FISICA. Lezione n. 2 (2 ore) Gianluca Colò Dipartimento di Fisica sede Via Celoria 16, Milano

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "FISICA. Lezione n. 2 (2 ore) Gianluca Colò Dipartimento di Fisica sede Via Celoria 16, Milano"

Transcript

1 Università degli Studi di Milano Facoltà di Scienze Matematiche Fisiche e Naturali Corsi di Laurea in: Informatica ed Informatica per le Telecomunicazioni Anno accademico 2010/11, Laurea Triennale, Edizione diurna FISICA Lezione n. 2 (2 ore) Gianluca Colò Dipartimento di Fisica sede Via Celoria 16, Milano web page: gianluca.colo@mi.infn.it Carlo Pagani Dipartimento di Fisica Laboratorio LASA Via F.lli Cervi 201, Segrate (Milano) web page: carlo.pagani@unimi.it

2 Posizione di un Punto - 1 Per descrivere la posizione di un punto nello spazio, è necessario disporre di un sistema di coordinate rispetto al quale la posizione del punto è definita Lo spazio in cui un problema è descritto può essere a 1, 2 o 3 dimensioni: 1-D, 2-D, 3-D Il sistema di coordinate più comune e intuitivo è quello cartesiano Sistema di coordinate cartesiane: 1-D O og > 0 Oggetto Origine delle Coordinate (posizione dell osservatore) og Oggetto og < 0 O og Origine delle Coordinate (posizione dell osservatore) Gianluca Colò & Carlo Pagani 2

3 Posizione di un Punto - 2 Sistemi di coordinate 2-D Cartesiane Polari y y y P P P ( P,y P ) y P P (r,θ) r y P O O θ P P Relazioni tra coordinate cartesiane e polari P( P,y P ) = P(,y) = P(r,θ) = r cosθ r = 2 + y 2 y = r sinθ θ = arctan(y/) Gianluca Colò & Carlo Pagani 3

4 Posizione di un Punto - 3 Sistemi di coordinate 3-D z Cartesiane z Polari Sferiche y P P( P,y P,z P ) P P(r,θ,φ) z P θ r 0 y P z P y 0 y P φ r sin(θ) P( P,y P,z P ) = P(,y,z) = P(r,θ,φ) = r sin(θ) cos(φ) r = 2 + y 2 +z 2 y = r sin(θ) sin(φ) θ = arccos(z/r) z = r cos(θ) φ = arctan(y/) Gianluca Colò & Carlo Pagani 4

5 Posizione di un Punto - 4 Sistemi di coordinate 3-D z Cartesiane z Polari Cilindriche y P P( P,y P,z P ) P P(r,θ,z) z P 0 y P z P y 0 y P θ r P( P,y P,z P ) = P(,y,z) = P(r,θ,z) = r cos(θ) r = 2 + y 2 y = r sin(θ) z = z z = z θ = arctan(y/) Gianluca Colò & Carlo Pagani 5

6 Grandezze Scalari e Vettoriali Per caratterizzare completamente una grandezza fisica, a volte è sufficiente dare soltanto un numero (scalare), mentre altre volte questo non è sufficiente, serve anche una direzione e un verso (vettoriale) Massa, lunghezza, temperatura: grandezze scalari Spostamento, velocità, accelerazione: grandezze vettoriali Quanto è veloce? Modulo (lunghezza del segmento) In quale direzione si muove? Direzione (retta su cui giace) Con quale verso? Verso (orientamento) Una grandezza vettoriale è caratterizzata SEMPRE da un valore numerico (modulo), da una direzione e da un verso direzione V verso modulo V V Notazione vettoriale vettore: V, V, V modulo: V, V, V Gianluca Colò & Carlo Pagani 6

7 Rappresentazione grandezze vettoriali Così come le informazioni fornite da una grandezza scalare possono venire rappresentate mediante un punto su una retta, le informazioni fornite da una grandezza vettoriale possono venire rappresentate mediante un punto nello spazio z P 0 P 0 V y I vettori, rappresentazione matematica di una grandezza vettoriale, sono segmenti orientati (dall origine del sistema al punto) Secondo la natura del problema possono essere a 2 dimensioni (2D) o a 3 dimensioni (3D) Gianluca Colò & Carlo Pagani 7

8 Vettori in 2D e loro somma Esempio: lo spostamento di un punto su un piano Spostamenti da A a B e poi da B a C: vettore a e vettore b Somma = spostamento da A a C: vettore a + vettore b = vettore s Regola del parallelogramma Lo spostamento non dipende dalla traiettoria La somma vettoriale gode delle proprietà della somma algebrica a + b = b + a a + b + c = a+(b+c) = b+(a+c)= c+(a+b) Gianluca Colò & Carlo Pagani 8

9 Vettore 2D sul piano Un vettore 2D si può definire attraverso le sue componenti, che dipendono dal sistema di coordinate (cartesiane o polari) e dal loro orientamento ma non dalla posizione dell origine a e a y sono le componenti di a in coordinate cartesiane a e θ sono le sue coordinate polari Gianluca Colò & Carlo Pagani 9

10 Coordinate cartesiane e polari Poiché le componenti di un vettore non dipendono dal punto di applicazione, si determinano posizionando il vettore all origine del sistema di coordinate scelto Componenti di un vettore in coordinate cartesiane e polari Coordinate cartesiane a, a y a(a,a y ) Coordinate polari a, θ a( a,θ) y Le equazioni sono le stesse di quelle viste per la posizione! a = a cosθ a 2 = a 2 +a y 2 a = a 2 +a y 2 a y = a sinθ θ = arctan (a y / a ) Nota: a si ottiene applicando il teorema di Pitagora Θ si ottiene dividendo a y per a Gianluca Colò & Carlo Pagani 10

11 Riassunto per il caso 3D E tutto uguale ma le componenti del vettore sono 3 La posizione di un punto P è definita da 3 coordinate I sistemi di coordinate sono a 3 dimensioni I 3 sistemi di coordinate più importanti Cartesiane:, y, z = distanza dal piano yz y = distanza dal piano z z = distanza dal piano y Polari Sferiche: r, θ, φ = r sin(θ) cos (φ) y = r sin(θ) sin (φ) z = r cos(φ) Polari Cilindriche: r, θ, z = r cos(θ) y = r sin(θ) z = z V 0 z V z V V P V y y P(,y,z) V(V,V y,v z ) P (r,θ,z) P (r,θ,φ) V ( V,θ,φ) V ( V,θ, V z ) Gianluca Colò & Carlo Pagani 11

