoidale solamente per quanto attiene il regime

Dettagli

Derivata materiale (Lagrangiana) e locale (Euleriana)

Derivata materiale (Lagrangiana) e locale (Euleriana) ispense di Meccanica dei Fluidi 0 0 det 0 = [ (0 ) + ( ( ) ) + (0 0 ) ] = 0. Pertanto, v e µ sono indipendenti tra loro e costituiscono una nuova base. Con essi è possibile descrivere altre grandezze,

Dettagli

4 Analisi nel dominio del tempo delle rappresentazioni in

4 Analisi nel dominio del tempo delle rappresentazioni in Indice del libro Alessandro Giua, Carla Seatzu Analisi dei sistemi dinamici, Springer-Verlag Italia, II edizione, 2009 Pagina web: http://www.diee.unica.it/giua/asd/ Prefazione.....................................................

Dettagli

Introduzione e modellistica dei sistemi

Introduzione e modellistica dei sistemi Introduzione e modellistica dei sistemi Modellistica dei sistemi dinamici elettrici Elementi fondamentali Rappresentazione in variabili di stato Esempi di rappresentazione in variabili di stato Modellistica

Dettagli

CONTROLLI AUTOMATICI Ingegneria Gestionale MODELLI DI SISTEMI

CONTROLLI AUTOMATICI Ingegneria Gestionale  MODELLI DI SISTEMI CONTROLLI AUTOMATICI Ingegneria Gestionale http://www.automazione.ingre.unimore.it/pages/corsi/controlliautomaticigestionale.htm MODELLI DI SISTEMI Ing. Federica Grossi Tel. 059 2056333 e-mail: federica.grossi@unimore.it

Dettagli

Modelli matematici di di sistemi dinamici

Modelli matematici di di sistemi dinamici Modelli matematici di di sistemi dinamici Modelli di sistemi dinamici lineari, tempo-invarianti Sistemi di equazioni differenziali lineari a coefficienti costanti Similarita` nel modellare fenomeni fisici

Dettagli

Oscillazioni. Si produce un oscillazione quando un sistema viene perturbato rispetto a una posizione di equilibrio stabile

Oscillazioni. Si produce un oscillazione quando un sistema viene perturbato rispetto a una posizione di equilibrio stabile Oscillazioni Si produce un oscillazione quando un sistema viene perturbato rispetto a una posizione di equilibrio stabile Caratteristica più evidente del moto oscillatorio è di essere un moto periodico,

Dettagli

CONTROLLI AUTOMATICI Ingegneria Meccanica e Ingegneria del Veicolo. SISTEMI E MODELLI

CONTROLLI AUTOMATICI Ingegneria Meccanica e Ingegneria del Veicolo.   SISTEMI E MODELLI CONTROLLI AUTOMATICI Ingegneria Meccanica e Ingegneria del Veicolo http://www.dii.unimore.it/~lbiagiotti/controlliautomatici.html SISTEMI E MODELLI Ing. e-mail: luigi.biagiotti@unimore.it http://www.dii.unimore.it/~lbiagiotti

Dettagli

Prova Scritta di di Meccanica Analitica. 28 Giugno Problema 1. Si consideri un punto materiale di massa unitaria soggetto ad un potenziale

Prova Scritta di di Meccanica Analitica. 28 Giugno Problema 1. Si consideri un punto materiale di massa unitaria soggetto ad un potenziale Prova Scritta di di Meccanica Analitica 8 Giugno 018 Problema 1 Si consideri un punto materiale di massa unitaria soggetto ad un potenziale V (x) = 1 x + x x > 0 determinare le frequenze delle piccole

Dettagli

Foglio di Esercizi 7 Meccanica Razionale a.a. 2018/19 Canale A-L (P. Buttà)

Foglio di Esercizi 7 Meccanica Razionale a.a. 2018/19 Canale A-L (P. Buttà) Foglio di Esercizi 7 Meccanica Razionale a.a. 018/19 Canale A-L P. Buttà Esercizio 1. Sia {O; x, y, z} un sistema di riferimento ortonormale con l asse z diretto secondo la verticale ascendente. Un punto

