# $$ % % # & ' # $ $$ % ( # ( % % $

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "# $$ % % # & ' # $ $$ % ( # ( % % $"

Transcript

1 !"

2 # $$% % # & ' # $$$% # % %$

3 !" # X F = f x ˆ ι F = f = f x x F x F x >, f x < <, f x > F = k xιˆ F = k r F = k r r # * +*,-+. /,

4 $! x k k x + x = pongo ω = > Equazione oraria x t = l cos ωt + φ +l -l F = k xιˆ a = xιˆ F = a k x = x x + kx = x + x x = ω x = l cos φ ω = k φ = v l = x + ω arctan v ωx T π = = ω π k

5 % x + ω x = x t = Acos ω t + ϕ Pulsazione, fase, fase iniziale. Moto periodico T = k con ω ; ; tan = A = + x ϕ = ω ωx ˆi ˆj kˆ f e = capo conservativo U x y z kx π ω p

6 B A B LAB = kx dx = k xa x A B U p U p U p x = kx + cost x t = Acos ωt + ϕ Acosϕ ϕ x t = ω Asinϕ Conservazione dell energia eccanica e trasforazioni K = x = A ω sin ϕ = k A sin ϕ U p = kx = k A cos ϕ EM = K + U p = k A sin ϕ cos ϕ k A ω A + = = cioè, proporzionale al quadrato dell apiezza e al quadrato della pulsazione

7 "

8 Circuito LC R trascurabile Le stesse relazioni si hanno in un circuito LC, con ω = LC All inizio condensatore carico con Q. Dopo, oscillazione elettroagnetica. Q t di VC = VL = L C dt Q d Q d Q L C dt dt LC = + Q = k Uguale a quella di una olla oscillante: + x x = L ; k C ω

9 Q = Q cos ω t + ϕ ; ove ω = Soluzione: carica LC La corrente nell induttanza: dq i = = ω Q sinϕ dt corrente 3

10 Riguardo all energia: Q Q U E = = cos C C ϕ U B = Li = Lω Q sin ϕ = Q = L Q = LC C sin ϕ sin Q = Q cosϕ i = Q ω sinϕ ω = ϕ LC e la soa è costante nel tepo: U E + U = B Q C

11 ! # 4 '%5 $ 6 $ &$%% $ f x F = f xˆ ι f x = Punti di equilibrio f x B > x B punto instabile A B x f x A < x A punto stabile f x f x + f x x x + O x x f x k x x A A A A x x A A Moto oscillatorio attorno al punto di equilibrio stabile x A

12 !!$! Notevole seplificazione dei calcoli: per esepio, le equazioni integro-differenziali con soluzione sinusoidale diventano algebriche lineare Rappresentazione geoetrica di una coppia ordinata di nueri reali Assi: reale e iaginario z x + iy rappresentazione algebrica z = r cosϕ + isinϕ rappresentazione trigonoetrica odulo e un argoento Soa di due coplessi equivale alla soa dei due vettori.

13 z x + iy = r cosϕ + isinϕ cosϕ + isinϕ = z r definizione forula di Eulero z x e = e cos y + isin y cioè, in terini di odulo e fase, a in fora esponenziale iϕ z* = r e = r cosϕ i sinϕ è il coplesso coniugato iϕ e = cosϕ + isinϕ ϕ + ϕ z = i z = zz = A A e iϕ z = A e z A i ϕ ϕ z e iϕ = = z = Ae z A n n inϕ n z = A e = A cos nϕ + isin nϕ re iϕ

14 Se il vettore ruota con velocità angolare costante ω = ω, la proiezione oscilla aronicaente. Il oto aronico è descritto dalla parte reale del nuero coplesso r A: z t = Ae iϕ = Ae i ω t+ ϕ x t = Acosϕ = Re z t = Re Ae = iϕ iϕ iωt iωt A Ac = Re e e = Re e con A = Ae iϕ apiezza coplessa c i ω t+ ϕ Ae d = = ω ; = = dt i ωt+ ϕ z i z zdt Ae dt z iω z x = Re z = Re iω z ; xdt = Re zdt = Re iω

15 i i z + z* = A e ϕ + e ϕ = = A cosϕ + isinϕ + cosϕ isinϕ = Acosϕ e + e e e cos ϕ = ; sinϕ = i iϕ iϕ e + e x t = A iϕ iϕ iϕ iϕ Il etodo sibolico funziona solo se le equazioni considerate sono lineari nella funzione aronica: in tale caso, le operazioni lineari coutano con l operazione prendere la parte reale. No energia, potenza, perché? In particolare, sono lineari le equazioni di Kirchhoff, di Maxwell, delle onde coe vedreo.

16 λt t x λ t = λe λx t x + ω x = ; x t = e λt x t = λ e λ x t λ iω x t = λ + ω = + ω ω soluzione generale: z t = c e + c e i t e ± ω, = ± coplesse coniugate e linearente indipendenti i t i t c e c possono essere coplesse Se vogliao soluzioni reali, annulliao la parte iaginaria: * ω * + * + i t iω t z z c c e c c e I z = = = c i i A i c = ϕ e A + i ω t+ ϕ A i ω t+ ϕ z t = e + e = cioè: c = A e iϕ = c * + iϕ iϕ e + e = A = Acos t + ω ϕ 6

17 Punto ateriale soggetto ad una forza elastica e ad una forza di attrito viscoso. F ˆ EL = k xι F ˆ a = xιˆ S = β xι kx β x = x β k x + x + x = F + F = a EL S Equazione differenziale alle derivate seconde lineare ed oogenea. x t x t x t = C x t + C x t C, C Lineare ed oogenea: se e sono soluzioni, allora lo è anche t Cerco una soluzione nella fora: x t = e λ λ t λ λt x t = λe = λx t x t = λx t = λ e = λ x t β k λ x + λx + x = λ x = β k + λ + = Soluzione ovvia dell oogenea Polinoio caratteristico "

18 $! ' λ β k + λ + = = β 4 k λ, β = ± $ 5 > β < λ <, λ < reali Due soluzioni diverse, reali e negative λ t λ t x t = C e + C e C, C % % x t t

19 7 5 = β λ = λ = = η $! ' Due soluzioni uguali, reali e negative t x t = e η d x d λ x t = C e + C te = C + C t e C, C η t = x t = te È una soluzione η t η t η t % % x t t $ '$$$ $589:- $$%7 ; trip = 3 5 %5% β 3

20 $! '. %5 < β β λ = + i λ = i x t ηt+ iωt ηt iωt Due soluzioni diverse, coplesse e coniugate λ = η + iω λ = η iω iωt x t = C e + C e e = cosωt + i sinωt ηt ω ω ω ω ηt cosω sinω cos ω φ x t = e C cos t + ic sin t + C cos t ic sin t = = + = + ηt e D t D t Ae t + Ae ηt % Ae ηt t Negli aortizzatori dei veicoli, k β k ω = / 4 = < β,4 β cr