12 Significato di sferiche e cilindriche P(r,θ,φ) V( V,θ,φ) P(r,θ, z) V( V,θ, V z ) V V Gianluca Colò & Carlo Pagani 12

13 Alcune considerazioni Le componenti di un vettore dipendono dall orientamento del sistema di coordinate, ma la grandezza espressa da un vettore non cambia La somma di vettori si può fare graficamente o analiticamente, applicando le semplici relazioni trigonometriche dei triangoli rettangoli. Disegnati i vettori uno di seguito all altro si chiude il poligono, stando attenti al verso del vettore risultante Si sommano le componenti e le componenti y tra loro, ottenendo la componente e la componente y del vettore somma (attenti ai segni) Gianluca Colò & Carlo Pagani 13

14 Operazioni con i vettori Con i vettori sono possibili operazioni di somma e moltiplicazione La matematica chiama questo capitolo algebra vettoriale Somma: ne esiste un solo tipo possibile: somma algebrica: vettore + vettore Risultato: vettore Prodotto: ne esistono 4 tipi possibili: 1) Vettore per un numero puro: scalare per vettore Risultato: vettore 2) Prodotto Scalare vettore vettore Risultato: scalare 3) Prodotto Vettoriale vettore vettore Risultato: vettore 4) Prodotto Tensoriale vettore vettore Risultato: tensore Gianluca Colò & Carlo Pagani 14

15 Esempi di somma di vettori Esempio di costruzione geometrica a b c a + b + c = s a s b c Esempio di calcolo del vettore somma y s = a + b + c b β α a s y = a y + b y + c y Partendo dai moduli e dagli angoli si ha: c γ a = a cosα > 0 a y = a sinα > 0 b = b cosβ < 0 b y = b sinβ > 0 c = c cosγ > 0 c y = c sin γ < 0 Gianluca Colò & Carlo Pagani 15

16 Prodotto di un vettore per un numero Ha come risultato un vettore Si ottiene moltiplicando le componenti cartesiane del vettore per il numero k B(B,B y ) = k A(A,A y ) B = k A B y = k A y Se si hanno le coordinate polari: si moltiplica il modulo per il numero (NON l angolo) B( B,θ Β ) = k A( A,θ Α ) B = k A θ Β = θ Α Le operazioni di somma vettoriale e di prodotto di un vettore per un numero ci permettono di introdurre una nuova rappresentazione dei vettori, usando i versori I versori sono vettori unitari (modulo = 1) con direzione e verso conformi agli assi del sistema di coordinate cartesiane di riferimento Gianluca Colò & Carlo Pagani 16

17 Rappresentazione con i versori In un sistema 3-D i versori sono 3, hanno modulo unitario, sono diretti secondo gli assi cartesiani e si indicano con la seguente notazione B A i i e j j e y k k e z A(A, A y, A y ) = A i + A y j + A z k B(B, B y, B y ) = B i + B y j + B z k In un sistema 2-D i versori sono solo 2: i e j Nota: Ovviamente esistono versori anche nella rappresentazione polare Gianluca Colò & Carlo Pagani 17

18 Versori associati alle coordinate polari : e i P(r,θ,φ) V( V,θ,φ) P(r,θ, z) V( V,θ, V z ) V V Gianluca Colò & Carlo Pagani 18

19 Prodotto Scalare - 1 Il Prodotto Scalare di due vettori, A e B, ha come risultato uno scalare. E il prodotto tra i moduli dei due vettori per il coseno dell angolo compreso, OVVERO il prodotto della proiezione del primo vettore sulla direzione del secondo per il modulo del secondo (o viceversa). A (A,A y ) B (B,B y ) B A B A B cos θ = A ( B cos θ) = ( A cos θ) B = B Α Ma vale anche: A B = (A B ) + (A y B y ) = C = scalare (dimostriamo questa affermazione nella prossima trasparenza). A θ Gianluca Colò & Carlo Pagani 19

20 Prodotto Scalare - 2 A (A,A y ) B (B,B y ) (A B ) + (A y B y ) = = ( A cos(θ A ) B cos(θ B )) + ( A sin(θ A ) B sin(θ B )) = = A B (cos(θ A ) cos(θ B ) + sin(θ A ) sin(θ B )) = = A B cos(θ A -θ B ) = A B cos(θ B -θ A ) L equivalenza è dimostrata Le due formule sono ambedue utili Conseguenze: A θ Α B θ Β Il Prodotto scalare tra due vettori ortogonali è nullo! Il Prodotto scalare tra due vettori paralleli è il prodotto dei loro moduli Gianluca Colò & Carlo Pagani 20

21 Prodotto Vettoriale (o Vettore) Il risultato del Prodotto Vettoriale tra 2 vettori, A e B, è un vettore, C, ortogonale al piano formato dai vettori A e B. A X B = AΛB= C modulo: C = A B sin θ direzione: al piano dei vettori verso: regola della mano destra, o (meglio!) verso uscente se per portare il primo sul secondo devo ruotare in senso antiorario A φ B C Note Il prodotto vettoriale tra due vettori paralleli è nullo C è massimo per φ = ± π/2 A B = - B A (non è commutativo!) Gianluca Colò & Carlo Pagani 21

22 P. V. in Coordinate Cartesiane A X B = AΛB = C A (A,A y, A z ) B (B, B y, B z ) C (C,C y, C z ) A=A i +A y j +A z k B=B i +B y j +B z k C=C i +C y j +C z k C = (A y B z A z B y ) C y = (A z B A B z ) C z = (A B y A y B ) i j k A A y A z B B y B z C=(A y B z A z B y ) i +(A B z A z B ) j + (A B y A y B ) k Esempio A (1,1,1) B (2,2,0) C (0-2,0-2,2-2) = C (-2,2,0) C=-2 i +2 j +0 k = -2 i +2 j z A B C y Gianluca Colò & Carlo Pagani 22

23 Obiettivi esercizi Cap. 3 (RHW) Cap. 3 Saper passare da un vettore (modulo e direzione) alle sue componenti e dalle componenti al vettore. Saper compiere le operazioni fondamentali con i vettori (somma, prodotto per un numero, prodotto scalare e prodotto vettore). Gianluca Colò & Carlo Pagani 23

Grandezze scalari e vettoriali

Grandezze scalari e vettoriali Grandezze scalari e vettoriali Per caratterizzare completamente una grandezza fisica, a volte è sufficiente dare soltanto un numero (scalare), mentre altre volte questo non è sufficiente. Massa, lunghezza,

Dettagli

Grandezze scalari e vettoriali-esempi

Grandezze scalari e vettoriali-esempi Grandezze scalari e vettoriali-esempi Massa Tempo Temperatura Pressione Posizione lungo un asse (linea) Volume Lavoro Energia Posizione nel piano Posizione nello spazio Velocità Accelerazione Forza Quantità

