Oscillazioni. Definizioni Mo/ armonici Propagazione delle onde

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Oscillazioni. Definizioni Mo/ armonici Propagazione delle onde"

Transcript

1 Oscillazioni Definizioni Mo/ aronici Propagazione delle onde

2 Il oto aronico e il oto circolare unifore sinωt La curva a destra dello schizzo è una sinusoide. Abbiao diviso l asse x in parti uguali di angoli crescenti e sull asse y abbiao posto il valore del seno corrispondente. Una particella che si uove con velocità ω lungo una circonferenza di raggio unitario, descrive sull asse y una funzione che si chiaa seno e sull asse x un altra funzione chiaata coseno. ωt

3 Caratteristiche del oto aronico Un corpo copie un oto aronico quando dopo un tepo T si trova nella stessa posizione di partenza. x(t) = x cos(ωt+φ) In questa equazione x è l apiezza assia che può raggiungere il corpo, ω è la pulsazione φ la fase. ω è legata al periodo T dalla relazione ωt = π ed è anche legata alla frequenza ν coe ω = πν. φ è l angolo di fase. Questo è zero quando, caso della sinusoide, l oscillazione parte dall origine e nel caso della cosinusoide parte dal valore assio. Per definizione di oto aronico dopo un intero periodo: x(t) = x(t+t) e di conseguenza x cos(ωt)=x cos[ω(t+t)] Ovvero gli argoenti dei coseni saranno ωt + π = ωt + ωt ovvero ωt=π ω = π/t = πν

4 Posizione, velocità e accelerazione del oto aronico Sia v( t) v( t) x(t) = x cos[(ωt)+φ] la posizione di un oto aronico La sua derivata è la velocità: dx = = dt = ω x d dt [ x cos( ωt + φ) ] sin( ωt + φ) La derivata della velocità è l accelerazione. Nel oto aronico l accelerazione a(t) e la posizione x(t) hanno gli stessi zeri perché sono legate dall opposto della pulsazione al quadrato a( t) a( t) a( t) dv d = = [ ωx sin( ωt + φ)] dt dt = ω x cos( ωt + φ) = ω x( t)

5 L oscillazione del oto circolare unifore La proiezione sull asse x di un punto in oto circolare unifore è descritta da: x(t) = x cos(ωt+f) La velocità di questo spostaento è la derivata pria, e vale: v(t)= - ω x sin(ωt+φ) L accelerazione è data dalla derivata seconda dello spostaento ed ha la fora: a(t) = - ω x cos(ωt+f)= - ω x(t)

6 Soluzione di un oto oscillatorio Nel caso di un blocco attaccato ad una olla ideale il odulo della forza della olla è proporzionale allo spostaento. Per la a legge di Newton dovreo scrivere F = a dove F è la forza della olla che vale - kx e deterina un oto pari a a. - kx = a = (d x/dt ) quindi d x/dt + kx = 0 Equazione differenziale al secondo ordine, la cui soluzione è: x(t) = A cos(ω 0 t + φ) con ω 0 = (k/) e ν = 1/T avreo ω 0 = π/t ω 0 = πν 0 T= π (/k)

7 La legge di Hook Un corpo attaccato ad una olla oscilla e la sua accelerazione vale a(t) = - ω x(t). La forza che deterina questo oto avrà una fora che dipendente dalla posizione: F = [ -ω x(t) ] (F=a) ovvero F = - (ω ) x(t) Se ω è uguale a k, si ha la legge di Hook F = - kx. La frequenza e il periodo di questo sistea sono date da: k ω = = πν T = π Ovvero a parità di assa la frequenza dipende dalla rigidità k della olla. k

8 Energia di un oto aronico L energia potenziale di un oto aronico è associata alla olla. Il suo valore dipende dalla elongazione cioè: U(t) = ½kx con x(t) = x cos(ωt+φ) E k 1 U ( t) = 1 kx = kx cos ( ω t + φ ) L energia cinetica è interaente associata al blocco : E k = ½ v con v = (-ωx ) sin (ωt+φ) 1 = 1 v = ( ω x ) sin ( ωt + φ ) Quindi l energia eccanica totale sarà: E = E k + U E E E = = = 1 1 E kx kx k + U cos [cos = 1 ( ωt + φ) + kx sin ( ωt + φ) ( ωt + φ) + sin ( ωt + φ) ] 1 kx

9 Pendolo seplice Le forze agenti sulla particella sono la forza peso e la tensione del filo. F g sinθ è la forza di richiao e il oento della forza rispetto al vincolo vale τ = Iα τ = - Lf g sinθ à τ = - Lgsinθ = Iα Per angoli piccoli fino θ ~ 5 si può sostituire sinθ con θ facendo un errore < 0,1% e quindi: - Lgθ = Iα Da cui α = -(gl/i)θ d θ/dt + (gl/i)θ = 0 confrontando con la soluzione dell oscillatore aronico abbiao che (k/ = ω ) gl/i = ω T = I L π = π = π gl gl L g

10 Pendolo a torsione Torcendo il filo di sospensione di un angolo q si realizzerà un oento torcente di richiao che si oppone allo spostaento τ = -kθ k è la costante di richiao e dipende dal tipo di filo: lunghezza, spessore, elasticità, etc.etc. La forula del oento torcente è coe la legge di Hook e quindi potreo trovare il periodo di oscillazione T = π I k I è il oento di inerzia di un disco e vale I = ½ MR