21 t Posto: τ k β ω x t = A e cos ωt + ϕ = ; γ = ; ω = ω γ / 4 < ω ; τ = = γ β Se τ è abbastanza grande, cioè lo sorzaento abbastanza piccolo γ / ω in uno pseudoperiodo si può ω ω, assuere l apiezza circa costante; in pratica, si t τ trascura nello pseudoperiodo la variazione di e. In quello pseudoperiodo il oto è quasi periodico: EM ω A t

22 Nel periodo successivo, però, l apiezza edia diinuisce: ovviaente, l energia eccanica non si conserva! t τ t ω e A t = A e A t A t = A e τ per cui EM A decadiento esponenziale τ viene quindi detta tepo di decadiento dell oscillatore: τ è il tepo dopo il quale l energia decresce di un fattore /e τ γ deterina la rapidità con cui l energia si dissipa! t τ

23 Le stesse considerazioni si possono fare per il circuito LRC, per il quale: d Q R dq + + Q = dt L dt LC Q x ; L ; k ; R γ = C L τ t τ Q t = Q e cos ωt + ϕ γ R ω = ω ω 4 4τ LC 4L Qui piccolo sorzaento significa R < L C

24 In più: forza periodica dipendente dal tepo, di pulsazione Ω x + βx + kx = f t con f t = F cos Ωt ogni funzione periodica può essere espressa coe sovrapposizione di funzioni sinusoidali Soluzione generale: integrale dell oogenea sorzato + integrale particolare F cos t Re F e iωt Ω = β γ = ω = k

25 F e i Ω Possiao risolvere z + γ z + ω z = t e prendere la parte reale della soluzione: x t = Re z t A tepi lunghi prevarrà la forza aggiunta. Cerchiao soluzione particolare del tipo: zt=ae λt Sostituendo, si trova iediataente che deve essere λ = iω iωt iωt z = AiΩ e = iω z z t = Ae A può essere iωt z = A Ω e = Ω z coplesso iωt F iωt da cui Ω + iγ Ω + ω Ae = e F / F F A = χ, Z coplessi Ω + ω i Z + iγ Ω χ Ω γ Ω χ = ω Ω + iγ Ω ha fase δ = arctan ω Ω

26 ω γ Ω Z = γ + iω ha fase δ Z = arctan Ω ω Ω ipedenza eccanica Soluzione particolare cercata: z t F F Ωt δ = = = = χ e χ iωt iωt i Ae e e iδ F / e i Ω t δ = ω Ω + γ Ω che ha parte reale F / x t = z t = Ωt δ Re cos tanδ = γ Ω ω Ω ω Ω + γ Ω

27 Soluzione generale: soa con la soluzione della oogenea x t = x t + x t = oo part F / τ = A ωt + ϕ + Ωt δ t e cos cos γ ω = ω 4 ω 4τ ω Ω + γ Ω La pria, però, diventa trascurabile dopo qualche τ. ed è l unica che dipende dalle condizioni iniziali A e ϕ "

28 F / x t Ωt δ cos ω Ω + γ Ω γ Ω δ = arctan ω Ω Questa è detta soluzione stazionaria: ha la pulsazione uguale a quella della forza esterna l apiezza non dipende dalle condizioni iniziali 3 l apiezza dipende olto dalla differenza delle pulsazioni: risonanza 4 l oscillazione è sfasata rispetto alla forza esterna

29 F / x t Ωt B Ωt δ cos δ cos ω Ω + γ Ω apiezza δ B γ Ω δ = arctan ω Ω F/k Ω = ω γ ax Ω per β γ l apiezza ax tende a 9 Ω

30 F / x t cos Ωt δ γ Ω δ = arctan ω Ω + γ Ω ω Ω F F F A = x t cos Ωt doina k Ω ω ω k ; k δ in fase con forza esterna F x t cos Ωt F doina Ω A Ω ω Ω ; in opposizione di fase δ π con forza esterna F F A x t sin Ωt doina β Ω ω β Ω ; βω δ π/ in quadratura con forza esterna

31 L energia totale edia, il quadrato dell apiezza di oscillazione e altre grandezze ancora possono essere scritte in terini della funzione di risposta R dell oscillatore: x t F / Ω = cos F γ Ω ω Ω + γ Ω ω Ω + γ Ω t δ t δ t δ = cos Ω = F β Ω = Ω Ω R cos γ Ω R Ω = γ Ω ω Ω + γ Ω ω F E = ka = R Ω β Ω

32 R Ω = γ Ω ω Ω + γ Ω γ = β Ω ax = ω γ β = = γ

33 L analogo elettrico è un circuito RLC, con forza elettrootrice Vt R x Q β = γ L con e ω = L LC τ = R L di + Ri + Q = V t Q + R Q + Q = V t dt C L LC L si può variare la frequenza propria del circuito ω con un condensatore a capacità variabile

34 Se arriva un segnale esterno da una antenna di pulsazione Ω, esso provoca oscillazioni elettriche apie quando ω Ω. La larghezza della curva è γ = R / L, che deterina la selettività; per valori dei segnali con Ω lontano da ω più di R/L, le oscillazioni generate sono olto piccole e i segnali non vengono rilevati. γ = R L

Oscillazioni. Definizione Moto circolare uniforme Moto armonico

Oscillazioni. Definizione Moto circolare uniforme Moto armonico Oscillazioni Definizione Moto circolare unifore Moto aronico Moto aronico e oto circolare unifore sinωt La curva a destra dello schizzo è una sinusoide. Abbiao diviso l asse x in parti uguali di angoli

Dettagli

Fisica 1, a.a : Oscillatore armonico

Fisica 1, a.a : Oscillatore armonico Fisica 1, a.a. 2014-2015: Oscillatore aronico Anna M. Nobili 1 Oscillatore aronico in una diensione senza dissipazione e in assenza di forze esterne Ad una olla di assa trascurabile, costante elastica

Dettagli

1 Oscillazioni libere (oscillatore armonico)

1 Oscillazioni libere (oscillatore armonico) C. d. L. Ingegneria Inforatica e delle Telecounicazioni A.A. / Fisica Generale PROCESSI OSCILLATORI Oscillazioni liere (oscillatore aronico) Siao in presenza di un sistea la cui equazione che esprie il

Dettagli

Strumenti matematici. La forza intermolecolare. Introduzione al problema fisico Base di uno spazio vettoriale Serie di Fourier

Strumenti matematici. La forza intermolecolare. Introduzione al problema fisico Base di uno spazio vettoriale Serie di Fourier Struenti ateatici Struenti ateatici Introduzione al problea fisico Base di uno spazio vettoriale Serie di Fourier Serie di Taylor Nueri coplessi Stru. at. Stru. at. Forza di attrazione Forza di repulsione

