Costruzioni geometriche
|
|
|
- Aurelia Romano
- 6 anni fa
- Visualizzazioni
Transcript
1 ostruzioni geometriche Un disegno tecnico è un insieme di linee che può essere facilmente tracciato con le normali attrezzature per il disegno (squadrette, matite, compassi ecc.), spesso è necessario tracciare delle linee che sono in particolari relazioni come un segmento tangente ad un arco di cerchio, per cui è necessario ricorrere a particolari costruzione geometriche che devono essere conosciute dal disegnatore. ggi con l'uso generalizzato di programmi difficilmente si è è costretti a ricorrere a queste costruzioni, la loro conoscenza comunque rimane come bagaglio di un disegnatore. Prof. armine Napoli - isegno eccanico pag di 0 Perpendicolare ad un segmento passante per un estremo ato un segmento costruire la perpendicolare passante per il suo estremo sse di un segmento L'asse di un segmento è la perpendicolare condotta ad esso e passante per il suo punto medio. 3 Prof. armine Napoli - isegno eccanico pag di 0
2 Perpendicolare ad un segmento passante per un punto esterno ad esso ivisione di un segmento in un numero n di parti uguali ' 3' 4' 5' ' Prof. armine Napoli - isegno eccanico pag 3 di 0 ivisione di un arco di centro in due parti uguali ivisione in parti uguali di un angolo formato da due semirette r ed r Individuare la bisettrice di un angolo V R r r Prof. armine Napoli - isegno eccanico pag 4 di 0
3 ostruzione della bisettrice di un angolo avente un vertice inaccessibile ondurre le tangenti ad una circonferenza di centro da un punto esterno P P R Q N R r r c P P Q Prof. armine Napoli - isegno eccanico pag 5 di 0 ostruzione di poligoni regolari Il poligono è quella parte finita di piano racchiuso da n segmenti formanti una poligonale chiusa. Un poligono si dice inscrittibile se i suoi vertici giacciono tutti su una sola circonferenza, circoscrittibile se i suoi lati sono tutti tangenti ad una sola circonferenza. Un poligono si dice regolare se ha tutti i lati e tutti gli angoli uguali. Un poligono regolare è sempre inscrittibile e circoscrittibile. Prof. armine Napoli - isegno eccanico pag 6 di 0
4 ostruire un quadrato, dato il suo lato l ostruire un esagono regolare, dato il suo lato l 3 l l Prof. armine Napoli - isegno eccanico pag 7 di 0 ostruire un pentagono regolare, dato il suo lato l isegnare un quadrato inscritto in una circonferenza di raggio R N 3 o l Prof. armine Napoli - isegno eccanico pag 8 di 0
5 isegnare un pentagono regolare inscritto in una circonferenza di raggio R e centro isegnare un esagono regolare inscritto in una circonferenza di raggio R e centro G I H Prof. armine Napoli - isegno eccanico pag 9 di 0 urve policentriche Sono curve piane che si ottengono con archi di circonferenza aventi centri e raggi diversi, possono essere chiuse come gli ovali e gli ovoli ed aperte come la spirale di rchimede L'ovale è una curva policentrica formata da due copie di archi di circonferenza. L'ovolo è una curva policentrica chiusa formata da una semicirconferenza e da un mezzo ovale. Prof. armine Napoli - isegno eccanico pag 0 di 0
6 isegnare un ovale dati i due assi e Tracciare un ovolo dato l'asse minore G H L ' Prof. armine Napoli - isegno eccanico pag di 0 ostruire la spirale di rchimede dato il passo N ' 3' 4' ' 5' N ' ' L I H G 7' 0' 9' 8' Prof. armine Napoli - isegno eccanico pag di 0