11 Pendolo reale Nel pendolo reale, iportante è individuare il centro di assa dell oggetto oscillante. La forza di gravità agisce nel centro di assa e la distanza che lo separa dal punto di oscillazione vale h. T I = π T = π gl I c + h gh

12 Coe si caina Il oviento di una gaba può essere approssiato all oscillazione di un pendolo ed il suo periodo di oscillazione è T = π 3 L g Dove il fattore /3 tiene conto della distribuzione della assa lungo tutta la gaba e non concentrata solo nel piede. Si potrà stiare l andatura di una persona facendo ragionevoli approssiazioni e conoscendo la lunghezza della sua gaba. Supponiao che l andatura sia quella che richiede il inio sforzo uscolare (inio consuo di energia) e il tepo di un singolo passo sia ½ del periodo T; quindi la velocità di una cainata (andatura) sarà: v andatura L T L

13 Oscillazioni ed onde La conoscenza del oto aronico ci perette di coprendere il oto di qualunque onda, sia essa elettroagnetica o eccanica, sferica o longitudinale. Il suono è un onda eccanica longitudinale che coprie e decoprie l aria fra la sorgente e l orecchio Le onde longitudinali hanno una periodicità teporale ed una spaziale. Dopo un tepo T e dopo una distanza λ la fora dell onda ritorna uguale, una valle ritorna una valle e una cresta una cresta. λ = v T λ = v/ν λ = π v/ω v = velocità, ω = pulsazione ν = frequenza

14 Onde sonore Le onde sonore sono onde longitudinali dovute alla copressione e rarefazione dell aria La velocità del suono è 331,5 /s alla pressione del livello del are e a 0 C Al variare della teperatura la v(t) = 331,5 + 0,6T /s L intervallo di frequenze udibili varia da 0 a 0,000 Hz e sono chiaate onde acustiche sopra tali frequenze ci sono le onde ultrasoniche Il suono si trasette con velocità aggiore nei ezzi con densità aggiore L intensità di un suono è il decibel (db) ed è una isura relativa. Il db = 10 log 10 (I/I 0 ) a quella che è considerata la soglia di udibilità I 0 = 10-1 W/

15 Le onde ele=roagne/che Per le onde elettroagnetiche non c è bisogno di ezzo di propagazione (si propagano anche nel vuoto). L oscillazione dei capi elettrico e agnetico sono perpendicolari alla direzione di propagazione e perpendicolari fra loro. Un piccolo eleento di una corda, di aria, o di capo onda si uove coe descritto dalle soluzioni del oto aronico e l energia associata al oto aronico è: ΔE = π Δf y0 La potenza nell unità di tepo che fluisce attraverso una superficie eleentare, ovvero l intensità è P I = = π ρ v f y0 A

16 Effe=o Doppler Se una sorgente di onde di frequenza f si avvicina o si allontana da un rivelatore, la frequenza percepita f sarà diversa da quella realente eessa. Se la sorgente si avvicina la frequenza sarà aggiore (suono più alto) se si allontana sarà inore (suono più basso). Effetto Doppler. In un periodo T, se la sorgente si uove verso il rivelatore l onda percorrerà la distanza l = vt e la sorgente si sarà ossa di una distanza l s = v s T. La differenza di queste due distanze sarà la nuova λ = l l s = (v - v s ) T e questa è la nuova lunghezza d onda percepita dal rivelatore. Più in generale v v 1 Mentre se la sorgente è fera f ' = = e ricordando f = e il rivelatore si uove λ ' v v T T avreo ( ) f ' = s v v 1 ( ) ( v v) v v v v 1 s s f = f $ & v = ± 0 f ' f 1 % v #! "

Applicazioni delle leggi della meccanica: moto armnico

Applicazioni delle leggi della meccanica: moto armnico Applicazioni delle leggi della meccanica: moto armnico Discutiamo le caratteristiche del moto armonico utilizzando l esempio di una molla di costante k e massa trascurabile a cui è fissato un oggetto di

Dettagli

Fisica 1, a.a : Oscillatore armonico

Fisica 1, a.a : Oscillatore armonico Fisica 1, a.a. 2014-2015: Oscillatore aronico Anna M. Nobili 1 Oscillatore aronico in una diensione senza dissipazione e in assenza di forze esterne Ad una olla di assa trascurabile, costante elastica

Dettagli

Ricordiamo ora che a è legata ad x (derivata seconda) ed otteniamo

Ricordiamo ora che a è legata ad x (derivata seconda) ed otteniamo Moto armonico semplice Consideriamo il sistema presentato in figura in cui un corpo di massa m si muove lungo l asse delle x sotto l azione della molla ideale di costante elastica k ed in assenza di forze

Dettagli

Esercizio (tratto dal Problema 4.7 del Mazzoldi 2)

Esercizio (tratto dal Problema 4.7 del Mazzoldi 2) 1 Esercizio (tratto dal Problea 4.7 del Mazzoldi 2) Un punto ateriale di assa è sospeso traite un filo verticale ed è collegato al suolo da una olla, di costante elastica = 70 N/, che si trova alla lunghezza

Dettagli

OSCILLATORE ARMONICO SEMPLICE

OSCILLATORE ARMONICO SEMPLICE OSCILLATORE ARMONICO SEMPLICE Un oscillatore è costituito da una particella che si muove periodicamente attorno ad una posizione di equilibrio. Compiono moti oscillatori: il pendolo, un peso attaccato

Dettagli

Oscillazioni. Si produce un oscillazione quando un sistema viene perturbato rispetto a una posizione di equilibrio stabile

Oscillazioni. Si produce un oscillazione quando un sistema viene perturbato rispetto a una posizione di equilibrio stabile Oscillazioni Si produce un oscillazione quando un sistema viene perturbato rispetto a una posizione di equilibrio stabile Caratteristica più evidente del moto oscillatorio è di essere un moto periodico,

Dettagli

Onde. ONDA: Perturbazione di una grandezza fisica che si propaga nello spazio.