Dettagli

Fisica 1, a.a : Oscillatore armonico

Fisica 1, a.a : Oscillatore armonico Fisica 1, a.a. 2014-2015: Oscillatore aronico Anna M. Nobili 1 Oscillatore aronico in una diensione senza dissipazione e in assenza di forze esterne Ad una olla di assa trascurabile, costante elastica

Dettagli

cos( ωt + ϕ)= Re v t = V o e jωt cos ωt + ϕ vt ()=V o e jϕ che è un numero complesso costante, di modulo V O ed e jωt = cos ωt + j sinωt

cos( ωt + ϕ)= Re v t = V o e jωt cos ωt + ϕ vt ()=V o e jϕ che è un numero complesso costante, di modulo V O ed e jωt = cos ωt + j sinωt . METODO SIMBOLIO, O METODO DEI FASORI..Introduzione Questo metodo applicato a reti lineari permanenti consente di determinare la soluzione in regime sinusoidale solamente per quanto attiene il regime

Dettagli

Oscillazioni e Onde Forza elastica

Oscillazioni e Onde Forza elastica Oscillazioni e Onde Forza elastica Riprendiao la legge oraria di una assa attaccata a una olla vincolata in un estreo. Per fare ciò occorre scriverne la legge del oto: ka da cui k d dt d dt k d dt Per

Dettagli

Indice slides. 1 Oscillatore semplice 5. 2 Equazione caratteristica 6. 3 Radici complesse 7. 4 Integrale generale 8. 5 Forza Peso 9.

Indice slides. 1 Oscillatore semplice 5. 2 Equazione caratteristica 6. 3 Radici complesse 7. 4 Integrale generale 8. 5 Forza Peso 9. Moto di Oscillatori Pietro Pantano Dipartimento di Matematica Università della Calabria Slides 1 di 27 Slides 2 di 27 1 Oscillatore semplice 5 2 Equazione caratteristica 6 3 Radici complesse 7 4 Integrale

Dettagli

2. calcolare l energia cinetica del corpo e tracciare il suo andamento nel tempo;

2. calcolare l energia cinetica del corpo e tracciare il suo andamento nel tempo; 1 Esercizio (tratto dal Problea 4.29 del Mazzoldi 2) Un corpo di assa = 1.5 Kg è agganciato ad una olla di costante elastica k = 2 N/, di lunghezza a riposo = 50 c, fissata ad una parete verticale in x

Dettagli

Di seguito, per semplicità, mostreremo esempi in cui il termine di destra della (*) f è costante nel tempo. %%%%%%%

Di seguito, per semplicità, mostreremo esempi in cui il termine di destra della (*) f è costante nel tempo. %%%%%%% Note su uso delle equazioni differenziali in eccanica Spesso la risoluzione delle equazioni del oto si ottiene attraverso la risoluzione di equazioni differenziali lineari a coefficienti costanti. L uso

Dettagli

Esperienza 12: oscillatore. forzato e risonanza. Laboratorio di Fisica 1 A. Baraldi, M. Riccò. Università di Parma. a.a. 2011/2012. Copyright M.

Esperienza 12: oscillatore. forzato e risonanza. Laboratorio di Fisica 1 A. Baraldi, M. Riccò. Università di Parma. a.a. 2011/2012. Copyright M. Esperienza 1: oscillatore Università di Parma forzato e risonanza a.a. 11/1 Laboratorio di Fisica 1 A. Baraldi, M. Riccò Copyright M.Solzi Oscillazioni libere smorzate a.a. 11/1 1: Oscillatore forzato

Dettagli

Lez.21 Circuiti dinamici di ordine due. 1. Università di Napoli Federico II, CdL Ing. Meccanica, A.A , Elettrotecnica. Lezione 21 Pagina 1

Lez.21 Circuiti dinamici di ordine due. 1. Università di Napoli Federico II, CdL Ing. Meccanica, A.A , Elettrotecnica. Lezione 21 Pagina 1 Lez.21 Circuiti dinamici di ordine due. 1 Università di Napoli Federico II, CdL Ing. Meccanica, A.A. 2017-2018, Elettrotecnica. Lezione 21 Pagina 1 Circuito RLC serie All istante t=0 inseriamo il generatore

Dettagli

Oscillazioni. Definizioni Mo/ armonici Propagazione delle onde

Oscillazioni. Definizioni Mo/ armonici Propagazione delle onde Oscillazioni Definizioni Mo/ aronici Propagazione delle onde Il oto aronico e il oto circolare unifore sinωt La curva a destra dello schizzo è una sinusoide. Abbiao diviso l asse x in parti uguali di angoli

Dettagli

Moti oscillatori. Parte I Oscillatore armonico

Moti oscillatori. Parte I Oscillatore armonico 1 10.1-10.2 OSCILLATORE ARMONICO Parte I Moti oscillatori 1 10.1-10.2 Oscillatore armonico Abbiamo visto che una situazione che si riconduce a soddisfare l equazione differenziale d 2 x(t) dt 2 +ω 2 x(t)

Dettagli

Esercizio (tratto dal Problema 2.6 del Mazzoldi)

Esercizio (tratto dal Problema 2.6 del Mazzoldi) Esercizio (tratto dal Problea 2.6 del Mazzoldi) Un punto ateriale di assa è sospeso traite un filo verticale ed è collegato al suolo da una olla, di costante elastica 70 N/, che si trova alla lunghezza

Dettagli

Esercizio (tratto dal Problema 2.6 del Mazzoldi)

Esercizio (tratto dal Problema 2.6 del Mazzoldi) 1 Esercizio (tratto dal Problea 2.6 del Mazzoldi) Un punto ateriale di assa è sospeso traite un filo verticale ed è collegato al suolo da una olla, di costante elastica 70 N/, che si trova alla lunghezza

Dettagli

Esercizio (tratto dal Problema 4.7 del Mazzoldi 2)

Esercizio (tratto dal Problema 4.7 del Mazzoldi 2) 1 Esercizio (tratto dal Problea 4.7 del Mazzoldi 2) Un punto ateriale di assa è sospeso traite un filo verticale ed è collegato al suolo da una olla, di costante elastica = 70 N/, che si trova alla lunghezza

Dettagli

si ottiene (come si può facilmente verificare sostituendo la soluzione proposta nell equazione): 1

si ottiene (come si può facilmente verificare sostituendo la soluzione proposta nell equazione): 1 Prisa: legge di Cauchy Per deterinare la relazione tra l indice di rifrazione e la lunghezza d onda delle onde e- si utilizza un odello classico olto seplice, valido per atoi in un gas a che è counque

Dettagli

Lezione 15 - Onde. Fisica 1 - R. De Renzi - Onde 1

Lezione 15 - Onde. Fisica 1 - R. De Renzi - Onde 1 Lezione 15 - Onde onde su una corda, sulla superficie dell acqua lunghezza d onda, periodo, vettor d onda, frequenza funzione d onda equazione delle onde e velocità dell onda esempio di equazione delle