Dettagli

Università degli Studi di Milano. Facoltà di Scienze Matematiche Fisiche e Naturali

Università degli Studi di Milano. Facoltà di Scienze Matematiche Fisiche e Naturali Università degli Stdi di Milano Facoltà di Scienze Matematiche Fisiche e Natrali Corsi di Larea in: Informatica ed Informatica per le Telecomnicazioni Anno accademico 017/18, Larea Triennale, Edizione

Dettagli

Il Corso di Fisica per Scienze Biologiche

Il Corso di Fisica per Scienze Biologiche Il Corso di Fisica per Scienze Biologiche Ø Prof. Attilio Santocchia Ø Ufficio presso il Dipartimento di Fisica (Quinto Piano) Tel. 075-585 2708 Ø E-mail: attilio.santocchia@pg.infn.it Ø Web: http://www.fisica.unipg.it/~attilio.santocchia/

Dettagli

VETTORI E SCALARI DEFINIZIONI. Si definisce scalare una grandezza definita interamente da un solo numero, affiancato dalla sua unità di misura.

VETTORI E SCALARI DEFINIZIONI. Si definisce scalare una grandezza definita interamente da un solo numero, affiancato dalla sua unità di misura. VETTORI E SCALARI DEFINIZIONI Si definisce scalare una grandezza definita interamente da un solo numero, affiancato dalla sua unità di misura. Un vettore è invece una grandezza caratterizzata da 3 entità:

Dettagli

Algebra dei vettori OPERAZIONI FRA VETTORI SOMMA DI VETTORI

Algebra dei vettori OPERAZIONI FRA VETTORI SOMMA DI VETTORI Algebra dei vettori Il vettore è un oggetto matematico che è caratterizzato da modulo, direzione e verso. Si indica graficamente con una freccia. Un vettore è individuato da una lettera minuscola con sopra

Dettagli

CALCOLO VETTORIALE ELEMENTI DI ANALISI MATEMATICA

CALCOLO VETTORIALE ELEMENTI DI ANALISI MATEMATICA ELEMENTI DI ANALISI MATEMATICA CALCOLO VETTORIALE - DEFINIZIONE DI VETTORE - COMPONENTI DI UN VETTORE - SOMMA E DIFFERENZA - PRODOTTO SCALARE - PRODOTTO VETTORIALE - VETTORE GRADIENTE - FLUSSO DI UN VETTORE

Dettagli

Calcolo vettoriale. Versore: vettore u adimensionale di modulo unitario (rapporto tra un vettore e il suo modulo)

Calcolo vettoriale. Versore: vettore u adimensionale di modulo unitario (rapporto tra un vettore e il suo modulo) Grandezze scalari: caratterizzate da un valore numerico in una unità di misura scelta (ex: massa, temperatura, ecc) Grandezze vettoriali: oltre al valore numerico necessitano della definizione di una direzione

Dettagli

1 Sistemi di riferimento

1 Sistemi di riferimento Università di Bologna - Corsi di Laurea Triennale in Ingegneria, II Facoltà - Cesena Esercitazioni del corso di Fisica Generale L-A Anno accademico 2006-2007 1 Sistemi di riferimento Le grandezze usate

Dettagli

Calcolo vettoriale. Grandezze scalari: caratterizzate da un valore numerico in una unità di misura scelta (ex: massa, temperatura, ecc)

Calcolo vettoriale. Grandezze scalari: caratterizzate da un valore numerico in una unità di misura scelta (ex: massa, temperatura, ecc) Grandezze scalari: caratterizzate da un valore numerico in una unità di misura scelta (ex: massa, temperatura, ecc) Grandezze vettoriali: oltre al valore numerico necessitano della definizione di una direzione

Dettagli

x 1 Fig.1 Il punto P = P =

x 1 Fig.1 Il punto P = P = Geometria di R 2 In questo paragrafo discutiamo le proprietà geometriche elementari del piano Per avere a disposizione delle coordinate nel piano, fissiamo un punto, che chiamiamo l origine Scegliamo poi

Dettagli

I VETTORI. Definizione Sistemi di riferimento Componenti e modulo Somma e differenza Prodotto scalare Prodotto vettoriale Versori. Vettori. pag.

I VETTORI. Definizione Sistemi di riferimento Componenti e modulo Somma e differenza Prodotto scalare Prodotto vettoriale Versori. Vettori. pag. I VETTORI Definizione Sistemi di riferimento Componenti e modulo Somma e differenza Prodotto scalare Prodotto vettoriale Versori pag.1 Grandezze scalari e vettoriali Per una descrizione completa del fenomeno

Dettagli

Esercitazioni di Fisica. venerdì 10:00-11:00 aula T4. Valeria Malvezzi

Esercitazioni di Fisica. venerdì 10:00-11:00 aula T4. Valeria Malvezzi Esercitazioni di Fisica venerdì 10:00-11:00 aula T4 Valeria Malvezzi E-mail: valeria.malvezzi@roma2.infn.it Richiami di trigonometria Definizioni goniometriche )α Relazione goniometrica fondamentale I

Dettagli

Proprietà dei moti finiti. Ettore Pennestrì Università di Roma Tor Vergata Dipartimento di Ingegneria dell Impresa

Proprietà dei moti finiti. Ettore Pennestrì Università di Roma Tor Vergata Dipartimento di Ingegneria dell Impresa Proprietà dei moti finiti Ettore Pennestrì Università di Roma Tor Vergata Dipartimento di Ingegneria dell Impresa Sommario Il presente documento, redatto per gli allievi dei corsi di Prototipazione Virtuale

Dettagli

Vettori e geometria analitica in R 3 1 / 25

Vettori e geometria analitica in R 3 1 / 25 Vettori e geometria analitica in R 3 1 / 25 Sistemi di riferimento in R 3 e vettori 2 / 25 In fisica, grandezze fondamentali come forze, velocità, campi elettrici e magnetici vengono convenientemente descritte

Dettagli

a) Parallela a y = x + 2 b) Perpendicolare a y = x +2. Soluzioni

a) Parallela a y = x + 2 b) Perpendicolare a y = x +2. Soluzioni Svolgimento Esercizi Esercizi: 1) Una particella arriva nel punto (-2,2) dopo che le sue coordinate hanno subito gli incrementi x=-5, y=1. Da dove è partita? 2) Disegnare il grafico di C = 5/9 (F -32)

Dettagli

DEFINIZIONE Un vettore (libero) è un ente geometrico rappresentato da un segmento orientato caratterizzato da tre parametri:

DEFINIZIONE Un vettore (libero) è un ente geometrico rappresentato da un segmento orientato caratterizzato da tre parametri: DEFINIZIONE Un vettore (libero) è un ente geometrico rappresentato da un segmento orientato caratterizzato da tre parametri: 1. modulo: la lunghezza del segmento 2. direzione: coincidente con la direzione

Dettagli

Corso di Idraulica ed Idrologia Forestale

Corso di Idraulica ed Idrologia Forestale Corso di Idraulica ed Idrologia Forestale Docente: Prof. Santo Marcello Zimbone Collaboratori: Dott. Giuseppe Bombino - Ing. Demetrio Zema Lezione n. 1: Cenni al calcolo vettoriale Anno Accademico 2008-2009

Dettagli

Matematica Lezione 7

Matematica Lezione 7 Università di Cagliari Corso di Laurea in Farmacia Matematica Lezione 7 Sonia Cannas 26/10/2018 Vettori: definizione Definizione (Vettore) Sia O un punto fissato del piano. Si definisce vettore applicato

Dettagli

VETTORI. OPERAZIONI CON I VETTORI. RAPPRESENTAZIONE CARTESIANA DEI VETTORI. APPLICAZIONI.

VETTORI. OPERAZIONI CON I VETTORI. RAPPRESENTAZIONE CARTESIANA DEI VETTORI. APPLICAZIONI. VETTORI. OPERAZIONI CON I VETTORI. RAPPRESENTAZIONE CARTESIANA DEI VETTORI. APPLICAZIONI. Sia AB un segmento orientato. Ad esso è possibile associare: 1) la direzione, cioè la direzione della retta su

Dettagli

Lezione 1

Lezione 1 Lezione 1 Ordini di grandezza Dimensioni fisiche Grandezze scalari e vettoriali Algebra dei vettori Coordinate Cartesiane e rappresentazioni grafiche Verifica Cenno sulle dimensioni delle grandezze fisiche

Dettagli

Corso di Fisica. Lezione 2 Scalari e vettori Parte 1

Corso di Fisica. Lezione 2 Scalari e vettori Parte 1 Corso di Fisica Lezione 2 Scalari e vettori Parte 1 Scalari e vettori Consideriamo una libreria. Per determinare quanti libri ci sono su uno scaffale basta individuare lo scaffale in questione e contare

Dettagli

Note a cura di M. Martellini e M. Zeni

Note a cura di M. Martellini e M. Zeni Università dell Insubria Corso di laurea Scienze Ambientali FISICA GENERALE Lezione 1 Introduzione Note a cura di M. Martellini e M. Zeni Queste note sono state in parte preparate con immagini tratte da

Dettagli

I.T.I.S «G. MARCONI» - PADOVA Via Manzoni, 80 Tel.: Fax

I.T.I.S «G. MARCONI» - PADOVA Via Manzoni, 80 Tel.: Fax I.T.I.S «G. MARCONI» - PADOVA Via Manzoni, 80 Tel.: 049.80.40.211 Fax 049.80.40.277 marconi@provincia.padova.it www.itismarconipadova.it Settore tecnologico Indirizzo meccanica meccatronica ed energia

Dettagli

FISICA. I Vettori. Autore: prof. Pappalardo Vincenzo docente di Matematica e Fisica

FISICA. I Vettori. Autore: prof. Pappalardo Vincenzo docente di Matematica e Fisica ISICA I Vettori Autore: prof. Pappalardo Vincenzo docente di Matematica e isica GRANDEZE ISICHE SCALARI E VETTORIALI Le grandezze fisiche possono essere suddivise in due grandi categorie: definizione GRANDEZZE

Dettagli

misura. Adesso, ad un arbitrario punto P dello spazio associamo una terna di numeri reali x

misura. Adesso, ad un arbitrario punto P dello spazio associamo una terna di numeri reali x 4. Geometria di R 3. Questo paragrafo è molto simile al paragrafo : tratta infatti delle proprietà geometriche elementari dello spazio R 3. Per assegnare delle coordinate nello spazio, fissiamo innanzitutto

Dettagli

misura. Adesso, ad un arbitrario punto P dello spazio associamo una terna di numeri reali x

misura. Adesso, ad un arbitrario punto P dello spazio associamo una terna di numeri reali x 4. Geometria di R 3. Questo paragrafo è molto simile al paragrafo : tratta infatti delle proprietà geometriche elementari dello spazio R 3. Per assegnare delle coordinate nello spazio, fissiamo innanzitutto

Dettagli

Coordinate e Sistemi di Riferimento

Coordinate e Sistemi di Riferimento Coordinate e Sistemi di Riferimento Sistemi di riferimento Quando vogliamo approcciare un problema per risolverlo quantitativamente, dobbiamo per prima cosa stabilire in che sistema di riferimento vogliamo

Dettagli

Che cos è una forza? 2ª lezione (21 ottobre 2006): Idea intuitiva: forza legata al concetto di sforzo muscolare.

Che cos è una forza? 2ª lezione (21 ottobre 2006): Idea intuitiva: forza legata al concetto di sforzo muscolare. 2ª lezione (21 ottobre 2006): Che cos è una forza? Idea intuitiva: forza legata al concetto di sforzo muscolare. L idea intuitiva è corretta, ma limitata ; le forze non sono esercitate solo dai muscoli!

Dettagli

ELEMENTI DI CALCOLO VETTORIALE

ELEMENTI DI CALCOLO VETTORIALE ELEMENTI DI CALCOLO VETTORIALE Vettori liberi e vettori applicati o Vettore libero: - individuato da una direzione orientata ed una lunghezza - non ha un'ubicazione fissa nello spazio: - puo' essere traslato

Dettagli

1- Geometria dello spazio. Vettori

1- Geometria dello spazio. Vettori 1- Geometria dello spazio. Vettori I. Generalità (essenziali) sui vettori. In matematica e fisica, un vettore è un segmento orientato nello spazio euclideo tridimensionale. Gli elementi che caratterizzano

Dettagli

descrizione di un ampiezza un segno

descrizione di un ampiezza un segno II. Ripasso di Matematica: Scalari e Vettori Scalare quantità descrivibile unicamente da un numero (temperatura, lunghezza, ) Vettore quantità che necessita per la sua descrizione di un ampiezza ampiezza,

Dettagli

Anno Accademico DIARIO DEL CORSO SSIS Didattica della matematica per la scuola superiore 1. 9 novembre 2004