7 urve cicliche Sono le curve descritte da un punto che si trova su una retta o su una circonferenza in movimento tra di esse. La cicloide è la curva geometrica descritta da un punto di una circonferenza che rotola senza strisciare su una retta. L'evolvente è la curva descritta da un punto di una retta r che rotola su una circonferenza di raggio R Prof. armine Napoli - isegno eccanico pag 3 di 0 icloide. 5 6 R volvente P Prof. armine Napoli - isegno eccanico pag 4 di 0
8 Raccordi Si utilizzano i raccordi per evitare gli spigoli vivi. gni curva può essere considerata come una sequenza di archi di cerchio di dimensioni infinitesime, in ogni punto sarà quindi possibile individuare un raggio di curvatura ρ che sarà il raggio dell'arco di cerchio esistente in quel punto ed un centro di curvatura. La curvatura è invece il rapporto /ρ del raggio di curvatura. a questa definizione scaturisce che:.una circonferenza è l'unica curva ad avere il raggio di curvatura costante e finito..gni altra curva ha raggi curvatura diversi per i singoli punti 3.gni curva ha in ogni suo punto una tangente, perpendicolare al raggio di curvatura Il punto di raccordo di due curve è un punto dove le due curve hanno la stessa tangente. Prof. armine Napoli - isegno eccanico pag 5 di 0 sempi Raccordi o ' r r R'+R o o' ' '' Prof. armine Napoli - isegno eccanico pag 6 di 0
9 urve coniche Si definiscono coniche quelle figure generate dalla intersezione di un cono con un piano, a seconda della inclinazione del piano si possono avere più tipi di curve Prof. armine Napoli - isegno eccanico pag 7 di 0 Se il piano è parallelo all'asse del cono si ha una iperbole (sezione ) Se il piano è parallelo alla generatrice del cilindro si ha una parabola ( sezione -) Prof. armine Napoli - isegno eccanico pag 8 di 0
10 Se il piano è perpendicolare all'asse del cono si ha una circonferenza (sezione ) Se il piano è inclinato rispetto all'asse ma è parallelo alla generatrice si ha una ellisse (sezione ) Prof. armine Napoli - isegno eccanico pag 9 di 0 ostruire un ellisse dati i due assi e Q Q P Q P P Prof. armine Napoli - isegno eccanico pag 0 di 0
SOLIDI DI ROTAZIONE. Superficie cilindrica indefinita se la generatrice è una retta parallela all asse di rotazione
SOLIDI DI ROTAZIONE Dato un semipiano α limitato dalla retta a, sia g una linea qualunque appartenente al semipiano α; ruotando il semipiano α di un angolo giro attorno alla retta a, la linea g genera
UNIVERSITÀ DEGLI STUDI DI CASSINO - DICeM
Esercitazione n. 1 da eseguire a mano libera SCRITTURA, NOMENCLATURA E CONVENZIONI GRAFICHE ELEMENTARI A. Inserire nella tavola un prova di scrittura, e la nomenclatura degli enti Fondamentali 1. Asse
UNIVERSITÀ DEGLI STUDI DI CASSINO - DICeM
Esercitazione n. 1 da eseguire a mano libera SCRITTURA, NOMENCLATURA E CONVENZIONI GRAFICHE ELEMENTARI A. Inserire nella tavola un prova di scrittura, e la nomenclatura degli enti Fondamentali 1. Asse
COSTRUZIONI GEOMETRICHE ELEMENTARI
COSTRUZIONI GEOMETRICHE ELEMENTARI 1 ASSE del segmento AB - Con centro in A e in B traccio 2 archi di circonferenza con raggio R>½AB; - chiamo 1 e 2 i punti di intersezione tra gli archi di circonferenza;
PROIEZIONI ORTOGONALI: SEZIONI CONICHE
www.aliceappunti.altervista.org PROIEZIONI ORTOGONALI: SEZIONI CONICHE 1) PREMESSA: Il cono è una superficie generata da una retta con un estremo fisso e l altro che ruota. La retta prende il nome di GENERATRICE.