Dettagli

Meccanica Dinamica del punto materiale

Meccanica Dinamica del punto materiale Meccanica 17-18 8 Legge fondaentale della dinaica (II legge di Newton) Nota la forza possiao deterinare l equazione del oto d r F a dt al oviento (accelerazione) risaliao alla forza che lo produce Tipi

Dettagli

Equazioni Differenziali

Equazioni Differenziali Equazioni Differenziali Carla A. Ferradini December 9, 217 1 Introduzione e notazioni Un equazione differenziale è un equazione che ha come incognita una funzione. In particolare un equazione differenziale

Dettagli

Fenomeni Oscillatori: Equazioni di Base della Meccanica del Punto Materiale

Fenomeni Oscillatori: Equazioni di Base della Meccanica del Punto Materiale Fenomeni Oscillatori: Equazioni di Base della Meccanica del Punto Materiale Lezione del Corso di Esercitazioni di Laboratorio di Meccanica, Roma, 5 Maggio, 2014 Roberto Bonciani 1, Diparto di Fisica dell

Dettagli

Meccanica Dinamica del punto materiale

Meccanica Dinamica del punto materiale Meccanica 18-19 Dinamica del punto materiale 8 Dinamica del punto materiale Legge fondamentale della dinamica: d r ma m dt Tipi di forza: orza peso Reazione vincolare orza di attrito radente (statico,

Dettagli

m O Esercizio (tratto dal Problema 4.29 del Mazzoldi 2)

m O Esercizio (tratto dal Problema 4.29 del Mazzoldi 2) Esercizio tratto dal Problea 4.29 del Mazzoldi 2) Un corpo di assa 0.5 Kg è agganciato ad un supporto fisso traite una olla di costante elastica 2 N/; il corpo è in quiete nel punto O di un piano orizzontale,

Dettagli

Oscillazioni. Si produce un oscillazione quando un sistema viene perturbato rispetto a una posizione di equilibrio stabile

Oscillazioni. Si produce un oscillazione quando un sistema viene perturbato rispetto a una posizione di equilibrio stabile Oscillazioni Si produce un oscillazione quando un sistema viene perturbato rispetto a una posizione di equilibrio stabile Caratteristica più evidente del moto oscillatorio è di essere un moto periodico,

Dettagli

Prova Scritta di Fondamenti di Automatica del 21 Giugno 2006 B

Prova Scritta di Fondamenti di Automatica del 21 Giugno 2006 B Prova Scritta di Fondaenti di Autoatica del Giugno 6 Studente: Matricola: I F G( Motore Carico ) Per il sistea gru scheatizzato in figura, si assua che il otore sia descritto da una fdt G () s I( (.s +.8s

Dettagli

Oscillatori armonici smorzati e forzati

Oscillatori armonici smorzati e forzati Oscillatori armonici smorzati e forzati Giuseppe Dalba Sommario In questi appunti prenderemo in esame l utilizzo delle funzioni complesse nella risoluzione delle equazioni lineari a coefficienti reali,

Dettagli

Misure con circuiti elettrici

Misure con circuiti elettrici Misure con circuiti elettrici Samuele Straulino Laboratorio di Fisica II - S.S.I.S. 2008 2009 http://hep.fi.infn.it/ol/samuele/dida.php Descriverò in particolare questi aspetti: comportamento a regime

Dettagli

T.(a) T.(b) Es.1 Es.2 Es.3 Es.4 Totale. Cognome: Nome: Matricola: Prima parte: Teoria (punti 4+4).

T.(a) T.(b) Es.1 Es.2 Es.3 Es.4 Totale. Cognome: Nome: Matricola: Prima parte: Teoria (punti 4+4). T.(a) T.(b) Es.1 Es.2 Es.3 Es.4 Totale Analisi e Geometria 1 Secondo Appello 25 Giugno 2018 Compito A Docente: # iscrizione: Cognome: Nome: Matricola: Prima parte: Teoria (punti 4+4). T.(a) Enunciare e

Dettagli

Oscillazioni. Si produce un oscillazione quando un sistema viene perturbato rispetto a una posizione di equilibrio stabile

Oscillazioni. Si produce un oscillazione quando un sistema viene perturbato rispetto a una posizione di equilibrio stabile Oscillazioni Si produce un oscillazione quando un sistema viene perturbato rispetto a una posizione di equilibrio stabile Caratteristica più evidente del moto oscillatorio è di essere un moto periodico,

Dettagli

APPUNTI DEL CORSO DI SISTEMI IMPIANTISTICI E SICUREZZA REGIMI DI FUNZIONAMENTO DEI CIRCUITI ELETTRICI: CORRENTE ALTERNATA SINUSOIDALE

APPUNTI DEL CORSO DI SISTEMI IMPIANTISTICI E SICUREZZA REGIMI DI FUNZIONAMENTO DEI CIRCUITI ELETTRICI: CORRENTE ALTERNATA SINUSOIDALE APPUNTI DL CORSO DI SISTMI IMPIANTISTICI SICURA Per far produrre laoro elettrico ad un utilizzatore (anche detto bipolo), usando i generatori elettrici (per esepio gli alternatori) engono innanzitutto

Dettagli

OSCILLATORE ARMONICO SEMPLICE

OSCILLATORE ARMONICO SEMPLICE OSCILLATORE ARMONICO SEMPLICE Un oscillatore è costituito da una particella che si muove periodicamente attorno ad una posizione di equilibrio. Compiono moti oscillatori: il pendolo, un peso attaccato

Dettagli

Applicazioni delle leggi della meccanica: moto armnico

Applicazioni delle leggi della meccanica: moto armnico Applicazioni delle leggi della meccanica: moto armnico Discutiamo le caratteristiche del moto armonico utilizzando l esempio di una molla di costante k e massa trascurabile a cui è fissato un oggetto di

Dettagli

Esercitazione 09: Forze d inerzia e oscillatore armonico

Esercitazione 09: Forze d inerzia e oscillatore armonico Meccanica e Tecnica delle Costruzioni Meccaniche Esercitazioni del corso. Periodo II Prof. Leonardo BERTINI Ing. Ciro SANTUS Esercitazione 09: Forze d inerzia e oscillatore aronico Indice 1 Moto relativo

Dettagli

Fisica 2C. 3 Novembre Domande

Fisica 2C. 3 Novembre Domande Fisica 2C 3 Novembre 2006 Domande ˆ i) Si consideri un oscillatore armonico smorzato e forzato da una sollecitazione sinusoidale esterna, la cui equazione é tipicamente s + 2γṡ + ω0s 2 = F cos ωt m 1)