Anno Accademico DIARIO DEL CORSO SSIS Didattica della matematica per la scuola superiore 1. 9 novembre 2004 Anno Accademico 2004-2005 DIARIO DEL CORSO SSIS Didattica della matematica per la scuola superiore 1 SILVANO DELLADIO 9 novembre 2004 Costruzione di Z, Q, R e C, dando per scontato N. Teoria ingenua (fatta

Dettagli

misura. Adesso, ad un arbitrario punto P dello spazio associamo una terna di numeri reali x

misura. Adesso, ad un arbitrario punto P dello spazio associamo una terna di numeri reali x 4. Geometria di R 3. Questo paragrafo è molto simile al paragrafo : tratta infatti delle proprietà geometriche elementari dello spazio R 3. Per assegnare delle coordinate nello spazio, fissiamo innanzitutto

Dettagli

Corso di Fisica I per Matematica

Corso di Fisica I per Matematica Corso di Fisica I per Matematica DOCENTE: Marina COBAL: marina.cobal@cern.ch Tel. 339-2326287 TESTO di RIFERIMENTO: Mazzoldi, Nigro, Voci: Elementi d fisica,meccanica e Termodinamica Ed. EdiSES FONDAMENTI

Dettagli

INTRODUZIONE ALLA FISICA PROF. FRANCESCO DE PALMA

INTRODUZIONE ALLA FISICA PROF. FRANCESCO DE PALMA INTRODUZIONE ALLA FISICA PROF. FRANCESCO DE PALMA Sommario GRANDEZZE FISICHE... 3 UNITÀ DI MISURA... 3 PREFISSI... 5 ANALISI DIMENSIONALE... 5 CONVERSIONI DI UNITÀ... 6 SISTEMI DI COORDINATE... 7 I VETTORI...

Dettagli

Argomenti Capitolo 1 Richiami

Argomenti Capitolo 1 Richiami Argomenti Capitolo 1 Richiami L insieme dei numeri reali R si rappresenta geometricamente con l insieme dei punti di una retta orientata su cui sia stato fissato un punto 0 e un segmento unitario. L insieme

Dettagli

Lezione 2 Richiami sui sistemi di riferimento Richiami di trigonometria Vettori Calcolo vettoriale

Lezione 2 Richiami sui sistemi di riferimento Richiami di trigonometria Vettori Calcolo vettoriale Corsi di Laurea dei Tronchi Comuni 2 e 4 Dr. Andrea Malizia 1 Richiami sui sistemi di riferimento Richiami di trigonometria Vettori Calcolo vettoriale 2 Sistemi di riferimento e spostamento 3 Sistemi di

Dettagli

CORSO DI BIOFISICA IL MATERIALE CONTENUTO IN QUESTE DIAPOSITIVE E AD ESCLUSIVO USO DIDATTICO PER L UNIVERSITA DI TERAMO

CORSO DI BIOFISICA IL MATERIALE CONTENUTO IN QUESTE DIAPOSITIVE E AD ESCLUSIVO USO DIDATTICO PER L UNIVERSITA DI TERAMO CORSO DI BIOFISICA IL MATERIALE CONTENUTO IN QUESTE DIAPOSITIVE E AD ESCLUSIVO USO DIDATTICO PER L UNIVERSITA DI TERAMO LE IMMAGINE CONTENUTE SONO STATE TRATTE DAL LIBRO FONDAMENTI DI FISICA DI D. HALLIDAY,

Dettagli

LAVORO. Prima di parlare del lavoro è necessario definire una funzione matematica cosθ

LAVORO. Prima di parlare del lavoro è necessario definire una funzione matematica cosθ LAVORO Prima di parlare del lavoro è necessario definire una funzione matematica cosθ Cos θ θ senθ senza soffermarci molto, in quanto non necessario, ai fini delle nostre applicazioni, diciamo solo che:

Dettagli

e la lunghezza della proiezione del vettore B sul vettore A. s = A B =A b

e la lunghezza della proiezione del vettore B sul vettore A. s = A B =A b 8) Prodotto scalare o prodotto interno Si definisce prodotto scalare s di due vettori A e B, l area del rettangolo che ha per lati il modulo del vettore A e la lunghezza della proiezione del vettore B

Dettagli

Prodotto scalare e prodotto vettoriale. Elisabetta Colombo

Prodotto scalare e prodotto vettoriale. Elisabetta Colombo Corso di Approfondimenti di Matematica Biotecnologie, Anno Accademico 2010-2011, http://users.mat.unimi.it/users/colombo/programmabio.html Vettori Vettori 1 2 3 4 di di Ricordiamo il in R n Dati a = (a

Dettagli

Anno Accademico DIARIO DEL CORSO SSIS Didattica della matematica per la scuola superiore 1. 4 ottobre 2005

Anno Accademico DIARIO DEL CORSO SSIS Didattica della matematica per la scuola superiore 1. 4 ottobre 2005 Anno Accademico 2005-2006 DIARIO DEL CORSO SSIS Didattica della matematica per la scuola superiore 1 SILVANO DELLADIO 4 ottobre 2005 Costruzione di Z, Q, R e C, dando per scontato N. Teoria ingenua, fatta

Dettagli

Due vettori si dicono opposti se hanno stessa direzione, stesso modulo ma direzione opposte, e si indica con.

Due vettori si dicono opposti se hanno stessa direzione, stesso modulo ma direzione opposte, e si indica con. Vettori. Il vettore è un ente geometrico rappresentato da un segmento orientato, che è caratterizzato da una direzione, da un verso e da un modulo. Il punto di partenza si chiama coda (o punto di applicazione),

Dettagli

Prof. Luigi De Biasi VETTORI

Prof. Luigi De Biasi VETTORI VETTORI 1 Grandezze Scalari e vettoriali.1 Le grandezze fisiche (ciò che misurabile e per cui è definita una unità di misura) si dividono due categorie, grandezze scalari e grandezza vettoriali. Si definisce

Dettagli

V il segmento orientato. V con VETTORI. Costruzione di un vettore bidimensionale

V il segmento orientato. V con VETTORI. Costruzione di un vettore bidimensionale VETTORI Costruzione di un vettore bidimensionale Nel piano con un righello si traccia una retta r tratteggiata Su r si disegna un segmento di lunghezza l d una delle estremità si disegni la punta di una

Dettagli

Appunti di geometria analitica dello spazio. di Fabio Maria Antoniali

Appunti di geometria analitica dello spazio. di Fabio Maria Antoniali Appunti di geometria analitica dello spazio di Fabio Maria Antoniali versione del 23 maggio 2017 1 Un po di teoria 1.1 Vettori e punti 1.1.1 Componenti cartesiane e vettoriali Fissato nello spazio un riferimento