Onde. ONDA: Perturbazione di una grandezza fisica che si propaga nello spazio. Onde ONDA: Perturbazione di una grandezza fisica che si propaga nello spazio. La propagazione di onde meccaniche aiene attraerso un mezzo materiale che ne determina caratteristiche e elocità. Esempi: Onde

Dettagli

Esercizi di Fisica Generale Foglio 3. Forze

Esercizi di Fisica Generale Foglio 3. Forze 31.01.11 Esercizi di Fisica Generale Foglio 3. Forze 1. Un corpo di assa viene sospeso da una olla con costante elastica k, coe in figura (i). La olla si allunga di 0.1. Se ora due corpi identici di assa

Dettagli

Le onde. F. Soramel Fisica per Medicina 1

Le onde. F. Soramel Fisica per Medicina 1 Le onde a) onda sonora: le molecole si addensano e si rarefanno b) onda all interfaccia liquido-aria: le particelle oscillano in alto e in basso c) onda in una corda d) onda in una molla e) onda sismica

Dettagli

Di seguito, per semplicità, mostreremo esempi in cui il termine di destra della (*) f è costante nel tempo. %%%%%%%

Di seguito, per semplicità, mostreremo esempi in cui il termine di destra della (*) f è costante nel tempo. %%%%%%% Note su uso delle equazioni differenziali in eccanica Spesso la risoluzione delle equazioni del oto si ottiene attraverso la risoluzione di equazioni differenziali lineari a coefficienti costanti. L uso

Dettagli

2. calcolare l energia cinetica del corpo e tracciare il suo andamento nel tempo;

2. calcolare l energia cinetica del corpo e tracciare il suo andamento nel tempo; 1 Esercizio (tratto dal Problea 4.29 del Mazzoldi 2) Un corpo di assa = 1.5 Kg è agganciato ad una olla di costante elastica k = 2 N/, di lunghezza a riposo = 50 c, fissata ad una parete verticale in x

Dettagli

Appunti della lezione sulla Equazione Differenziale delle Onde

Appunti della lezione sulla Equazione Differenziale delle Onde Appunti della lezione sulla Equazione Differenziale delle Onde ultima revisione: 21 giugno 2017 In tutti i casi analizzati precedentemente si osserva che le onde obbediscono alla stessa Equazione Differenziale

Dettagli

Esercizi svolti di Statica e Dinamica

Esercizi svolti di Statica e Dinamica Esercizi svolti di Statica e Dinaica 1. La assa è sospesa coe in figura. Nota la costante elastica k della olla, deterinarne l allungaento in condizioni di equilibrio. 1.6 Kg ; θ 30 ; k 10 N -1 θ Il diagraa

Dettagli

Soluzione del compito di Fisica 2. 2 febbraio 2012 (Udine)

Soluzione del compito di Fisica 2. 2 febbraio 2012 (Udine) del copito di isica febbraio 1 (Udine) Elettrodinaica E` data una spira conduttrice quadrata di lato L e resistenza R, vincolata sul piano xy, in oto lungo x con velocita` iniziale v. Nel punto x la spira

Dettagli

1 Oscillazioni libere (oscillatore armonico)

1 Oscillazioni libere (oscillatore armonico) C. d. L. Ingegneria Inforatica e delle Telecounicazioni A.A. / Fisica Generale PROCESSI OSCILLATORI Oscillazioni liere (oscillatore aronico) Siao in presenza di un sistea la cui equazione che esprie il

Dettagli

Onde. Fisica Generale - L.Venturelli

Onde. Fisica Generale - L.Venturelli Onde Per descriere olti fenoeni fisici si ricorre a concetti (antitetici): particella onda Utili soprattutto per descriere i diersi odi in cui l energia iene trasferita: particella La ptc è pensata coe

Dettagli

Esercitazione 2. Soluzione

Esercitazione 2. Soluzione Esercitazione 2 Esercizio 1 - Resistenza dell aria Un blocchetto di massa m = 0.01 Kg (10 grammi) viene appoggiato delicatamente con velocità iniziale zero su un piano inclinato rispetto all orizziontale

Dettagli

Capitolo 12. Moto oscillatorio

Capitolo 12. Moto oscillatorio Moto oscillatorio INTRODUZIONE Quando la forza che agisce su un corpo è proporzionale al suo spostamento dalla posizione di equilibrio ne risulta un particolare tipo di moto. Se la forza agisce sempre

Dettagli

FISICA APPLICATA 2 FENOMENI ONDULATORI - 1

FISICA APPLICATA 2 FENOMENI ONDULATORI - 1 FISICA APPLICATA 2 FENOMENI ONDULATORI - 1 DOWNLOAD Il pdf di questa lezione (onde1.pdf) è scaricabile dal sito http://www.ge.infn.it/ calvini/tsrm/ 08/10/2012 FENOMENI ONDULATORI Una classe di fenomeni

Dettagli

Caratterizzazione delle onde: lunghezza d onda, velocità, frequenza, periodo

Caratterizzazione delle onde: lunghezza d onda, velocità, frequenza, periodo Esercizi di acustica Caratterizzazione delle onde: lunghezza d onda, velocità, frequenza, periodo Esercizio 1 La velocità del suono nell aria dipende dalla sua temperatura. Calcolare la velocità di propagazione