Dettagli

Note sui circuiti a corrente alternata

Note sui circuiti a corrente alternata Note sui circuiti a corrente alternata Versione provvisoria. Novembre 018 1 Per commenti o segnalazioni di errori scrivere, per favore, a: maurosaita@tiscalinet.it Indice 1 Corrente alternata 1.1 Circuito

Dettagli

Analisi e Geometria 1 Secondo Appello 25 Giugno 2018 SOLUZIONI

Analisi e Geometria 1 Secondo Appello 25 Giugno 2018 SOLUZIONI Analisi e Geometria 1 Secondo Appello 25 Giugno 2018 SOLUZIONI Esercizi VERSIONE A Es. 1 Nello spazio euclideo R 3, si considerino i piani P e P, rispettivamente di equazioni cartesiane P : x y z 1 = 0,

Dettagli

Fondamenti di fisica

Fondamenti di fisica Fondamenti di fisica Elettromagnetismo: 6-7 Circuiti in corrente alternata Tensioni e correnti alternate Vettori di fase, valori quadratici medi Potenza media Sicurezza nei circuiti domestici Circuiti

Dettagli

Prova Scritta di di Meccanica Analitica. 3 luglio Un punto di massa unitaria si muove soggetto al potenziale. V (x) = k 2 x2 + l2 2x 2 x > 0

Prova Scritta di di Meccanica Analitica. 3 luglio Un punto di massa unitaria si muove soggetto al potenziale. V (x) = k 2 x2 + l2 2x 2 x > 0 Prova Scritta di di Meccanica Analitica 3 luglio 015 Problea 1 Un punto di assa unitaria si uove soggetto al potenziale V (x) = k x + l x x > 0 a) disegnare lo spazio delle fasi e calcolare la frequenza

Dettagli

UNIMOL Ingegneria edile Dinamica del punto materiale

UNIMOL Ingegneria edile Dinamica del punto materiale Le forze elastiche Molti oggetti solidi appaiono indeformabili (corpi rigidi) Nella realtà anche gli oggetti solidi subiscono delle deformazioni più o meno significative quando su di essi vengono esercitate

Dettagli

sono presenti ovunque onde marine onde sonore onde sismiche luce onde radio microonde onde umane?

sono presenti ovunque onde marine onde sonore onde sismiche luce onde radio microonde onde umane? ONDE sono presenti ovunque onde marine onde sonore onde sismiche luce onde radio microonde onde umane? CARATTERISTICHE DELLE ONDE Oscillazioni in ogni punto dello spazio Una qualche grandezza fisica si

Dettagli

Complementi di Analisi per Informatica *** Capitolo 2. Numeri Complessi. e Circuiti Elettrici

Complementi di Analisi per Informatica *** Capitolo 2. Numeri Complessi. e Circuiti Elettrici Complementi di Analisi per nformatica *** Capitolo 2 Numeri Complessi e Circuiti Elettrici Sergio Benenti Prima versione settembre 2013 Revisione settembre 2017? ndice 21 Circuito elettrico elementare

Dettagli

Oscillatore semplice. ponendo. Vibrazioni armoniche libere o naturali

Oscillatore semplice. ponendo. Vibrazioni armoniche libere o naturali Oscillatore seplice Vibrazioni aroniche libere o naturali k x Se il corpo di assa è spostato di x verso destra rispetto alla posizione di riposo, è soggetto alla forza elastica di richiao della olla kx

Dettagli

Onde. Antonio Pierro. Per consigli, suggerimenti, eventuali errori o altro potete scrivere una a antonio.pierro[at]gmail.com

Onde. Antonio Pierro. Per consigli, suggerimenti, eventuali errori o altro potete scrivere una  a antonio.pierro[at]gmail.com Onde Video Introduzione Onde trasversali e onde longitudinali. Lunghezza d'onda e frequenza. Interferenza fra onde. Battimenti. Moto armonico smorzato e forzato Antonio Pierro Per consigli, suggerimenti,

Dettagli

Corso di Laurea in LOGOPEDIA FISICA ACUSTICA MOTO OSCILLATORIO

Corso di Laurea in LOGOPEDIA FISICA ACUSTICA MOTO OSCILLATORIO Corso di Laurea in LOGOPEDIA FISICA ACUSTICA MOTO OSCILLATORIO Fabio Romanelli Department of Mathematics & Geosciences University of Trieste Email: romanel@units.it Oscillazione Un oscillazione è la variazione,

Dettagli

G. D Agostini Oscillatore smorzato e RCL impulsato (Appunti dal Corso di Fisica per Informatici)

G. D Agostini Oscillatore smorzato e RCL impulsato (Appunti dal Corso di Fisica per Informatici) G. D Agostini Oscillatore smorzato e RCL impulsato (Appunti dal Corso di Fisica per Informatici). Oscillazioni smorzate Equazioni del moto di corpo soggetto a forza elastica e forza di viscosità β v (caso

Dettagli

Induzione magne-ca. La legge di Faraday- Neumann- Lenz e l indu7anza

Induzione magne-ca. La legge di Faraday- Neumann- Lenz e l indu7anza Induzione magne-ca a legge di Faraday- Neumann- enz e l indu7anza Esperienza di Faraday Un filo percorso da corrente crea un campo magnetico. Con un magnete si può creare una corrente? a risposta è naturalmente

Dettagli

Cap Moti oscillatori

Cap Moti oscillatori N.Giglietto A.A. 005/06- Cap 16.1- Moti oscillatori - 1 Cap 16.1- Moti oscillatori Alcuni tipi di forze o alcune situazioni danno luogo a dei moti di tipo oscillante ovvero a dei moti che si ripetono regolarmente.

Dettagli

OSCILLAZIONI SMORZATE E FORZATE

OSCILLAZIONI SMORZATE E FORZATE OSCILLAZIONI SMORZATE E FORZATE Questo esperimento permette di studiare le oscillazioni armoniche di un pendolo e le oscillazioni smorzate e smorzate-forzate. Studiando il variare dell ampiezza dell oscillazione

Dettagli

Oscillazioni libere e risonanza di un circuito RLC-serie (Trattazione analitica del circuito RLC-serie)

Oscillazioni libere e risonanza di un circuito RLC-serie (Trattazione analitica del circuito RLC-serie) III a Esperienza del Laboratorio di Fisica Generale II Oscillazioni libere e risonanza di un circuito LC-serie (Trattazione analitica del circuito LC-serie) Con questa breve nota si vuole fornire la trattazione

Dettagli

Meccanica Dinamica del punto materiale

Meccanica Dinamica del punto materiale Meccanica 13-14 Dinamica del punto materiale 8 Dinamica del punto materiale Legge fondamentale della dinamica: d r ma m dt Tipi di forza: orza peso Reazione vincolare orza di attrito radente y m N mg mg

Dettagli

R = 2.2 kω / 100 kω Tensione di alimentazione picco-picco ε = 2 V (R int = 600 Ω)