Poligoni inscritti e circoscritti ad una circonferenza
Poligoni inscritti e circoscritti ad una circonferenza Def: 1. Un poligono si dice inscritto in una circonferenza se tutti i suoi vertici sono punti della La circonferenza si dice circoscritta al poligono.
Costruzioni geometriche elementari Esercitazioni
Costruzioni geometriche elementari Esercitazioni Università Mediterranea di Reggio Calabria Facoltà di Architettura Corso di DISEGNO 1 Prof. Franco Prampolini Unità didattica n. 3 Alcune brevi esercitazioni
Un poligono è inscritto in una circonferenza se tutti i suoi vertici appartengono alla circonferenza
1. I poligoni inscritti Quando un poligono è inscritto in una Un poligono è inscritto in una circonferenza se tutti i suoi vertici appartengono alla circonferenza Se un poligono è inscritto in una circonferenza,
Superfici e solidi di rotazione. Cilindri indefiniti
Superfici e solidi di rotazione Consideriamo un semipiano α, delimitato da una retta a, e sul semipiano una curva g; facendo ruotare il semipiano in un giro completo attorno alla retta a, la curva g descrive
POLIGONI INSCRITTI E CIRCOSCRITTI AD UNA CIRCONFERENZA
POLIGONI INSCRITTI E CIRCOSCRITTI AD UNA CIRCONFERENZA Un poligono si dice inscritto in una circonferenza se tutti i suoi vertici sono punti della circonferenza. La circonferenza si dice circoscritta al
CIRCONFERENZA E CERCHIO
CIRCONFERENZA E CERCHIO CERCHIO Perimetro (circonferenza) Area La circonferenza è circa 3 volte ( ) la lunghezza del diametro C= d oppure C=2 r A = r 2 Formule inverse d=c: r=c:(2 ) SETTORE CIRCOLARE È
Poligoni. Enti geometrici fondamentali. Formati dei fogli. Squadratura del foglio
Poligoni Enti geometrici fondamentali Gli enti geometrici fondamentali sono le rette e le curve. I segmenti sono frammenti di retta, mentre gli archi sono frammenti di curva. Un angolo esprime l inclinazione
LICEO SCIENTIFICO G. Galilei di BORGOMANERO. Compiti assegnati come esercitazione per lo studio individuale domestico di Disegno.
Classe prima Figure piane semplici: Costruzione di poligoni regolari 1. Costruzione di un pentagono regolare data la misura del lato: 5 cm 2. Costruzione di un pentagono regolare inscritto in una circonferenza
DISEGNO TECNICO GEOMETRIA PIANA FIGURE PIANE
DISEGNO TECNICO GEOMETRIA PIANA FIGURE PIANE Costruzione del triangolo equilatero circonferenza e scegliere un punto 1, che risulterà opposto al vertice A. Con la medesima apertura e puntando in 1, tracciare
POLO SCIENTIFICO TECNICO PROFESSIONALE E.FERMI-G.GIORGI - LUCCA A.S. 2016/2017
POLO SCIENTIFICO TECNICO PROFESSIONALE E.FERMI-G.GIORGI - LUCCA A.S. 2016/2017 INDICAZIONI PER IL RECUPERO DELLE LACUNE PER STUDENTI IN CASO DI GIUDIZIO SOSPESO CLASSI 1D, 1E, 1G. DISCIPLINA TECNOLOGIE
Circonferenza e cerchio
Circonferenza e cerchio Def. La circonferenza è la linea chiusa formata dall insieme di tutti i punti di un piano che hanno la stessa distanza da un punto detto centro della circonferenza. La distanza
Matematica creativa e packaging
Matematica creativa e packaging Elena Marchetti - Luisa Rossi Costa Dipartimento di Matematica F. Brioschi Politecnico di Milano Piazza Leonardo da Vinci, 32-20133 Milano POLIGONI E TASSELLAZIONI DEL PIANO
Geometria euclidea dello spazio Presentazione n. 6 Solidi di rotazione Prof. Daniele Ippolito Liceo Scientifico Amedeo di Savoia di Pistoia