Dettagli

Dinamica delle Strutture

Dinamica delle Strutture Corso di Laurea magistrale in Ingegneria Civile e per l Ambiente e il Territorio Dinamica delle Strutture Prof. Adolfo SANTINI Ing. Francesco NUCERA Prof. Adolfo Santini - Dinamica delle Strutture 1 Dinamica

Dettagli

Appello di Sistemi Dinamici Prova scritta del 22 settembre 2017

Appello di Sistemi Dinamici Prova scritta del 22 settembre 2017 Appello di Sistemi Dinamici Prova scritta del 22 settembre 2017 ẋ = x(µ x 2 )(x µ + 2) 2. Si calcoli la matrice esponenziale della matrice [ ] 2 4. 0 2 3. Dato il sistema differenziale lineare non omogeneo

Dettagli

Esonero 17 Novembre 2017

Esonero 17 Novembre 2017 Esonero 7 Novembre 207 Roberto Bonciani e Paolo Dore Corso di Fisica Generale Università degli Studi di Roma La Sapienza Anno Accademico 207-208 Esercizio Un punto materiale P di massa m = g è appoggiato

Dettagli

Sistemi Dinamici a Tempo Continuo

Sistemi Dinamici a Tempo Continuo Parte 2 Aggiornamento: Settembre 2010 Parte 2, 1 Sistemi Dinamici a Tempo Continuo Prof. Lorenzo Marconi DEIS-Università di Bologna Tel. 051 2093788 Email: lmarconi@deis.unibo.it URL: www-lar.deis.unibo.it/~lmarconi

Dettagli

Prof. Capuzzimati Mario - ITIS Magistri Cumacini - Como SISTEMI

Prof. Capuzzimati Mario - ITIS Magistri Cumacini - Como SISTEMI Sistemi - Definizioni SISTEMI DEFINIZIONI SISTEMA: insieme di elementi, parti, che interagiscono coordinati per svolgere una deteminata funzione. COMPONENTI: parti di cui il sistema è costituito. PARAMETRI:

Dettagli

Traiettorie nello spazio degli stati

Traiettorie nello spazio degli stati . Traiettorie nello spazio degli stati Per mostrare i tipici andamenti delle traiettorie nello spazio degli stati in funzione della posizione dei poli del sistema si farà riferimento ad un esempio: un

Dettagli

Compito di Meccanica Razionale

Compito di Meccanica Razionale Compito di Meccanica Razionale Corso di Laurea in Ingegneria Aerospaziale 30 Gennaio 207 (usare fogli diversi per esercizi diversi) Primo Esercizio Si fissi in un piano un sistema di riferimento Oxy. In

Dettagli

Classificazione di sistemi dinamici Esercizi risolti. 1 Esercizio (proposto il 16/11/2007, es. #12)

Classificazione di sistemi dinamici Esercizi risolti. 1 Esercizio (proposto il 16/11/2007, es. #12) Classificazione di sistemi dinamici Esercizi risolti 1 Esercizio (proposto il 16/11/2007, es. #12) Dato il sistema descritto dalle seguenti equazioni: x 1 (k +1) 2x 2 (k)+cos(u(k)) x 2 (k +1) x 1 (k) y(k)

Dettagli

Lezione 7: Sistemi ad un grado di libertà: l oscillatore elementare (7)

Lezione 7: Sistemi ad un grado di libertà: l oscillatore elementare (7) Lezione 7: Sistemi ad un grado di libertà: l oscillatore elementare (7) Federico Cluni 19 marzo 015 1 Pseudo accelerazione La risposta di un oscillatore elementare con massa m, fattore di smorzamento ν,

Dettagli

Prefazione 3. Ringraziamenti 5

Prefazione 3. Ringraziamenti 5 Indice Prefazione 3 Ringraziamenti 5 1 Introduzione all uso del software di calcolo MATLAB 7 1.1 Caratteristiche del software MATLAB 7 1.2 Nozioni di base del MATLAB 8 1.3 Assegnazione di variabili scalari