Dettagli

Anno Accademico DIARIO DEL CORSO SSIS Didattica della matematica per la scuola superiore 1. 9 ottobre 2007

Anno Accademico DIARIO DEL CORSO SSIS Didattica della matematica per la scuola superiore 1. 9 ottobre 2007 Anno Accademico 2007-2008 DIARIO DEL CORSO SSIS Didattica della matematica per la scuola superiore 1 SILVANO DELLADIO 9 ottobre 2007 Costruzione di Z, Q, R e C, dando per scontato N. Teoria ingenua dei

Dettagli

Angoli e loro misure

Angoli e loro misure Angoli e loro misure R s Unità di misura: gradi, minuti, secondi 1 o =60' 1'=60'' Es: 35 o 41'1'' radianti α(rad) s R Angolo giro = 360 o = R/R = rad R=1 arco rad Es.: angolo retto R Arco 4 : se R=1 π

Dettagli

figura. A figura. B Il modulo è la lunghezza o intensità del vettore. Il punto di applicazione è l origine del vettore detto anche coda.

figura. A figura. B Il modulo è la lunghezza o intensità del vettore. Il punto di applicazione è l origine del vettore detto anche coda. Martinelli Sara 1A Lab. Di fisica del Liceo Scopo: verificare la regola del parallelogramma. Materiale utilizzato: Telaio 5 morse Asta orizzontale Base metallica 2 piantane verticali Pesi Goniometro stampato

Dettagli

Grandezze Fisiche, Sistema Internazionale e Calcolo Vettoriale

Grandezze Fisiche, Sistema Internazionale e Calcolo Vettoriale Grandezze Fisiche, Sistema Internazionale e Calcolo Vettoriale Soluzioni ai Quiz 1 Il Sistema Internazionale di Unità di Misura Le grandezze fisiche di base sono sei, ognuna delle quali ha una unità di

Dettagli

- Fondamenti di calcolo vettoriale - VETTORI

- Fondamenti di calcolo vettoriale - VETTORI VETTORI Definizione: Il vettore è un segmento orientato ovvero un segmento su cui è fissato un verso di percorrenza. Graficamente il verso del vettore è rappresentato da una freccia. A A A Segmento orientato

Dettagli

CORSO DI FISICA. Docente Maria Margherita Obertino

CORSO DI FISICA.   Docente Maria Margherita Obertino CORSO DI FISICA Docente Maria Margherita Obertino Indirizzo email: margherita.obertino@med.unipmn.it Tel: 0116707310-0321 660667 http://personalpages.to.infn.it/~obertino/didattica/at_2010 20 ore di lezione

Dettagli

Geometria analitica del piano pag 32 Adolfo Scimone

Geometria analitica del piano pag 32 Adolfo Scimone Geometria analitica del piano pag 32 Adolfo Scimone CAMBIAMENTI DI SISTEMA DI RIFERIMENTO Consideriamo il piano cartesiano R 2 con un sistema di riferimento (O,U). Se introduciamo in R 2 un secondo sistema

Dettagli

vettore spostamento infinitesimo: ds dr dxi + dyj + dzk

vettore spostamento infinitesimo: ds dr dxi + dyj + dzk Appendice A A.1 - istemi di coordinate. 1) Coordinate cartesiane. Il sistema di riferimento è costituito da tre assi perpendicolari uscenti da una comune origine O ed orientati positivamente verso l esterno.

Dettagli

LEZIONE DEL 23 SETTEMBRE

LEZIONE DEL 23 SETTEMBRE INGEGNERI GESTIONLE corso di Fisica Generale Prof. E. Puddu LEZIONE DEL 23 SETTEMRE 2008 Introduzione Sistemi di coordinate y y (x,y) Q( 3,4) (x,y) r P (7,2) O x Coordinate cartesiane. Ogni punto è individuato

Dettagli

Esercizi sul Calcolo Vettoriale 10/10/2014

Esercizi sul Calcolo Vettoriale 10/10/2014 Esercizi sul Calcolo Vettoriale 10/10/2014 Problema 1. Fissata una terna cartesiana eortogonale e dati due vettori a=11 î 7 ĵ +9 k, b=14 î+5 ĵ k determinare modulo, direzione e verso sia della somma a+

Dettagli

Note per il corso di Geometria e algebra lineare Laurea in Ing.Inform. e Com., Ing.Info.Gest.Imp., Informatica. 1 Vettori geometrici 1.

Note per il corso di Geometria e algebra lineare Laurea in Ing.Inform. e Com., Ing.Info.Gest.Imp., Informatica. 1 Vettori geometrici 1. 1 Note per il corso di Geometria e algebra lineare 2016-17 Laurea in Ing.Inform. e om., Ing.Info.Gest.Imp., Informatica 1 Vettori geometrici 1.1 I prodotti cartesiani R R = R 2 e R R R = R 3, costituiti

Dettagli

Spazi vettoriali euclidei.

Spazi vettoriali euclidei. Spazi vettoriali euclidei Prodotto scalare, lunghezza e ortogonalità in R n Consideriamo lo spazio vettoriale R n = { =,,, n R}, n con la somma fra vettori e il prodotto di un vettore per uno scalare definiti

Dettagli

Anno Accademico DIARIO DEL CORSO SSIS Didattica della matematica per la scuola superiore ottobre 2006

Anno Accademico DIARIO DEL CORSO SSIS Didattica della matematica per la scuola superiore ottobre 2006 Anno Accademico 2006-2007 DIARIO DEL CORSO SSIS Didattica della matematica per la scuola superiore 1 SILVANO DELLADIO 10 ottobre 2006 Costruzione di Z, Q, R e C, dando per scontato N. Teoria ingenua, fatta

Dettagli

Il calcolo vettoriale. Marina Cobal - Dipt.di Fisica - Universita' di Udine 1

Il calcolo vettoriale. Marina Cobal - Dipt.di Fisica - Universita' di Udine 1 Il calcolo vettoriale Universita' di Udine 1 I vettori: definizione Attenzione a definizioni superficiali Del tipo: Definito da modulo, direzione, verso Sono valide a senso, e solo in coordinate cartesiane!

Dettagli

Sistemi di coordinate

Sistemi di coordinate Sistemi di coordinate Servono a descrivere la posizione di una punto nello spazio. Un sistema di coordinate consiste in Un punto fisso di riferimento chiamato origine Degli assi specifici con scale ed

Dettagli

, 3x y = a 2 = b 2 + c 2 2bc cos α.