Geometria euclidea dello spazio Presentazione n. 6 Solidi di rotazione Prof. Daniele Ippolito Liceo Scientifico Amedeo di Savoia di Pistoia Solidi di rotazione Un solido di rotazione è generato dalla rotazione
COMUNICAZIONE N.4 DEL
COMUNICAZIONE N.4 DEL 7.11.2012 1 1 - PRIMO MODULO - COSTRUZIONI GEOMETRICHE (4): ESEMPI 10-12 2 - SECONDO MODULO - APPLICAZIONI DI GEOMETRIA DESCRITTIVA (4): ESEMPI 19-25 PRIMO MODULO - COSTRUZIONI GEOMETRICHE
C7. Circonferenza e cerchio
7. irconferenza e cerchio 7.1 Introduzione ai luoghi geometrici Un luogo geometrico è l insieme dei punti del piano che godono di una proprietà detta proprietà caratteristica del luogo geometrico. Esempio
LA CIRCONFERENZA DEFINIZIONI. Una circonferenza è l insieme dei punti del piano che hanno distanza assegnata da un punto, detto centro.
LA CIRCONFERENZA DEFINIZIONI Una circonferenza è l insieme dei punti del piano che hanno distanza assegnata da un punto, detto centro. Un cerchio è una figura piana formata dai punti di una circonferenza
Dispensa di Disegno Tecnico
Dispensa di Disegno Tecnico Modulo 1 Primo Quadrimestre Scuola Bottega Artigiani di San Polo Onlus Ed. 2016-2017 Docente: Carlo Colombini DISPENSA DI DISEGNO TECNICO 1 È più facile fare bene un lavoro
I PARALLELOGRAMMI Si dice PARALLELOGRAMMA un quadrilatero avente i lati opposti paralleli a due a due.
I PARALLELOGRAMMI Si dice PARALLELOGRAMMA un quadrilatero avente i lati opposti paralleli a due a due. A D B H C K Una particolarità del parallelogramma è che mantiene le sue caratteristiche anche quando
Corso di Matematica - Geometria. Geometria - 0. Ing. L. Balogh
Geometria - 0 Triangoli qualunque somma degli angoli interni, calcolo del perimetro e dell area Oggetti Vertici Lati Angoli Altezza Raggio Simbolo A, B, C a, b, c,, h S, r Perimetro = + + Somma angoli
g. Ferrari M. Cerini D. giallongo Piattaforma informatica geometria 3 trevisini EDITORE
g. Ferrari M. Cerini D. giallongo Piattaforma Ma Pia a tematica informatica geometria 3 trevisini EDITORE unità 14 2 UNITÀ14 LE MISURE DI CIRCONFERENZA, CERCHIO E LORO PARTI 1. Relazione tra circonferenza
Gli esercizi assegnati all esame saranno varianti di alcuni degli esercizi seguenti
Gli esercizi assegnati all esame saranno varianti di alcuni degli esercizi seguenti 1.1) Su un piano α (trasparente) sia tracciato un triangolo equilatero. Si consideri un piano β parallelo ad α e raggi
es. 1 Tracciare con le squadre rette parallele e perpendicolari
ESERCIZI es. 1 Tracciare con le squadre rette parallele e perpendicolari es. 2 Data una retta ed un punto A esterno alla retta, tracciare la perpendicolare passante per A es. 3 Data una semiretta con origine
Indice. Materiali, strumenti per il disegno geometrico e tracciamenti grafici,3. Unità 2 Costruzioni geometriche,25. Unità 3 Proiezioni ortogonali,97
Indice III Indice remessa, IV Introduzione, Unità Materiali, strumenti per il disegno geometrico e tracciamenti grafici,. Materiali e strumenti per il disegno geometrico,.. La carta, -.. Mine, matite,
Test su geometria. 1. una circonferenza. 2. un iperbole. 3. una coppia di iperboli. 4. una coppia di rette. 5. una coppia di circonferenze
Test su geometria Domanda 1 Fissato nel piano un sistema di assi cartesiani ortogonali Oxy, il luogo dei punti le cui coordinate (x; y) soddisfano l equazione x y = 1 è costituita da una circonferenza.