Dettagli

Compito di Analisi e simulazione dei sistemi dinamici - 06/02/2003. p 2 3 x p 2 y = [1 1 0] x

Compito di Analisi e simulazione dei sistemi dinamici - 06/02/2003. p 2 3 x p 2 y = [1 1 0] x Compito di Analisi e simulazione dei sistemi dinamici - 06/02/2003 Esercizio 1. Dato il seguente sistema lineare tempo invariante, SISO: p 2 3 ẋ = 0 p 2 1 x + 0 1 p 2 y = [1 1 0] x 1 p 3 0 u Si calcoli

Dettagli

SISTEMI e MODELLI. Prof. Laura Giarré https://giarre.wordpress.com/ca/ Sistemi e Modelli CA Prof.

SISTEMI e MODELLI. Prof. Laura Giarré https://giarre.wordpress.com/ca/ Sistemi e Modelli CA Prof. SISTEMI e MODELLI Prof. Laura Giarré Laura.Giarre@UNIMORE.IT https://giarre.wordpress.com/ca/ Sistemi e Modelli CA 2017 2018 Prof. Laura Giarré 1 Sistemi e Modelli - Dal sistema ad un modello Sistema:

Dettagli

FONDAMENTI DI CONTROLLI AUTOMATICI Ingegneria Meccanica. SISTEMI E MODELLI

FONDAMENTI DI CONTROLLI AUTOMATICI Ingegneria Meccanica.  SISTEMI E MODELLI FONDAMENTI DI CONTROLLI AUTOMATICI Ingegneria Meccanica http://web.ing.unimo.it/~lbiagiotti/fondamenticontrolli1415.html SISTEMI E MODELLI Ing. e-mail: luigi.biagiotti@unimore.it http://www.dii.unimore.it/~lbiagiotti

Dettagli

Laboratorio di Fisica I Seconda Esperienza Oscillazioni armoniche del sistema Massa Molla

Laboratorio di Fisica I Seconda Esperienza Oscillazioni armoniche del sistema Massa Molla Università degli Studi di Udine Corsi di Laurea in Ingegneria Laboratorio di Fisica I Seconda Esperienza Oscillazioni armoniche del sistema Massa Molla 1 Introduzione In tale esperienza si considera lo

Dettagli

02. Modelli Matematici: Derivazione

02. Modelli Matematici: Derivazione Controlli Automatici 02. Modelli Matematici: Derivazione Prof. Cesare Fantuzzi Ing. Cristian Secchi Ing. Federica Ferraguti ARSControl - DISMI - Università di Modena e Reggio Emilia E-mail: {nome.cognome}@unimore.it

Dettagli

Analisi del moto dei proietti

Analisi del moto dei proietti Moto dei proietti E il moto di particelle che vengono lanciate con velocità iniziale v 0 e sono soggette alla sola accelerazione di gravità g supposta costante. La pallina rossa viene lasciata cadere da

Dettagli

FM210 - Fisica Matematica I

FM210 - Fisica Matematica I FM21 - Fisica Matematica I Seconda Prova Scritta [16-2-212] Soluzioni Problema 1 1. Chiamiamo A la matrice del sistema e cerchiamo anzitutto gli autovalori della matrice: l equazione secolare è (λ + 2β)λ

Dettagli

Elementi di Teoria dei Sistemi. Definizione di sistema dinamico. Cosa significa Dinamico? Sistema dinamico a tempo continuo

Elementi di Teoria dei Sistemi. Definizione di sistema dinamico. Cosa significa Dinamico? Sistema dinamico a tempo continuo Parte 2, 1 Parte 2, 2 Elementi di Teoria dei Sistemi Definizione di sistema dinamico Parte 2, 3 Sistema dinamico a tempo continuo Cosa significa Dinamico? Parte 2, 4? e` univocamente determinata? Ingresso