R = 2.2 kω / 100 kω Tensione di alimentazione picco-picco ε = 2 V (R int = 600 Ω) Strumentazione: oscilloscopio, generatore di forme d onda (utilizzato con onde sinusoidali), 2 sonde, basetta, componenti R,L,C Circuito da realizzare: L = 2 H (±10%) con resistenza in continua di R L

Dettagli

Equazioni differenziali lineari e oscillatori

Equazioni differenziali lineari e oscillatori Equazioni differenziali lineari e oscillatori A.Gaudillière 1 Equazioni differenziali lineari 1.1 Equazione oogenea Un e.d.l. è un equazione d incognita x : I E = K n I intervallo di R, K = R o C della

Dettagli

Capitolo 12. Moto oscillatorio

Capitolo 12. Moto oscillatorio Moto oscillatorio INTRODUZIONE Quando la forza che agisce su un corpo è proporzionale al suo spostamento dalla posizione di equilibrio ne risulta un particolare tipo di moto. Se la forza agisce sempre

Dettagli

Prova Scritta di Fondamenti di Automatica del 21 Giugno 2006 A

Prova Scritta di Fondamenti di Automatica del 21 Giugno 2006 A Prova Scritta di Fondaenti di Autoatica del Giugno 6 A Studente: Matricola: I F G( Motore Carico ) Per il sistea gru scheatizzato in figura, si assua che il otore sia descritto da una fdt F( G () s I(

Dettagli

Scopi del corso. lezione 1 2

Scopi del corso. lezione 1 2 lezione 1 1 Scopi del corso Lo studente saprà analizzare circuiti elettrici dinamici per determinare il loro comportamento nel dominio del tempo e per ricavare le proprietà essenziali nel dominio della

Dettagli

R = Esercizio n.6 di pagina 154. calcoliamo f: In quanto. quindi. Calcoliamo l accelerazione alle estremità; questa in generale è:

R = Esercizio n.6 di pagina 154. calcoliamo f: In quanto. quindi. Calcoliamo l accelerazione alle estremità; questa in generale è: Esercizio n.6 di pagina 154. V t = 3100 /s R = 4. 10 7 a =? v ax =? calcoliao f: In quanto velocità del satellite (tangenziale) raggio dell orbita del satellite frequenza del oto del punto accelerazione

Dettagli

che rappresenta l equazione differenziale del moto armonico. La soluzione dell equazione differenziale è espressa come

che rappresenta l equazione differenziale del moto armonico. La soluzione dell equazione differenziale è espressa come Esperienza n. Forze elastiche Cenni teorici Si dicono elastici i corpi che quando vengono deforati con una copressione o dilatazione reagiscono con una forza di richiao proporzionale alla deforazione.

Dettagli

Compito di febbraio 2004

Compito di febbraio 2004 Copito di febbraio 004 Una laina oogenea di assa, avente la fora di un disco di raggio da cui è stato asportato il triangolo equilatero inscritto ABC, rotola senza strisciare lungo l asse delle ascisse

Dettagli

5.4 Larghezza naturale di una riga

5.4 Larghezza naturale di una riga 5.4 Larghezza naturale di una riga Un modello classico più soddisfacente del processo di emissione è il seguente. Si considera una carica elettrica puntiforme in moto armonico di pulsazione ω 0 ; la carica,

Dettagli

Onde. Fisica Generale - L.Venturelli

Onde. Fisica Generale - L.Venturelli Onde Per descriere olti fenoeni fisici si ricorre a concetti (antitetici): particella onda Utili soprattutto per descriere i diersi odi in cui l energia iene trasferita: particella La ptc è pensata coe

Dettagli

Calcolo del movimento di sistemi dinamici LTI

Calcolo del movimento di sistemi dinamici LTI Calcolo del movimento di sistemi dinamici LTI Analisi modale per sistemi dinamici LTI TC Modi naturali di un sistema dinamico Analisi modale Esercizio 1 Costante di tempo Esercizio 2 2 Analisi modale per

Dettagli

LAVORO DI UNA FORZA (1)

LAVORO DI UNA FORZA (1) LAVORO ED ENERGIA INTRODUZIONE L introduzione dei concetto di lavoro, energia cinetica ed energia potenziale ci perettono di affrontare i problei della dinaica in un odo nuovo In particolare enuncereo

Dettagli

Forza centrifuga. Funi e molle. Equazioni del moto

Forza centrifuga. Funi e molle. Equazioni del moto La forza è un particolare tipo di forza apparente, presente quando il sistema non inerziale (SNI) è in moto rototraslatorio rispetto ad un sistema di riferimento inerziale (SI). Nel moto rototraslatorio

Dettagli

Equazioni differenziali ordinarie (ODE) lineari del secondo ordine a coefficienti costanti

Equazioni differenziali ordinarie (ODE) lineari del secondo ordine a coefficienti costanti Equazioni differenziali ordinarie (ODE) lineari del secondo ordine a coefficienti costanti Fulvio Bisi Corso di Analisi Matematica A (ca) Università di Pavia Facoltà di Ingegneria 1 ODE lineari del secondo

Dettagli

meccanica delle vibrazioni laurea magistrale ingegneria meccanica parte 4 modelli matematici per sistemi MDOF

meccanica delle vibrazioni laurea magistrale ingegneria meccanica parte 4 modelli matematici per sistemi MDOF E vietato ogni utilizzo diverso da quello inerente la preparazione dell esae del corso di @Units eccanica delle vibrazioni laurea agistrale ingegneria eccanica!! parte 4 odelli ateatici per sistei MDOF

Dettagli

G. D Agostini Oscillatore smorzato e RCL impulsato (Appunti dal Corso di Fisica per Informatici)

G. D Agostini Oscillatore smorzato e RCL impulsato (Appunti dal Corso di Fisica per Informatici) G. D Agostini Oscillatore smorzato e RCL impulsato (Appunti dal Corso di Fisica per Informatici) 0.1 Oscillazioni smorzate Equazioni del moto di corpo soggetto a forza elastica e forza di viscosità β v

Dettagli

Equazioni differenziali del 2 ordine Prof. Ettore Limoli. Sommario. Equazione differenziale omogenea a coefficienti costanti

Equazioni differenziali del 2 ordine Prof. Ettore Limoli. Sommario. Equazione differenziale omogenea a coefficienti costanti Equazioni differenziali del 2 ordine Prof. Ettore Limoli Sommario Equazione differenziale omogenea a coefficienti costanti... 1 Equazione omogenea di esempio... 2 Equazione differenziale non omogenea a

Dettagli

α =ωt. =ωr in senso antiorario, dove ω indica la velocità angolare. Supponiamo che al tempo t 0

α =ωt. =ωr in senso antiorario, dove ω indica la velocità angolare. Supponiamo che al tempo t 0 Studio cinematico del moto armonico di un punto materiale per la determinazione di due relazioni utili all analisi di circuiti in corrente alternata. prof. Dario Benetti 1 Introduzione. In riferimento

Dettagli

CIRCUITI IN CORRENTE CONTINUA

CIRCUITI IN CORRENTE CONTINUA IUITI IN ONT ONTINUA Un induttanza e tre resistenze 2 J J 2 L Il circuito sta funzionando da t = con l interruttore aperto. Al tempo t = 0 l interruttore viene chiuso. alcolare le correnti. Per t 0 circola

Dettagli

FM210 - Fisica Matematica 1 Tutorato 11 ( )

FM210 - Fisica Matematica 1 Tutorato 11 ( ) Corso di laurea in atematica - Anno Accademico 3/4 F - Fisica atematica Tutorato (--) Esercizio. Si calcolino i momenti principali di inerzia dei seguenti corpi rigidi rispetto al loro centro di massa:.