Geometria euclidea. Alessio del Vigna
Geometria euclidea Alessio del Vigna La geometria euclidea è una teoria fondata su quattro enti primitivi e sulle relazioni che tra essi intercorrono. I quattro enti primitivi in questione sono il punto,
Prisma retto. Generatrice. Direttrice. Prisma obliquo. Nel caso le generatrici non siano parallele. Generatrice
Oggetti (identificati) nello spazio Una porzione di piano delimitata da una linea spezzata chiusa si chiama poligono, un solido delimitato da un numero finito di facce piane si chiama poliedro. In un poliedro
r.berardi COSTRUZIONI GEOMETRICHE schede operative
r.berardi COSTRUZIONI GEOMETRICHE schede operative Costruzioni geometriche di base: Schede operative Asse di un segmento Pag. 1 endecagono Pag. 24 Bisettrice di un angolo Pag.. 2 dodecagono Pag. 25 Perpendicolare
LA CIRCONFERENZA, I POLIGONI INSCRITTI E CIRCOSCRITTI
LA CIRCONFERENZA, I POLIGONI INSCRITTI E CIRCOSCRITTI 1. La circonferenza e il cerchio ESERCIZI 1 A Disegna un triangolo ABC di altezza CH relativa ad AB. Fissa un segmento ED minore di CH. Determina il
I PARALLELOGRAMMI Si dice PARALLELOGRAMMA un quadrilatero avente i lati opposti paralleli a due a due.
I PARALLELOGRAMMI Si dice PARALLELOGRAMMA un quadrilatero avente i lati opposti paralleli a due a due. A D B H C K Una particolarità del parallelogramma è che mantiene le sue caratteristiche anche quando
Punti notevoli di un triangolo
Punti notevoli dei triangoli - 1 Punti notevoli di un triangolo Particolarmente importanti in un triangolo sono i punti dove s intersecano specifici segmenti o semirette. Questi punti sono detti punti
CORSO DI FONDAMENTI DI DISEGNO TECNICO LEZIONE 5 MATERIALE DI BASE COSTRUZIONI ELEMENTARI MISURE E QUOTE
PERCORSI ABILITANTI SPECIALI (PAS) - A.A. 2013-2014 UNIVERSITÀ DI PISA DIPARTIMENTO DI INGEGNERIA CIVILE E INDUSTRIALE (DICI) CORSO DI FONDAMENTI DI DISEGNO TECNICO LEZIONE 5 MATERIALE DI BASE COSTRUZIONI
Test di Matematica di base
Test di Matematica di base Geometria Il rapporto tra la superficie di un quadrato e quella di un triangolo equilatero di eguale lato è a. 4 b. 4 d. [ ] Quali sono le ascisse dei punti della curva di equazione
GEOMETRIA. Studio dei luoghi /relazioni tra due variabili. Studio delle figure (nel piano/spazio) Problemi algebrici sulle figure geometriche
GEOMETRIA ANALITICA EUCLIDEA Studio dei luoghi /relazioni tra due variabili Studio delle figure (nel piano/spazio) Funzioni elementari Problemi algebrici sulle figure geometriche Grafici al servizio dell
Costruzioni con riga e compasso. Liceo Scientifico Statale S. Cannizzaro - Palermo Prof.re E. Modica
Costruzioni con riga e compasso Liceo Scientifico Statale S. Cannizzaro - Palermo Prof.re E. Modica I 5 postulati di Euclide Si postula che: 1) Per due punti distinti qualsiasi sia possibile tracciare
Circonferenza e cerchio
Cerchio e circonferenza - 1 Circonferenza e cerchio La circonferenza è il luogo geometrico dei punti del piano equidistanti da un unico punto detto centro. Il cerchio è l insieme costituito dai punti appartenenti
Geometria euclidea. Alessio del Vigna. Lunedì 15 settembre
Geometria euclidea Alessio del Vigna Lunedì 15 settembre La geometria euclidea è una teoria fondata su quattro enti primitivi e sulle relazioni che tra essi intercorrono. I quattro enti primitivi in questione
Fonte: I testi sono tratti dal sito di Ornella Crétaz ***
Fonte: I testi sono tratti dal sito di Ornella Crétaz www.intaglionline.it *** In questa parte del corso vengono descritti i procedimenti per tracciare correttamente figure geometriche elementari che possono