Dettagli

Corso di Laurea in LOGOPEDIA FISICA ACUSTICA ONDE (ARMONICHE)

Corso di Laurea in LOGOPEDIA FISICA ACUSTICA ONDE (ARMONICHE) Corso di Laurea in LOGOPEDIA FISICA ACUSTICA ONDE (ARMONICHE) Fabio Romanelli Department of Mathematics & Geosciences University of Trieste Email: romanel@units.it Le onde ci sono familiari - onde marine,

Dettagli

Oscillazioni e Onde Forza elastica

Oscillazioni e Onde Forza elastica Oscillazioni e Onde Forza elastica Riprendiao la legge oraria di una assa attaccata a una olla vincolata in un estreo. Per fare ciò occorre scriverne la legge del oto: ka da cui k d dt d dt k d dt Per

Dettagli

Esercitazione 2. Soluzione

Esercitazione 2. Soluzione Esercitazione 2 Esercizio 1 - Resistenza dell aria Un blocchetto di massa m = 0.01 Kg (10 grammi) viene appoggiato delicatamente con velocità iniziale zero su un piano inclinato rispetto all orizziontale

Dettagli

Fisica 1, a.a : Oscillatore armonico

Fisica 1, a.a : Oscillatore armonico Fisica 1, a.a. 2014-2015: Oscillatore aronico Anna M. Nobili 1 Oscillatore aronico in una diensione senza dissipazione e in assenza di forze esterne Ad una olla di assa trascurabile, costante elastica

Dettagli

0. Il processo si ripete nella fase di discesa, con valori negativi della velocità dato che qui le particelle viaggiano verso l equilibrio.

0. Il processo si ripete nella fase di discesa, con valori negativi della velocità dato che qui le particelle viaggiano verso l equilibrio. Capitolo Soluzioni. La brusca pendenza del fronte dell ipulso suggerisce un repentino allontanaento dall equilibrio ed un passaggio di velocità da zero (posizione alla base) fino al valore assio positivo

Dettagli

Grandezze angolari. Lineare Angolare Relazione x θ x = rθ. m I I = mr 2 F N N = rf sin θ 1 2 mv2 1

Grandezze angolari. Lineare Angolare Relazione x θ x = rθ. m I I = mr 2 F N N = rf sin θ 1 2 mv2 1 Grandezze angolari Lineare Angolare Relazione x θ x = rθ v ω v = ωr a α a = αr m I I = mr 2 F N N = rf sin θ 1 2 mv2 1 2 Iω 2 Energia cinetica In forma vettoriale: v = ω r questa collega la velocità angolare

Dettagli

Esercitazione 09: Forze d inerzia e oscillatore armonico

Esercitazione 09: Forze d inerzia e oscillatore armonico Meccanica e Tecnica delle Costruzioni Meccaniche Esercitazioni del corso. Periodo II Prof. Leonardo BERTINI Ing. Ciro SANTUS Esercitazione 09: Forze d inerzia e oscillatore aronico Indice 1 Moto relativo

Dettagli

Z asse orizzontale privo d attrito (asse di rotazione); O punto del corpo (perno) appartenente all asse di rotazione; C centro di massa del corpo.

Z asse orizzontale privo d attrito (asse di rotazione); O punto del corpo (perno) appartenente all asse di rotazione; C centro di massa del corpo. IL PENDOLO ISICO Penolo fisico (o coposto): qualsiasi corpo rigio che, sotto l azione ella gravità, può oscillare lieraente attorno a un asse orizzontale passante per un punto iverso al suo centro i assa.

Dettagli

7. Forze elastiche. Nella figura 1 il periodo è T = 2s e corrisponde ad un moto unidimensionale limitato tra i valori x = 0 ed x = 1.

7. Forze elastiche. Nella figura 1 il periodo è T = 2s e corrisponde ad un moto unidimensionale limitato tra i valori x = 0 ed x = 1. 1 Moti periodici 7. Forze elastiche Un caso particolare di moto accelerato è un moto periodico. In figura 1 è riportato un esempio di moto periodico unidimensionale. Un moto periodico si ripete identicamente

Dettagli

Gli strumenti necessari per lo studio

Gli strumenti necessari per lo studio La potenza di un fucile a olla Sunto E possibile deterinare la potenza di un fucile a olla quando sono note la costante elastica K della olla, la isura d della copressione e la assa del proiettile sparato?

Dettagli

I moti. Daniel Gessuti

I moti. Daniel Gessuti I oti Daniel Gessuti 1 introduzione Uno dei problei che ha interessato gli scienziati fin dall antichità e che costituisce un notevole capo d indagine della Fisica è senza dubbio quello che riguarda il

Dettagli

Dinamica del punto materiale

Dinamica del punto materiale Dinamica del punto materiale Formule fondamentali L. P. 5 Aprile 2010 N.B.: Le relazioni riportate sono valide in un sistema di riferimento inerziale. Princìpi della dinamica Secondo principio della dinamica

Dettagli

Appunti sul moto circolare uniforme e sul moto armonico- Fabbri Mariagrazia

Appunti sul moto circolare uniforme e sul moto armonico- Fabbri Mariagrazia Moto circolare uniforme Il moto circolare uniforme è il moto di un corpo che si muove con velocità di modulo costante lungo una traiettoria circolare di raggio R. Il tempo impiegato dal corpo per compiere

Dettagli

Onde. Perturbazioni dello stato di un corpo o di un campo che si propagano nello spazio con trasporto di energia ma senza trasporto di materia.