Dettagli

Compito di Istituzioni di Fisica Matematica 8 Luglio 2013

Compito di Istituzioni di Fisica Matematica 8 Luglio 2013 Compito di Istituzioni di Fisica Matematica 8 Luglio 203 (usare fogli diversi per esercizi diversi) Primo Esercizio Si fissi un sistema di riferimento Oxyz, con asse Oz verticale ascendente. Un asta omogenea

Dettagli

DINAMICA DI SISTEMI AEROSPAZIALI

DINAMICA DI SISTEMI AEROSPAZIALI DINAICA DI SISTEI AEROSPAZIALI Tema d esame 24-02 - 2016 g f s, f d α G B A J, R d, J l ω d g O T l τ, η Esercizio 1. La gondola motore di un convertiplano, posta nel piano verticale, ha massa e momento

Dettagli

Equazioni differenziali

Equazioni differenziali 1 Equazioni differenziali Definizioni introduttive Una equazione differenziale è una uguaglianza che contiene come incognita una funzione f x, insieme con le sue derivate rispetto alla variabile indipendente

Dettagli

Tabella 1: Best 5 out of 6 es.1 es.2 es.3 es.4 es.5 es.6 somma Meccanica Razionale 1: Scritto Generale

Tabella 1: Best 5 out of 6 es.1 es.2 es.3 es.4 es.5 es.6 somma Meccanica Razionale 1: Scritto Generale Tabella 1: Best 5 out of 6 es.1 es.2 es.3 es.4 es.5 es.6 somma 5 5 5 5 5 5 30 Meccanica Razionale 1: Scritto Generale 02.02.2011 Cognome e nome:....................................matricola:......... 1.

Dettagli

Meccanica Dinamica del punto materiale

Meccanica Dinamica del punto materiale Meccanica 18-19 Dinamica del punto materiale 8 Dinamica del punto materiale Legge fondamentale della dinamica: d r ma m dt Tipi di forza: orza peso Reazione vincolare orza di attrito radente (statico,

Dettagli

DINAMICA DI SISTEMI AEROSPAZIALI

DINAMICA DI SISTEMI AEROSPAZIALI DINAMICA DI SISTEMI AEROSPAZIALI Esercizio 1. Un corsoio di massa m scorre su un piano orizzontale con attrito radente di coefficiente f d. Al corsoio, in C, è collegata la biella B C, di lunghezza b e

Dettagli

k 2 m 1 u 2 Figura 1 z 1 β m 1 ż 1 + β m 1 ż m 2 z 2 β m 2 ẋ = A x + B u y = C x + D u

k 2 m 1 u 2 Figura 1 z 1 β m 1 ż 1 + β m 1 ż m 2 z 2 β m 2 ẋ = A x + B u y = C x + D u Esercizio Si consideri il sistema meccanico riportato in Figura, dove m e m sono le masse dei carrelli, z e z sono le rispettive posizioni, k e k sono i coefficienti elastici delle molle, e β è un coefficiente

Dettagli

Modellistica e Simulazione

Modellistica e Simulazione Modellistica e Simulazione Lezione 2 21 marzo 2011 Università degli Studi del Sannio Facoltà di Ingegneria Luigi Iannelli Modellistica dei sistemi Individuazione del dominio applicativo. Decomposizione

Dettagli

, con x =, y. 3. Si disegni il grafico delle curve di livello sul piano delle fasi (x, ẋ) al variare di E e si discuta la natura qualitativa del moto.