, 3x y = a 2 = b 2 + c 2 2bc cos α. Esercizi. Soluzioni. (.A ) Siano x = e y =. 2 (i) Calcolare e disegnare i vettori x, 2x, x, 0x. (ii) Calcolare e disegnare i vettori x + y, x y, y e x y. (iii) Calcolare x, y, x + y e x y. Sol. 2 0 (i)

Dettagli

Nel Sistema Internazionale l unità di misura dell angolo è il radiante

Nel Sistema Internazionale l unità di misura dell angolo è il radiante Scienze Motorie Grandezze fisiche Il Sistema Internazionale di Unità di Misura 1) Nel Sistema Internazionale il prefisso Giga equivale a a) 10 15 b) 10 12 c) 10 9 d) 10 6 e) 10 3 Nel Sistema Internazionale

Dettagli

Funzioni a valori vettoriali Differenziabilità e regola della catena

Funzioni a valori vettoriali Differenziabilità e regola della catena e regola della catena Analisi Matematica A Secondo modulo Corso di Laurea in Matematica Università di Trento 4 aprile 2019 o: le curve o: F : R 2 R 2 Sia E R n. Una funzione a valori vettoriali f : E R

Dettagli

I vettori. I vettori sono gli oggetti matematici che costituiscono la base di tutte le teorie fisiche.

I vettori. I vettori sono gli oggetti matematici che costituiscono la base di tutte le teorie fisiche. Vettori I vettori I vettori sono gli oggetti matematici che costituiscono la base di tutte le teorie fisiche. Le grandezze fisiche si distinguono essenzialmente in due grandi classi. Quelle che risultano

Dettagli

Lezione 2 Richiami sui sistemi di riferimento Richiami di trigonometria Vettori Calcolo vettoriale

Lezione 2 Richiami sui sistemi di riferimento Richiami di trigonometria Vettori Calcolo vettoriale Dr. Andrea Malizia Prof. Maria Guerrisi 1 Richiami sui sistemi di riferimento Richiami di trigonometria Vettori Calcolo vettoriale Sistemi di riferimento e spostamento 2 Sistemi di riferimento e spostamento

Dettagli

LEZIONE 8. k e w = wx ı + w y j + w z. k di R 3 definiamo prodotto scalare di v e w il numero

LEZIONE 8. k e w = wx ı + w y j + w z. k di R 3 definiamo prodotto scalare di v e w il numero LEZINE 8 8.1. Prodotto scalare. Dati i vettori geometrici v = v x ı + v y j + v z k e w = wx ı + j + k di R 3 definiamo prodotto scalare di v e w il numero v, w = ( v x v y v z ) w x = v x + v y + v z.

Dettagli

Appunti di Elementi di Meccanica. Vettori nel piano. v 1.0

Appunti di Elementi di Meccanica. Vettori nel piano. v 1.0 Appunti di Elementi di Meccanica Vettori nel piano v 1.0 1 Vettori Figura 1: Rappresentazione di un vettore Il vettore è un ente geometrico che, nella meccanica, consente di rappresentare efficacemente

Dettagli

vettori V Sia inoltre l angolo che il primo vettore deve percorrere per sovrapporsi al secondo. * **

vettori V Sia inoltre l angolo che il primo vettore deve percorrere per sovrapporsi al secondo. * ** Prodotto scalare di vettori. Consideriasmo due vettori u e v e siano O e O due rappresentanti applicati in O. Indichiamo come al solito con u = O la norma (cioè l intensità) del vettore u Sia inoltre l

Dettagli

Esercizi di Elementi di Matematica Corso di laurea in Farmacia

Esercizi di Elementi di Matematica Corso di laurea in Farmacia Esercizi di Elementi di Matematica Corso di laurea in Farmacia dott.ssa Marilena Ligabò November 24, 2015 1 Esercizi sulla notazione scientifica Esercizio 1.1. Eseguire il seguente calcolo utilizzando

Dettagli

Grandezze scalari e vettoriali

Grandezze scalari e vettoriali VETTORI Grandezze scalari e vettoriali Tra le grandezze misurabili alcune sono completamente definite da un numero e da un unità di misura, altre invece sono completamente definite solo quando, oltre ad

Dettagli

Operazioni coi vettori

Operazioni coi vettori Operazioni coi ettori Opposto di un ettore I ersori Somma e differenza tra ettori Componenti di un ettore Prodotto scalare Prodotto ettoriale Rappresentazione matriciale di un ettore I ettori Per definire

Dettagli

( ρ, θ + π ) sono le coordinate dello stesso punto. Pertanto un punto P può essere descritto come

( ρ, θ + π ) sono le coordinate dello stesso punto. Pertanto un punto P può essere descritto come Coordinate polari Il sistema delle coordinate cartesiane è uno dei possibili sistemi per individuare la posizione di un punto del piano, relativamente ad un punto fisso O, mediante una coppia ordinata

Dettagli

MANCA : VETTORI, FORZE E MOMENTO DI UNA FORZA

MANCA : VETTORI, FORZE E MOMENTO DI UNA FORZA MANCA : prodotto vettoriale prodotto scalare VETTOI, OZE E MOMENTO DI UNA OZA Immaginiamo un corpo in movimento, ad esempio un ciclista, un motociclista, un automobile o un aeroplano. Corpo in movimento

Dettagli

dove i simboli α gradi ed α radianti indicano rispettivamente la misura dell angolo in gradi ed in radianti. Da qui si ottengono le seguenti formule

dove i simboli α gradi ed α radianti indicano rispettivamente la misura dell angolo in gradi ed in radianti. Da qui si ottengono le seguenti formule 8 Trigonometria 81 Seno, coseno, tangente Un angolo α può essere definito geometricamente come la parte di piano compresa tra due semirette, dette lati dell angolo, aventi origine nello stesso punto O,

Dettagli

VETTORI B B B. con verso da B a A

VETTORI B B B. con verso da B a A VETTORI Definizione: Il vettore è un segmento orientato ovvero un segmento su cui è fissato un verso di percorrenza. Graficamente il verso del vettore è rappresentato da una freccia. A A A Segmento orientato

Dettagli

Esercitazione di Analisi Matematica II

Esercitazione di Analisi Matematica II Esercitazione di Analisi Matematica II Barbara Balossi 06/04/2017 Esercizi di ripasso Esercizio 1 Sia data l applicazione lineare f : R 3 R 3 definita come f(x, y, z) = ( 2x + y z, x 2y + z, x y). a) Calcolare

Dettagli

GEOMETRIA ANALITICA NELLO SPAZIO (3D Geometry)

GEOMETRIA ANALITICA NELLO SPAZIO (3D Geometry) GEOMETRIA ANALITICA NELLO SPAZIO (3D Geometry) SISTEMA DI RIFERIMENTO NELLO SPAZIO La geometria analitica dello spazio è molto simile alla geometria analitica del piano. Per questo motivo le formule sono

Dettagli

Indice. IL METODO DELLE COORDINATE NEL PIANO Mauro Saita Versione provvisoria. Giugno 2019.