Dettagli

Sistemi continui oscillanti unidimensionali (corde vibranti)

Sistemi continui oscillanti unidimensionali (corde vibranti) Edoardo Milotti 4/10/2005 Sistemi continui oscillanti unidimensionali (corde vibranti Consideriamo due oscillatori armonici accoppiati linearmente. Fisicamente ciò si può realizzare, ad esempio, con due

Dettagli

Dinamica del punto materiale

Dinamica del punto materiale Dinamica del punto materiale Formule fondamentali L. P. 5 Aprile 2010 N.B.: Le relazioni riportate sono valide in un sistema di riferimento inerziale. Princìpi della dinamica Secondo principio della dinamica

Dettagli

Analisi Matematica I per Ingegneria Gestionale, a.a Secondo compitino e primo appello, 12 gennaio 2017 Testi 1

Analisi Matematica I per Ingegneria Gestionale, a.a Secondo compitino e primo appello, 12 gennaio 2017 Testi 1 Secondo compitino e primo appello, gennaio 7 Testi Prima parte, gruppo.. Determinare l insieme di definizione della funzione arcsin(e ).. Determinare lo sviluppo di Taylor di ordine 4 (in ) della funzione

Dettagli

Questa forza aumenta all aumentare della velocità del corpo ma la sua dipendenza dalla velocità è complessa ed è funzione di molti parametri

Questa forza aumenta all aumentare della velocità del corpo ma la sua dipendenza dalla velocità è complessa ed è funzione di molti parametri Forze di attrito viscoso Durante le lezioni precedenti.. Per studiare i moti di caduta libera o qualsiasi moto possa avvenire nell esperienza quotidiana.. Tra le condizioni imposte c è stata sempre quella

Dettagli

Esperimenti computazionali con Mathematica: la trasformata di Fourier

Esperimenti computazionali con Mathematica: la trasformata di Fourier Matematica Open Source http://www.extrabyte.info Quaderni di Analisi Matematica 06 Esperimenti computazionali con Mathematica: la trasformata di Fourier Marcello Colozzo 3 0 5 5 0 Ω LA TRASFORMATA DI FOURIER

Dettagli

CAMPO MAGNETICO ROTANTE

CAMPO MAGNETICO ROTANTE CAPO AGNETICO ROTANTE Un solo avvolgimento percorso da corrente comunque variabile nel tempo sostiene una distribuzione di f.m.m. (e quindi di induzione) fissa nello spazio e con asse di simmetria diretto

Dettagli

Ricordiamo ora che a è legata ad x (derivata seconda) ed otteniamo

Ricordiamo ora che a è legata ad x (derivata seconda) ed otteniamo Moto armonico semplice Consideriamo il sistema presentato in figura in cui un corpo di massa m si muove lungo l asse delle x sotto l azione della molla ideale di costante elastica k ed in assenza di forze

Dettagli

ELETTROTECNICA (10 CFU) CS INGEGNERIA MATEMATICA I

ELETTROTECNICA (10 CFU) CS INGEGNERIA MATEMATICA I ELETTROTECNICA (10 CFU) CS INGEGNERIA MATEMATICA I prova in itinere 1 Novembre 008 SOLUZIONE - 1 - D1. (punti 8 ) Rispondere alle seguenti domande: punto per ogni risposta corretta, - 0.5 per ogni risposta

Dettagli

Prova Scritta di di Meccanica Analitica

Prova Scritta di di Meccanica Analitica Prova Scritta di di Meccanica Analitica 7 gennaio 015 Problema 1 Un punto di massa unitaria si muove sull asse x soggetto al potenziale V (x) = x e x a) Determinare le posizioni di equilibrio e la loro

Dettagli

Formulario Elettromagnetismo

Formulario Elettromagnetismo Formulario Elettromagnetismo. Elettrostatica Legge di Coulomb: F = q q 2 u 4 0 r 2 Forza elettrostatica tra due cariche puntiformi; ε 0 = costante dielettrica del vuoto; q = cariche (in C); r = distanza

Dettagli

Tutorato 6 - FM210. avendo usato la condizione di puro rotolamento r φ = ẏ e. 2) I punti di equilibrio sono i punti critici del potenziale:

Tutorato 6 - FM210. avendo usato la condizione di puro rotolamento r φ = ẏ e. 2) I punti di equilibrio sono i punti critici del potenziale: Tutorato 6 - FM10 Soluzione Esercizio 1 R l = l, applicando il teorema di Koenig abbi- 1 Abbiamo OC = amo T disco = 1 mẏ + 1 mr φ = 1 mẏ avendo usato la condizione di puro rotolamento r φ = ẏ e T asta

Dettagli

Soluzioni Prova Scritta di di Meccanica Analitica. 17 aprile Un punto di massa unitaria si muove lungo una retta soggetto al potenziale

Soluzioni Prova Scritta di di Meccanica Analitica. 17 aprile Un punto di massa unitaria si muove lungo una retta soggetto al potenziale Soluzioni Prova Scritta di di Meccanica Analitica 17 aprile 15 Problema 1 Un punto di massa unitaria si muove lungo una retta soggetto al potenziale V x = exp x / a Tracciare il grafico del potenziale

Dettagli

Lezione XXVI Sistemi vibranti a 1 gdl 9,%5$=,21,75$16,725,(

Lezione XXVI Sistemi vibranti a 1 gdl 9,%5$=,21,75$16,725,( ezione XXVI 9,%5$=,,75$6,75,( Quando un sistema dinamico viene sollecitato da una eccitazione non periodica applicata improvvisamente, come nel caso di un impulso, le risposte a tali eccitazioni sono dette

Dettagli

Prerequisiti e strumenti matematici e fisici per l elettronica delle telecomunicazioni I FASORI

Prerequisiti e strumenti matematici e fisici per l elettronica delle telecomunicazioni I FASORI Ing. Nicola Cappuccio 214 U.F.5 ELEMENTI SCIENTIFICI ED ELETTRONICI APPLICATI AI SISTEMI DI TELECOMUNICAZIONI 1 RIEPILOGO rappresentazione z = ρcos θ+ jρsin θ somma di due complessi con al regola del parallelogramma