Onde. Perturbazioni dello stato di un corpo o di un campo che si propagano nello spazio con trasporto di energia ma senza trasporto di materia. Onde meccaniche: Onde Perturbazioni dello stato di un corpo o di un campo che si propagano nello spazio con trasporto di energia ma senza trasporto di materia. si propagano all interno di un mezzo, solido

Dettagli

Il campo magnetico. 1. Fenomeni magnetici 2. Calcolo del campo magnetico 3. Forze su conduttori percorsi da corrente 4. La forza di Lorentz

Il campo magnetico. 1. Fenomeni magnetici 2. Calcolo del campo magnetico 3. Forze su conduttori percorsi da corrente 4. La forza di Lorentz Il capo agnetico 1. Fenoeni agnetici 2. Calcolo del capo agnetico 3. Forze su conduttori percorsi da corrente 4. La forza di Lorentz Prof. Giovanni Ianne 1/21 Fenoeni agnetici La agnetite è un inerale

Dettagli

Test a Risposta Multipla (Esempio 3)

Test a Risposta Multipla (Esempio 3) Test a Risposta Multipla (Esepio 3) 1. La quantità (G 2 /) 1/3, dove G è la costante di gravitazione universale, una assa e una costante elastica, ha le diensioni di: [a] una lunghezza ; [b] una forza

Dettagli

Meccanica del punto materiale

Meccanica del punto materiale Meccanica del punto materiale Princìpi della dinamica. Forze. Momento angolare. Antonio Pierro @antonio_pierro_ (https://twitter.com/antonio_pierro_) Per consigli, suggerimenti, eventuali errori o altro

Dettagli

m O Esercizio (tratto dal Problema 4.29 del Mazzoldi 2)

m O Esercizio (tratto dal Problema 4.29 del Mazzoldi 2) Esercizio tratto dal Problea 4.29 del Mazzoldi 2) Un corpo di assa 0.5 Kg è agganciato ad un supporto fisso traite una olla di costante elastica 2 N/; il corpo è in quiete nel punto O di un piano orizzontale,

Dettagli

Massimo Garai - DIENCA, Università di Bologna - Copyright Massimo Garai - DIENCA, Università di Bologna - Copyright 2009.

Massimo Garai - DIENCA, Università di Bologna - Copyright Massimo Garai - DIENCA, Università di Bologna - Copyright 2009. Acustica Fisica Massimo Garai DIENCA - Università di Bologna http://acustica.ing.unibo.it Massimo Garai Copyright - DIENCA, 2004-2009 Università Massimo Garai - Università di di Bologna - Copyright 1 2009

Dettagli

nelcasodigasoliquidi,chenonpossiedonoresistenzaelasticaagli dell onda che si propaga, per cui si parla di onde longitudinali;

nelcasodigasoliquidi,chenonpossiedonoresistenzaelasticaagli dell onda che si propaga, per cui si parla di onde longitudinali; Acustica Fondamenti Definizioni L Acustica è la scienza che studia la generazione, propagazione e ricezione di onde in mezzi elastici (solidi, liquidi e gassosi). Per onda acustica si intende ogni moto

Dettagli

Fondamenti di fisica

Fondamenti di fisica Fondamenti di fisica Elettromagnetismo: 6-7 Circuiti in corrente alternata Tensioni e correnti alternate Vettori di fase, valori quadratici medi Potenza media Sicurezza nei circuiti domestici Circuiti

Dettagli

Esame 20 Luglio 2017

Esame 20 Luglio 2017 Esae 0 Luglio 07 Roberto Bonciani e Paolo Dore Corso di Fisica Generale Dipartiento di ateatica Università degli Studi di Roa La Sapienza Anno Accadeico 06-07 Esae - Fisica Generale I 0 Luglio 07 R. Bonciani,

Dettagli

Unità didattica 3. Terza unità didattica (Fisica) 1. Corso integrato di Matematica e Fisica per il Corso di Farmacia

Unità didattica 3. Terza unità didattica (Fisica) 1. Corso integrato di Matematica e Fisica per il Corso di Farmacia Unità didattica 3 Elasticità dei materiali Deformazione di un solido..2 Legge di Hooke.. 3 Forza elastica.. 4 Deformazione elastica di una molla... 5 Accumulo di energia attraverso la deformazione elastica..6

Dettagli

che rappresenta l equazione differenziale del moto armonico. La soluzione dell equazione differenziale è espressa come

che rappresenta l equazione differenziale del moto armonico. La soluzione dell equazione differenziale è espressa come Esperienza n. Forze elastiche Cenni teorici Si dicono elastici i corpi che quando vengono deforati con una copressione o dilatazione reagiscono con una forza di richiao proporzionale alla deforazione.