Programmazione finale della classe IA Discipline Geometriche a.s
Programmazione finale della classe IA Discipline Geometriche a.s. 2012-13 Il programma è stato strutturato partendo da un attenta analisi della situazione di partenza relativa al grado di manualità dei
Postulati e definizioni di geometria piana
I cinque postulati di Euclide I postulato Adimandiamo che ce sia concesso, che da qualunque ponto in qualunque ponto si possi condurre una linea retta. Tra due punti qualsiasi è possibile tracciare una
C7. Circonferenza e cerchio - Esercizi
C7. Circonferenza e cerchio - Esercizi DEFINIZIONI E COSTRUZIONI 1) Dare la definizione di luogo geometrico. 2) Indicare almeno due luoghi geometrici. 3) Dare la definizione di asse di un segmento come
Le coniche retta generatrice
Le coniche Consideriamo un cono retto a base circolare a due falde ed un piano. Le intersezioni possibili tra le due figure sono rappresentate dallo schema seguente Le figure che si possono ottenere sono
Costruzioni geometriche. ( Teoria pag , esercizi 141 )
Costruzioni geometriche. ( Teoria pag. 81-96, esercizi 141 ) 1) Costruzione con squadra e riga. a) Rette parallele. Ricorda ; due rette sono parallele quando.... oppure quando hanno la stessa. Matematicamente
Costruzione delle coniche con riga e compasso
Costruzione delle coniche con riga e compasso Quando in matematica è possibile dare diverse definizioni, tutte equivalenti, di uno stesso oggetto, allora significa che quell oggetto può essere caratterizzato
GEOMETRIA. Congruenza, angoli e segmenti
GEOMETRIA Per affermare che un triangolo è isoscele o rettangolo oppure che un quadrilatero è un parallelogramma o un rettangolo o un rombo o un quadrato o un trapezio o un trapezio isoscele, c è sempre
Angoli al centro e alla circonferenza
Angoli al centro e alla circonferenza angolo al centro se il vertice coincide con il centro del cerchio proprietà ad angoli uguali corrispondono archi uguali A B angolo alla circonferenza se ha il vertice
3 Geometria delle masse e momento di 2 ordine 3.3 Ellisse centrale d inerzia e nocciolo centrale d inerzia
3 Geometria delle masse e momento di ordine ESERCIZI SVOLTI Considerata la sezione rappresentata in figura, calcolare i raggi d inerzia massimo e minimo, tracciare l ellisse d inerzia e il nocciolo centrale
x + x + 1 < Compiti vacanze classi 4D
Compiti vacanze classi D Ripassare scomposizioni e prodotti notevoli, metodo di Ruffini, razionalizzazioni, equazioni irrazionali. (Libro di prima e seconda). Recuperare formulario con regole di risoluzione
Principali Definizioni e Teoremi di Geometria
Principali Definizioni e Teoremi di Geometria Segmento (definizione) Si dice segmento di estremi A e B l insieme costituito dai punti A e B e da tutti i punti della retta AB compresi tra A e B. Angolo
La circonferenza e il cerchio
La circonferenza e il cerchio Def.: Si dice circonferenza una linea piana chiusa formata dall insieme dei punti che hanno la stessa distanza da un punto detto centro. Si dice raggio di una circonferenza
Allenamenti di Matematica
rescia, 3-4 febbraio 2006 llenamenti di Matematica Geometria 1. Il trapezio rettangolo contiene una circonferenza di raggio 1 metro, tangente a tutti i suoi lati. Sapendo che il lato obliquo è lungo 7
LICEO SCIENTIFICO STATALE. Matematica. Programma svolto. Testo di riferimento: M. Bergamini - G. Barozzi - A. Trifone
A.S. 2016 2015 17 16 LICEO SCIENTIFICO STATALE " G. Pellecchia" - CASSINO (FR) Classe 3^C 1^C Matematica Programma svolto Docente: Bianchi Angelarita Testo di riferimento: M. Bergamini - G. Barozzi - A.