, con x =, y. 3. Si disegni il grafico delle curve di livello sul piano delle fasi (x, ẋ) al variare di E e si discuta la natura qualitativa del moto. 7 o tutorato - MA - Prova Pre-Esonero - 8/4/5 Esercizio Una massa puntiforme m è vincolata a muoversi nel piano verticale xy (con x l asse orizzontale e y l asse verticale orientato verso l alto), su una

Dettagli

FM210 / MA - Secondo scritto ( )

FM210 / MA - Secondo scritto ( ) FM10 / MA - Secondo scritto (6-7-017) Esercizio 1. Un asta rigida omogenea di lunghezza l e massa M è vincolata a muoversi su un piano verticale di coordinate x-y (con l asse x orizzontale e l asse y verticale,

Dettagli

1. Classificazione dei sistemi e dei modelli

1. Classificazione dei sistemi e dei modelli 1. Classificazione dei sistemi e dei modelli Carla Seatzu, 1 Marzo 2008 La teoria dei sistemi e del controllo si è sempre tradizionalmente occupata dei sistemi a variabili continue modellati da equazioni

Dettagli

Punti di equilibrio: sistemi tempo continui

Punti di equilibrio: sistemi tempo continui Capitolo 3 ANALISI DELLA STABILITÀ 31 Punti di equilibrio: sistemi tempo continui Si consideri il seguente sistema tempo continuo: ẋ(t) A x(t) + B u(t) y(t) C x(t) + D u(t) I punti di equilibrio x 0 del

Dettagli

meccanica delle vibrazioni laurea magistrale ingegneria meccanica parte 1 elementi base

meccanica delle vibrazioni laurea magistrale ingegneria meccanica parte 1 elementi base E vietato ogni utilizzo diverso da quello inerente la preparazione dell esame del corso di @Units meccanica delle vibrazioni laurea magistrale ingegneria meccanica parte 1 elementi base!! Elementi fondamentali

Dettagli

3. Determinare la velocità media nell intervallo [0.5 s; 1.0 s] e confrontarla con la velocità istantanea nel punto medio di tale intervallo;

3. Determinare la velocità media nell intervallo [0.5 s; 1.0 s] e confrontarla con la velocità istantanea nel punto medio di tale intervallo; Esercizio Una particella si muove lungo una retta seguendo la legge oraria con u 3 m/s e 4 s.. Determinare in quali istanti la particella si trova nell origine;. Disegnare la legge oraria; x(t) u t ( sin

Dettagli

1 a PROVA PARZIALE DI FONDAMENTI DI AUTOMATICA A.A. 2004/ novembre Soluzione

1 a PROVA PARZIALE DI FONDAMENTI DI AUTOMATICA A.A. 2004/ novembre Soluzione a PROVA PARZIAE DI FONDAMENTI DI AUTOMATIA A.A. 24/25 9 novembre 24 Esercizio on riferimento alla funzione di trasferimento G(s) = 7s2 + 36s + 48 (s + 3)(s + 4) 2 Domanda.. Indicare i valori del guadagno,

Dettagli

Corso di Fondamenti di Sistemi Dinamici

Corso di Fondamenti di Sistemi Dinamici Introduzione al corso Fabrizio Caccavale Università degli Studi della Basilicata Informazioni generali sul corso di Fondamenti di Sistemi Dinamici Contatti e informazioni Docente: Fabrizio Caccavale. Informazioni

Dettagli

Cinematica in due o più dimensioni

Cinematica in due o più dimensioni Cinematica in due o più dimensioni Le grandezze cinematiche fondamentali: posizione, velocità, accelerazione, sono dei vettori nello spazio a due o tre dimensioni, dotati di modulo, direzione, verso. In

Dettagli

Meccanica 15Aprile 2016

Meccanica 15Aprile 2016 Meccanica 15Aprile 2016 Problema 1 (1 punto) Una pallottola di massa m= 20 g arriva con velocità V= 300 m/s, inclinata verso il basso di un anglo = 15 rispetto al piano orizzontale, su un blocco di massa

Dettagli

Equilibrio di sistemi dinamici Esercizi proposti. 1 Esercizio (derivato dall es. #8 del 18/09/2002) 2 Esercizio (proposto il 10/02/2003, es.