Dettagli

Formulario di onde e oscillazioni

Formulario di onde e oscillazioni Formulario di onde e oscillazioni indice ------------------- Sistema massa-molla ------------------- ------------------- Pendolo semplice ------------------- 3 ------------------- Moto armonico Smorzamento

Dettagli

Appunti di Fisica. Le onde meccaniche

Appunti di Fisica. Le onde meccaniche ppunti di Fisica Le onde meccaniche nde meccaniche: es. sasso nell acqua, suono... occorre un mezzo di propagazione. nde elettromagnetiche: campi elettrici e megnetici oscillanti... non è necessario un

Dettagli

1. Quale delle seguenti affermazioni è corretta? (riscrivere la risposta corretta per esteso e solo sul foglio protocollo, non qui sotto): [4 punti]

1. Quale delle seguenti affermazioni è corretta? (riscrivere la risposta corretta per esteso e solo sul foglio protocollo, non qui sotto): [4 punti] Problea Un uoo di assa si trova sul bordo estreo di una piattafora di assa, a fora di disco di raggio, che ruota attorno al suo asse verticale con velocità angolare costante ω i. L uoo è inizialente fero

Dettagli

e una frequenza = 0 /2 =1/T (misurata in Hertz). Infine è la fase, cioè un numero (radianti) che dipende dalla definizione dell istante t=0.

e una frequenza = 0 /2 =1/T (misurata in Hertz). Infine è la fase, cioè un numero (radianti) che dipende dalla definizione dell istante t=0. 8. Oscillazioni Definizione di oscillatore armonico libero Si tratta di un sistema soggetto ad un moto descrivibile secondo una funzione armonica (seno o coseno) del tipo x(t) = Acos( 0 t + ) A è l ampiezza

Dettagli

Formulario di Onde. 2(1 + ν) 3(1 2ν) V V. O.2 Equazione delle onde (equazione di d Alembert) in tre dimensioni

Formulario di Onde. 2(1 + ν) 3(1 2ν) V V. O.2 Equazione delle onde (equazione di d Alembert) in tre dimensioni Formulario di Onde O.1 Proprietà elastiche dei solidi (per piccole deformazioni) Legge di Hooke: F = k l Energia potenziale elastica: U = 1 2 k( l)2 Carico specifico o sforzo: σ = F A, la forza F è applicata

Dettagli

Dipolo Elettrico: due cariche (puntiformi) +q e q (stesso modulo, segno opposto) a distanza a. Momento di Dipolo, P: Vettore di modulo

Dipolo Elettrico: due cariche (puntiformi) +q e q (stesso modulo, segno opposto) a distanza a. Momento di Dipolo, P: Vettore di modulo Il Dipolo Elettrico Dipolo Elettrico: due cariche (puntiformi) q e q (stesso modulo, segno opposto) a distanza a. Momento di Dipolo, P: Vettore di modulo qa che va da qq a q Dato un punto P molto distante

Dettagli

p V Velocita di propagazione del suono ρ = densita del mezzo k = modulo di compressione

p V Velocita di propagazione del suono ρ = densita del mezzo k = modulo di compressione 1 Onde longitudinali o acustiche del tutto in generale si definisce onda acustica qualsiasi onda longitudinale dovuta alla perturbazione longitudinale di un qualsiasi mezzo meccanico nello specifico e

Dettagli

LE ONDE. Le onde. pag.1

LE ONDE. Le onde. pag.1 LE ONDE Fenomeni ondulatori - Generalità Periodo e frequenza Lunghezza d onda e velocità Legge di propagazione Energia trasportata Onde meccaniche: il suono Onde elettromagnetiche Velocità della luce Spettro

Dettagli

Circuiti RC. i(t = 0) = V 0. Negli istanti successivi l equazione per i potenziali risulterà

Circuiti RC. i(t = 0) = V 0. Negli istanti successivi l equazione per i potenziali risulterà Circuiti C Carica e scarica del condensatore (solo le formule) Consideriamo un condensatore di capacità C collegato in serie ad una resistenza di valore. I due elementi sono collegati ad una batteria che

Dettagli

Errata Corrige. Quesiti di Fisica Generale

Errata Corrige. Quesiti di Fisica Generale 1 Errata Corrige a cura di Giovanni Romanelli Quesiti di Fisica Generale per i C.d.S. delle Facoltà di Scienze di Prof. Carla Andreani Dr. Giulia Festa Dr. Andrea Lapi Dr. Roberto Senesi 2 Copyright@2010

Dettagli

La massa (m) e la caratteristica elastica della molla (k) sono così esprimibili:

La massa (m) e la caratteristica elastica della molla (k) sono così esprimibili: Ing. Pietro Tripodi - www.bioecotecnica.it - ailto: pietro.tripodi@bioecotecnica.it Nozioni di base del fenoeno vibratorio I fenoeni vibratori ed acustici hanno in coune il fatto che entrabi sono descritti

Dettagli

Le onde. Definizione e classificazione

Le onde. Definizione e classificazione Le onde Definizione e classificazione Onda: perturbazione che si propaga nello spazio, trasportando energia e quantità di moto, ma senza trasporto di materia Onde trasversali La vibrazione avviene perpendicolarmente

Dettagli

- hanno bisogno di un mezzo elastico per propagarsi

- hanno bisogno di un mezzo elastico per propagarsi Tratteremo principalmente di ONDE MECCANICHE: propagazioni di vibrazioni meccaniche del mezzo considerato - hanno bisogno di un mezzo elastico per propagarsi - propagazione di una perturbazione di natura

Dettagli

F 2 F 1. r R. ( E KT = J, E KR = 0.31 J, F A = kx, T = 2π )

F 2 F 1. r R. ( E KT = J, E KR = 0.31 J, F A = kx, T = 2π ) MTI RTTRI Su un disco di assa M e raggio R è praticata una sottile scanalatura di raggio r ce non altera il suo oento d'inerzia. l disco, ce può ruotare attorno ad un asse orizzontale passante per il suo

Dettagli

Formulario Meccanica

Formulario Meccanica Formulario Meccanica Cinematica del punto materiale 1 Cinematica del punto: moto nel piano 3 Dinamica del punto: le leggi di Newton 3 Dinamica del punto: Lavoro, energia, momenti 5 Dinamica del punto:

Dettagli

OSCILLAZIONI SMORZATE E FORZATE

OSCILLAZIONI SMORZATE E FORZATE OSCILLAZIONI SMORZATE E FORZATE Questo esperimento permette di studiare le oscillazioni armoniche di un pendolo e le oscillazioni smorzate e smorzate-forzate. Studiando il variare dell ampiezza dell oscillazione

Dettagli

Attrito statico e attrito dinamico

Attrito statico e attrito dinamico Forza di attrito La presenza delle forze di attrito fa parte dell esperienza quotidiana. Se si tenta di far scorrere un corpo su una superficie, si sviluppa una resistenza allo scorrimento detta forza

Dettagli

Induzione magne-ca. La legge di Faraday- Neumann- Lenz e l indu7anza

Induzione magne-ca. La legge di Faraday- Neumann- Lenz e l indu7anza Induzione magne-ca a legge di Faraday- Neumann- enz e l indu7anza egge di Faraday Un filo percorso da corrente crea un campo magnetico. Con un magnete si può creare una corrente? a risposta è naturalmente

Dettagli

Fisica per scienze ed ingegneria

Fisica per scienze ed ingegneria Serway, Jewett Fisica per scienze ed ingegneria Capitolo 15 Blocchetto legato ad una molla in moto su un piano orizzontale privo di attrito. Forza elastica di richiamo: F x =-Kx (Legge di Hooke). Per x>0,

Dettagli

mv x +MV x = 0. V x = mv x

mv x +MV x = 0. V x = mv x Università degli Studi di Udine, Corso di Laurea in Ingegneria Gestionale A.A. 15/16, Sessione di Gennaio/Febbraio 16, Esae di FISICA GENEALE 1 1 CFU Prio Appello, POVA SCITTA, 1 Febbraio 16 TESTI E SOLUZIONI

Dettagli

Onde. Antonio Pierro. Per consigli, suggerimenti, eventuali errori o altro potete scrivere una a antonio.pierro[at]gmail.com

Onde. Antonio Pierro. Per consigli, suggerimenti, eventuali errori o altro potete scrivere una  a antonio.pierro[at]gmail.com Onde Video Introduzione Onde trasversali e onde longitudinali. Lunghezza d'onda e frequenza. Interferenza fra onde. Battimenti. Moto armonico smorzato e forzato Antonio Pierro Per consigli, suggerimenti,

Dettagli

Elettronica dello Stato Solido Lezione 9: Moto di un elettrone in un cristallo. Daniele Ielmini DEI Politecnico di Milano

Elettronica dello Stato Solido Lezione 9: Moto di un elettrone in un cristallo. Daniele Ielmini DEI Politecnico di Milano Elettronica dello Stato Solido Lezione 9: Moto di un elettrone in un cristallo Daniele Ielini DEI Politecnico di Milano ielini@elet.polii.it D. Ielini Elettronica dello Stato Solido 09 Outline Modello

Dettagli

ONDE ELETTROMAGNETICHE

ONDE ELETTROMAGNETICHE ONDE ELETTROMAGNETICHE ESERCIZIO 1 Un onda elettromagnetica piana di frequenza ν = 7, 5 10 14 Hz si propaga nel vuoto lungo l asse x. Essa è polarizzata linearmente con il campo E che forma l angolo ϑ

Dettagli

Moto armonico. A.Solano - Fisica - CTF

Moto armonico. A.Solano - Fisica - CTF Moto armonico Moti periodici Moto armonico semplice: descrizione cinematica e dinamica Energia nel moto armonico semplice Il pendolo Oscillazioni smorzate Oscillazioni forzate e risonanza Moto periodico

Dettagli

approfondimento Cinematica ed energia di rotazione equilibrio statico di un corpo esteso conservazione del momento angolare

approfondimento Cinematica ed energia di rotazione equilibrio statico di un corpo esteso conservazione del momento angolare approfondimento Cinematica ed energia di rotazione equilibrio statico di un corpo esteso conservazione del momento angolare Moto di rotazione Rotazione dei corpi rigidi ϑ(t) ω z R asse di rotazione v m

Dettagli

Dipartimento di Fisica a.a. 2004/2005 Fisica Medica 2 Ultrasuoni 7/3/2005

Dipartimento di Fisica a.a. 2004/2005 Fisica Medica 2 Ultrasuoni 7/3/2005 Dipartimento di Fisica a.a. 2004/2005 Fisica Medica 2 Ultrasuoni 7/3/2005 Produzione di onde sonore Pistone che oscilla con frequenza ν [s -1 ] ν v produce variazioni di densità e di pressione v che si

Dettagli

Forze Centrali e Problema dei Due Corpi

Forze Centrali e Problema dei Due Corpi Forze Centrali e Problea dei Due Corpi In questo capitolo studiao il oto di un punto ateriale sottoposto ad una forza centrale. Uno dei risultati più iportanti che verrà presentato è la derivazione delle

Dettagli

Soluzioni dei temi di Fisica Moderna n.1

Soluzioni dei temi di Fisica Moderna n.1 Soluzioni dei tei di Fisica Moderna. 1997 n.2 Effetto fotoelettrico Problea: Riciede l energia cinetica degli elettroni irradiati nota la lungezza d onda incidente e quella di soglia. Si applica il principio

Dettagli

FISICA. Lezione n. 5 (2 ore) Gianluca Colò Dipartimento di Fisica sede Via Celoria 16, Milano