Geometria analitica del piano
Geometria analitica del piano dott.ssa Vita Leonessa Università degli Studi della Basilicata (27 marzo 2008) (Analisi) Matematica 2 CdL in Chimica, Biotecnologie, Scienze Geologiche Rette Fissato un sistema
Corso di Laurea in Scienze dell Architettura. Corso di Fondamenti e Applicazioni di Geometria Descrittiva
Università degli Studi di Roma Facoltà di Architettura Ludovico Quaroni - AA 2014-2015 Corso di Laurea in Scienze dell Architettura Corso di Fondamenti e Applicazioni di Geometria Descrittiva Riccardo
f(x) = sin cos α = k2 2 k
28 Maggio 2015 Il punteggio viene attribuito in base alla correttezza e completezza nella risoluzione dei quesiti, nonché alle caratteristiche dell esposizione: chiarezza, ordine ed organicità. La sufficienza
1. conoscere i concetti fondamentali della geometria sintetica del piano (poligoni, circonferenza
Terzo modulo: Geometria Obiettivi 1. conoscere i concetti fondamentali della geometria sintetica del piano (poligoni, circonferenza e cerchio, ecc.). calcolare perimetri e aree di figure elementari nel
METODI E TECNOLOGIE PER L INSEGNAMENTO DELLA MATEMATICA. Lezione n 12
METODI E TECNOLOGIE PER L INSEGNAMENTO DELLA MATEMATICA Lezione n 12 PARTE SECONDA GEOMETRIA SOLIDA UNA PREMESSA Diversi esperti di Didattica della Matematica ritengono che l approccio migliore, per la
Testi verifiche 3 C 3 I a. s. 2008/2009
Testi verifiche 3 C 3 I a. s. 2008/2009 1) Sono assegnati i punti A(- 1; 3) C(3; 0) M ;1 a) Ricavare le coordinate del simmetrico di A rispetto a M e indicarlo con B. Verificare che il segmento congiungente
Le caratteristiche dei poligoni. La relazione tra i lati e gli angoli di un poligono. Definizioni
Le caratteristiche dei poligoni 1. Si dice poligono la parte del piano delimitata da una spezzata chiusa. 2. Il perimetro di un poligono è la somma delle misure del suoi lati, si indica cm 2p. 3. Un poligono
Geometria euclidea dello spazio Presentazione n. 5 Poliedri Prof. Daniele Ippolito Liceo Scientifico Amedeo di Savoia di Pistoia
Geometria euclidea dello spazio Presentazione n. 5 Poliedri Prof. Daniele Ippolito Liceo Scientifico Amedeo di Savoia di Pistoia Poliedri Un poliedro è un solido delimitato da una superficie formata da
N. Domanda Risposta. Quinto postulato di Euclide. 30 cm. 11 dm. 14 cm. 6 cm^2
418 "Per un punto passa una sola retta parallela ad una retta data". Questo è l'enunciato del: 8 0,201 km corrispondono a: 201 m 199 10 dm^3 corrispondono a: 10000 cm^3 55 20 15' corrispondono a: 20,25
Programma svolto nell'a.s. 2014/2015. Disciplina: Matematica. Classe: 3D Docente: Prof. Ezio Pignatelli. Programma sintetico.