Indice. IL METODO DELLE COORDINATE NEL PIANO Mauro Saita Versione provvisoria. Giugno 2019. IL METODO DELLE COORDINATE NEL PIANO maurosaita@tiscalinet.it Versione provvisoria. Giugno 2019. Indice 1 Il piano euclideo 2 1.1 La rivoluzione cartesiana: fare geometria con l algebra............. 2

Dettagli

cos(2 n θ) < 0. a 2 + b 2 + c 2 = 8R 2. r a.

cos(2 n θ) < 0. a 2 + b 2 + c 2 = 8R 2. r a. 1 G1 - Esercizi 1. Si determinino tutti i possibili θ per cui, n N, si ha cos( n θ) < 0.. I lati di un triangolo ABC realizzano a + b + c = 8R. Si provi che in tale ipotesi ABC è rettangolo. 3. Due angoli

Dettagli

La matematica del CAD. Vettori e Matrici

La matematica del CAD. Vettori e Matrici La matematica del CAD Vettori e Matrici IUAV Disegno Digitale Camillo Trevisan I programmi CAD riducono tutti i problemi geometrici in problemi analitici: la proiezione di un punto su un piano viene, ad

Dettagli

Vettori del piano. Questo materiale non deve essere considerato come sostituto

Vettori del piano. Questo materiale non deve essere considerato come sostituto 0.1 Vettori applicati e liberi Politecnico di Torino. Vettori del piano Nota Bene: delle lezioni. Questo materiale non deve essere considerato come sostituto 0.1 Vettori applicati e liberi P P Q Q Il simbolo

Dettagli

Cap. 6 - Algebra vettoriale

Cap. 6 - Algebra vettoriale Capitolo 6 Algebra vettoriale 6.1. Grandezze scalari Si definiscono scalari quelle grandezze fisiche che sono descritte in modo completo da un numero con la relativa unità di misura. La temperatura dell

Dettagli

Vettori e Calcolo vettoriale

Vettori e Calcolo vettoriale Vettori e Calcolo vettoriale Ci poniamo nello spazio ordinario S, in cui valgono gli assiomi della geometria euclidea. I vettori vengono rappresentati mediante frecce, con un punto iniziale e un punto

Dettagli

Vettori. Capitolo Vettori applicati e vettori liberi

Vettori. Capitolo Vettori applicati e vettori liberi apitolo 3 Vettori 3.1 Vettori applicati e vettori liberi In questo numero introduciamo il concetto di vettore geometrico su una retta, nel piano e nello spazio che ci consentirà di sviluppare un linguaggio

Dettagli

SCALARI E VETTORI SOMMA DI VETTORI

SCALARI E VETTORI SOMMA DI VETTORI SLRI E VETTORI lcune grandee fisiche per esempio, la massa di un oggetto, la posiione di un punto possono essere caratteriate matematicamente mediante un numero. Tali grandee o osservabili sono dette scalari.

Dettagli

S.Barbarino - Appunti di Fisica I. Cap. 1. Sistemi di riferimento e vettori

S.Barbarino - Appunti di Fisica I. Cap. 1. Sistemi di riferimento e vettori Cap 1 Sistemi di riferimento e vettori 11 - Definizione e descrizione di particelle Il piú semplice sistema meccanico é quello che nello schema matematico della meccanica puó essere rappresentato da un

Dettagli

1 Vettori. LeLing4: Vettori.

1 Vettori. LeLing4: Vettori. LeLing4: Vettori. Ārgomenti svolti: Vettori. Prodotto scalare, angolo, lunghezza e proiezzione. Disuguaglianze di Cauchy-Schwarz e triangolare. Equazione della retta, del piano e dell iperpiano. Ēsercizi

Dettagli

Lez. 3 Vettori e scalari

Lez. 3 Vettori e scalari Lez. 3 Vettori e scalari Prof. 1 Dott., PhD Dipartimento Scienze Fisiche Università di Napoli Federico II Compl. Univ. Monte S.Angelo Via Cintia, I-80126, Napoli mettivier@na.infn.it +39-081-676137 2 Un

Dettagli

CENNI DI TRIGONOMETRIA

CENNI DI TRIGONOMETRIA CENNI DI TRIGONOMETRIA Seno Consideriamo una circonferenza C e fissiamo un sistema di riferimento cartesiano in modo che la circonferenza C sia centrata nell origine degli assi e abbia raggio. Dall origine

Dettagli

Prodotto scalare. numero pari al modulo del vettore b a. la grandezza. si definisce prodotto scalare di due vettori

Prodotto scalare. numero pari al modulo del vettore b a. la grandezza. si definisce prodotto scalare di due vettori Moltiplicaione tra vettori Prodotto scalare si definisce prodotto scalare di due vettori θ e ab = abcosϑ= abcosϑ la grandea l operaione prodotto scalare tra due vettori produce un numero pari al modulo

Dettagli

Geometria analitica: rette e piani

Geometria analitica: rette e piani Geometria analitica: rette e piani parametriche Allineamento nel piano nello spazio Angoli tra rette e distanza 2 2006 Politecnico di Torino 1 Esempio 2 Sia A = (1, 2). Per l interpretazione geometrica

Dettagli

Capitolo 1 Vettori applicati e geometria dello spazio

Capitolo 1 Vettori applicati e geometria dello spazio Capitolo 1 Vettori applicati e geometria dello spazio Marco Robutti Facoltà di ingegneria Università degli studi di Pavia Tutorato di geometria e algebra lineare Anno accademico 2014-2015 Definizione (Vettore

Dettagli

Trigonometria Indice. Trigonometria.

Trigonometria Indice. Trigonometria. Trigonometria Indice Risoluzione dei triangoli rettangoli...1 Teoremi di Euclide e Pitagora...2 Teorema dei seni...3 Teorema del coseno (Carnot)...4 Risoluzione di triangoli qualunque...5 Trigonometria.

Dettagli

Analisi Matematica 2. Curve e integrali curvilinei. Curve e integrali curvilinei 1 / 29

Analisi Matematica 2. Curve e integrali curvilinei. Curve e integrali curvilinei 1 / 29 Analisi Matematica 2 Curve e integrali curvilinei Curve e integrali curvilinei 1 / 29 Curve in R 2 e R 3 Intuitivamente: una curva é un insieme di punti nello spazio in cui una particella puó muoversi

Dettagli