Equilibrio di sistemi dinamici Esercizi proposti. 1 Esercizio (derivato dall es. #8 del 18/09/2002) 2 Esercizio (proposto il 10/02/2003, es. Equilibrio di sistemi dinamici Esercizio (derivato dall es. #8 del 8/9/22) Dato il sistema dinamico, non lineare, a tempo continuo, descritto dalle seguenti equazioni: ẋ (t) = x (t).5x 2 2 (t)+4u(t) ẋ

Dettagli

FM210 - Fisica Matematica I

FM210 - Fisica Matematica I Corso di laurea in Matematica - Anno Accademico 03/4 FM0 - Fisica Matematica I Primo appello scritto [0-0-04]. (0 punti). Si consideri il sistema lineare { ẋ = αx + y + ẏ = α x + 3y con α R. (a) Si discuta

Dettagli

Università di Trieste Facoltà d Ingegneria. Esercizi sulle equazioni differenziali. Dott. Franco Obersnel

Università di Trieste Facoltà d Ingegneria. Esercizi sulle equazioni differenziali. Dott. Franco Obersnel Università di Trieste Facoltà d Ingegneria Esercizi sulle equazioni differenziali Dott Franco Obersnel Esercizio 1 Si classifichino le seguenti equazioni, come ordinarie o alle derivate parziali si dica

Dettagli

Capitolo 12. Moto oscillatorio

Capitolo 12. Moto oscillatorio Moto oscillatorio INTRODUZIONE Quando la forza che agisce su un corpo è proporzionale al suo spostamento dalla posizione di equilibrio ne risulta un particolare tipo di moto. Se la forza agisce sempre

Dettagli

Teoria dei Sistemi e Controlli Automatici M

Teoria dei Sistemi e Controlli Automatici M Teoria dei Sistemi e Controlli Automatici M 3 marzo 23 Figura : Prototipo di quadrirotore. Modello del Velivolo Si fissi un sistema di riferimento inerziale F i = {O i, i i, j i, k i } ed un sistema di

Dettagli

OSCILLATORE ARMONICO SEMPLICE

OSCILLATORE ARMONICO SEMPLICE OSCILLATORE ARMONICO SEMPLICE Un oscillatore è costituito da una particella che si muove periodicamente attorno ad una posizione di equilibrio. Compiono moti oscillatori: il pendolo, un peso attaccato

Dettagli

Soluzione Compito di Fisica Generale I Ing. Elettronica e delle Telecomunicazioni 09/06/2017

Soluzione Compito di Fisica Generale I Ing. Elettronica e delle Telecomunicazioni 09/06/2017 Soluzione Compito di Fisica Generale I Ing. Elettronica e delle Telecomunicazioni 09/06/017 Esercizio 1 1) Durante il salto dell uomo non sono presenti forze esterne impulsive, per cui la quantità di moto

Dettagli

Prova Scritta di Robotica II. 5 Aprile 2005

Prova Scritta di Robotica II. 5 Aprile 2005 Esercizio Prova Scritta di Robotica II 5 Aprile 005 Per il robot a due gradi di libertà RP in figura, in moto su un piano verticale (x, y), sono indicate le coordinate generalizzate q e q, le masse m ed

Dettagli

Elementi di Teoria dei Sistemi

Elementi di Teoria dei Sistemi Parte 2, 1 Elementi di Teoria dei Sistemi Parte 2, 2 Sistema dinamico a tempo continuo Ingresso Uscita Parte 2, 3 Cosa significa Dinamico?? e` univocamente determinata? Se la risposta e` no Sistema dinamico

Dettagli

Vibrazioni Meccaniche

Vibrazioni Meccaniche Vibrazioni Meccaniche A.A. 2-22 Esempi di scrittura dell equazione di moto per sistemi a 2 gdl Turbina Una turbina pone in rotazione un generatore elettrico per mezzo della trasmissione schematizzata in

Dettagli

Definizione di Sistema Dinamico

Definizione di Sistema Dinamico Capitolo 1. INTRODUZIONE 1.1 Definizione di Sistema Dinamico Un sistema dinamico è definito dai seguenti oggetti: Un insieme ordinato dei tempi T, Un insieme di valori di ingresso U, Un insieme di funzioni

Dettagli