Programma svolto nell'a.s. 2014/2015. Disciplina: Matematica. Classe: 3D Docente: Prof. Ezio Pignatelli Programma sintetico. 1. Equazioni e disequazioni a) Equazioni e disequazioni di primo e secondo grado.
PIANO DI LAVORO PREVENTIVO a. s
Classe : 1 DC ISTITUTO TECNICO COMMERCIALE E PER GEOMETRI CRESCENZI PACINOTTI PIANO DI LAVORO PREVENTIVO a. s. 2017-2018 Materia: TECNOLOGIE E TECNICHE DI RAPPRESENTAZIONE GRAFICA Docente SAVINO LOREDANA
Introduzione a GeoGebra
Introduzione a GeoGebra Nicola Sansonetto Istituto Sanmicheli di Verona 31 Marzo 2016 Nicola Sansonetto (Sanmicheli) Introduzione a GeoGebra 31 Marzo 2016 1 / 14 Piano dell incontro 1 Introduzione 2 Costruzioni
La circonferenza e il cerchio
La circonferenza e il cerchio Def.: Si dice circonferenza una linea piana chiusa formata dall insieme dei punti che hanno la stessa distanza dal centro. Si dice raggio di una circonferenza la distanza
Esercizi riepilogativi sulle coniche verso l esame di stato
Esercizi riepilogativi sulle coniche verso l esame di stato n. 9 pag. 55 Sono date le curve α e β definite dalle seguenti relazioni: α : xy x y + 4 = 0 β : luogo dei punti P (k + ; 1 + k ), k R a) Dopo
Liceo Scientifico G. Salvemini Corso di preparazione per la gara provinciale delle OLIMPIADI DELLA MATEMATICA INTRO GEOMETRIA
Liceo Scientifico G. Salvemini Corso di preparazione per la gara provinciale delle OLIMPIADI DELLA MATEMATICA INTRO GEOMETRIA TRIANGOLI Criteri di congruenza Due triangoli sono congruenti se hanno congruenti:
La somma degli angoli interni di un triangolo è uguale a un angolo piatto (180 ).
Il triangolo (UbiLearning) - 1 Triangoli Un triangolo è un poligono formato da tre lati. Rappresenta la più semplice figura piana formata dal minimo numero di lati utili a chiudere una superficie piana.
Angoli formati da due rette parallele tagliate da una trasversale (alterni interni ed esterni, corrispondenti, coniugati).
ppunti di geometria.s. 013-014 1 Prof. Luigi ai PPUNTI ngoli formati da due rette parallele tagliate da una trasversale (alterni interni ed esterni, corrispondenti, coniugati). In un triangolo l angolo
ISTITUTO SAN GABRIELE CLASSI 4 S - 4 SA PROF. ANDREA PUGLIESE GEOMETRIA EUCLIDEA NELLO SPAZIO
ISTITUTO SAN GABRIELE CLASSI 4 S - 4 SA PROF. ANDREA PUGLIESE GEOMETRIA EUCLIDEA NELLO SPAZIO GEOMETRIA NELLO SPAZIO Gli enti fondamentali sono punto, retta, piano, e spazio. Con le lettere maiuscole (A,B,C,...)
ELENCO MATERIALE OCCORRENTE PER LE ATTIVITA DI TECNOLOGIA
LVORO ESTIVO 2017 DI DISEGNO TECNICO CLSSI PRIME CORSI E-F-G PROF. SERGIO GLFO ELENCO MTERILE OCCORRENTE PER LE TTIVIT DI TECNOLOGI Fogli F4 LISCI NON RIQUDRTI, dimensioni 24x33 cm, peso 220 g/mq; Una