Dettagli

Oscillazioni LC Applicando la legge di Faraday: ma Φ B. in direzione I. ovvero. La soluzione di questa equazone e:

Oscillazioni LC Applicando la legge di Faraday: ma Φ B. in direzione I. ovvero. La soluzione di questa equazone e: Oscillazioni Applicando la legge di Faraday: E d l d ma Φ B con d l in direzione d E dl ovvero ovvero d + q / n base alla nostra scelta di polarizzazione di pero', si ha' che: dq Segue che: A d d q Allora,

Dettagli

e una frequenza = 0 /2 =1/T (misurata in Hertz). Infine è la fase, cioè un numero (radianti) che dipende dalla definizione dell istante t=0.

e una frequenza = 0 /2 =1/T (misurata in Hertz). Infine è la fase, cioè un numero (radianti) che dipende dalla definizione dell istante t=0. 8. Oscillazioni Definizione di oscillatore armonico libero Si tratta di un sistema soggetto ad un moto descrivibile secondo una funzione armonica (seno o coseno) del tipo x(t) = Acos( 0 t + ) A è l ampiezza

Dettagli

Foglio di Esercizi 5 Meccanica Razionale a.a. 2017/18 Canale A-L (P. Buttà)

Foglio di Esercizi 5 Meccanica Razionale a.a. 2017/18 Canale A-L (P. Buttà) Foglio di Esercizi 5 Meccanica Razionale a.a. 017/18 Canale A-L (P. Buttà) Esercizio 1. Su un piano orizzontale sono poste due guide immateriali circolari di centri fissi O 1 e O e uguale raggio r; sia

Dettagli

FM210 - Fisica Matematica 1. Esercizio 1. Si consideri il sistema di equazioni differenziali lineari

FM210 - Fisica Matematica 1. Esercizio 1. Si consideri il sistema di equazioni differenziali lineari TUTORATO 1 (5-03-2019) FM210 - Fisica Matematica 1 sercizio 1. Si consideri il sistema di equazioni differenziali lineari ( ) ẋ = Ax, x R 2 3 2, A = 6 1 1. Si calcolino gli autovalori e gli autovettori.

Dettagli

Facoltà di Ingegneria Prova scritta di Fisica I

Facoltà di Ingegneria Prova scritta di Fisica I Facoltà di Ingegneria Prova scritta di Fisica I 6..6 CMPIT C Esercizio n. Un blocco, assiilabile ad un punto ateriale di assa = kg, partendo da fero, scivola da un altezza h = 7 lungo una guida priva di.

Dettagli

Moto armonico. A.Solano - Fisica - CTF

Moto armonico. A.Solano - Fisica - CTF Moto armonico Moti periodici Moto armonico semplice: descrizione cinematica e dinamica Energia nel moto armonico semplice Il pendolo Oscillazioni smorzate Oscillazioni forzate e risonanza Moto periodico

Dettagli

Induzione magne-ca. La legge di Faraday- Neumann- Lenz e l indu7anza

Induzione magne-ca. La legge di Faraday- Neumann- Lenz e l indu7anza Induzione magne-ca a legge di Faraday- Neumann- enz e l indu7anza egge di Faraday Un filo percorso da corrente crea un campo magnetico. Con un magnete si può creare una corrente? a risposta è naturalmente

Dettagli

DINAMICA DI SISTEMI AEROSPAZIALI

DINAMICA DI SISTEMI AEROSPAZIALI DINAMICA DI SISTEMI AEROSPAZIALI Tema d esame 11-07 - 2014 g A l h M, J O d B M B, J B moto definita ai punti precedenti. C m Esercizio 1. Il sistema in figura, posto nel piano verticale, è costituito

Dettagli

La fisica di Feynmann Meccanica

La fisica di Feynmann Meccanica La fisica di Feynmann Meccanica 1.1 CINEMATICA Moto di un punto Posizione r = ( x, y, z ) = x i + y j + z k Velocità v = dr/dt v = vx 2 + vy 2 + vz 2 Accelerazione a = d 2 r/dt 2 Moto rettilineo Spazio

Dettagli

Università di Trieste Facoltà d Ingegneria. Esercizi sulle equazioni differenziali. Dott. Franco Obersnel

Università di Trieste Facoltà d Ingegneria. Esercizi sulle equazioni differenziali. Dott. Franco Obersnel Università di Trieste Facoltà d Ingegneria Esercizi sulle equazioni differenziali Dott Franco Obersnel Esercizio 1 Si classifichino le seguenti equazioni, come ordinarie o alle derivate parziali si dica

Dettagli

determinare una soluzione y(t) dell equazione completa e, quindi dedurne tutte le y(t) soluzioni dell equazione.

determinare una soluzione y(t) dell equazione completa e, quindi dedurne tutte le y(t) soluzioni dell equazione. ANALISI VETTORIALE Soluzione esercizi 4 febbraio 2011 10.1. Esercizio. Assegnata l equazione lineare omogenea di primo ordine y + a y = 0 determinare le soluzioni di tale equazione in corrispondenza ai

Dettagli

Il modello di Lorentz e Drude

Il modello di Lorentz e Drude Il odello di Lorentz e Drude Oscillatore di Lorentz Abbiao un elettrone di assa legato elasticaente al nucleo di assa M>>. L equazione del oto è 2 r t 2 Γ r t Ω 0 r e E loc (*) il terine viscoso ( r )

Dettagli

Lezione 5: Sistemi ad un grado di libertà: l oscillatore elementare (5)

Lezione 5: Sistemi ad un grado di libertà: l oscillatore elementare (5) Lezione 5: Sistei ad un grado di libertà: l oscillatore eleentare (5) Federico Cluni 7 arzo 25 Risposta sotto forzante qualsiasi - Integrale di Duhael. Sovrapposizione degli effetti L equazione del oto

Dettagli

Foglio di Esercizi 7 Meccanica Razionale a.a. 2018/19 Canale A-L (P. Buttà)

Foglio di Esercizi 7 Meccanica Razionale a.a. 2018/19 Canale A-L (P. Buttà) Foglio di Esercizi 7 Meccanica Razionale a.a. 018/19 Canale A-L P. Buttà Esercizio 1. Sia {O; x, y, z} un sistema di riferimento ortonormale con l asse z diretto secondo la verticale ascendente. Un punto

Dettagli

Appunti on-line del Corso di Onde e Oscillazioni

Appunti on-line del Corso di Onde e Oscillazioni Appunti on-line del Corso di Onde e Oscillazioni Docente Carlo Pagani http://wwwsrf.mi.infn.it/members/pagani/ Anno accademico 009-010 Redazione di Daniele Sertore degli appunti del docente per il corso

Dettagli