FISICA. Lezione n. 5 (2 ore) Gianluca Colò Dipartimento di Fisica sede Via Celoria 16, Milano Università degli Studi di Milano Facoltà di Scienze Matematiche Fisiche e Naturali Corsi di Laurea in: Inormatica ed Inormatica per le Telecomunicazioni Anno accademico 00/, Laurea Triennale, Edizione

Dettagli

Lezione 8 Dinamica del corpo rigido

Lezione 8 Dinamica del corpo rigido Lezione 8 Dinamica del corpo rigido Argomenti della lezione:! Corpo rigido! Centro di massa del corpo rigido! Punto di applicazione della forza peso! Punto di applicazione della forza peso! Momento della

Dettagli

IL MOTO ARMONICO QUALCHE RIMANDO ALLA FORZA CENTRIPETA E AL MOTO CIRCOLARE

IL MOTO ARMONICO QUALCHE RIMANDO ALLA FORZA CENTRIPETA E AL MOTO CIRCOLARE www.aliceappunti.altervista.org IL MOTO ARMONICO QUALCHE RIMANDO ALLA FORZA CENTRIPETA E AL MOTO CIRCOLARE Nel moto circolare uniforme, il moto è generato da una accelerazione centripeta, diretta verso

Dettagli

Fisica Generale I (primo modulo) A.A , 9 febbraio 2009

Fisica Generale I (primo modulo) A.A , 9 febbraio 2009 Fisica Generale I (primo modulo) A.A. 2008-09, 9 febbraio 2009 Esercizio 1. Due corpi di massa M 1 = 10kg e M 2 = 5Kg sono collegati da un filo ideale passante per due carrucole prive di massa, come in

Dettagli

ATTRITO VISCOSO ( DEL MEZZO) 1) Sedimentazione 2) Poiseille

ATTRITO VISCOSO ( DEL MEZZO) 1) Sedimentazione 2) Poiseille Lezione 0 ATTRITO ISCOSO ( DEL MEZZO) 1) Sedientazione ) Poiseille Le forze di attrito viscoso nascono quando un oggetto si uove in un ezzo, quando una laina di liquido scorre tra altre due o quando scorre

Dettagli

Esame di Fisica per Ingegneria Elettronica e delle Telecomunicazioni (Parte I):

Esame di Fisica per Ingegneria Elettronica e delle Telecomunicazioni (Parte I): Esame di Fisica per Ingegneria Elettronica e delle Telecomunicazioni Parte I: 06-07-06 Problema. Un punto si muove nel piano xy con equazioni xt = t 4t, yt = t 3t +. si calcolino le leggi orarie per le

Dettagli

S.Barbarino - Appunti di Fisica - Scienze e Tecnologie Agrarie. Cap. 2. Cinematica del punto

S.Barbarino - Appunti di Fisica - Scienze e Tecnologie Agrarie. Cap. 2. Cinematica del punto SBarbarino - Appunti di Fisica - Scienze e Tecnologie Agrarie Cap 2 Cinematica del punto 21 - Posizione, velocitá e accelerazione di una particella La posizione di una particella puó essere definita, ad

Dettagli

5.4 Larghezza naturale di una riga

5.4 Larghezza naturale di una riga 5.4 Larghezza naturale di una riga Un modello classico più soddisfacente del processo di emissione è il seguente. Si considera una carica elettrica puntiforme in moto armonico di pulsazione ω 0 ; la carica,

Dettagli

FORMULARIO DI FISICA 3 MOTO OSCILLATORIO

FORMULARIO DI FISICA 3 MOTO OSCILLATORIO FORMULARIO DI FISICA 3 MOTO OSCILLATORIO Corpo attaccato ad una molla che compie delle oscillazioni Calcolare la costante elastica della molla 2 2 1 2 2 ω: frequenza angolare (Pulsazione) ; T: Periodo

Dettagli

Fisica generale II Esercitazione F-tutorato PROBLEMI CON SOLUZIONE

Fisica generale II Esercitazione F-tutorato PROBLEMI CON SOLUZIONE Fisica generale II Esercitazione F-tutorato 10-003 1 PROBLEMI CON SOLUZIONE 1. Un filo d'acciaio lungo 30.0 e un filo di rae lungo 0.0, entrabi di diaetro 1, sono uniti per un estreo e tesi con una tensione

Dettagli

Formulario di Fisica 2

Formulario di Fisica 2 Forulario di Fisica 2 Trentini Francesco 27 giugno 2006 Forza elettrica. apo elettrostatico Legge di Newton (forza gravitazionale): F g = γ 2 r 2 N2 con γ = 6, 67 0 Kg 2 Legge di oulob (forza elettrostatica):

Dettagli

Richiami sulle oscillazioni smorzate

Richiami sulle oscillazioni smorzate Richiami sulle oscillazioni smorzate Il moto armonico è il moto descritto da un oscillatore armonico, cioè un sistema meccanico che, quando perturbato dalla sua posizione di equilibrio, è soggetto ad una

Dettagli

8. Energia e lavoro. 2 Teorema dell energia per un moto uniformemente

8. Energia e lavoro. 2 Teorema dell energia per un moto uniformemente 1 Definizione di lavoro 8. Energia e lavoro Consideriamo una forza applicata ad un corpo di massa m. Per semplicità ci limitiamo, inizialmente ad una forza costante, come ad esempio la gravità alla superficie

Dettagli

Le onde sismiche. La sismologia implica l analisi del moto del suolo provocato da una sorgente di energia posta all interno della Terra.

Le onde sismiche. La sismologia implica l analisi del moto del suolo provocato da una sorgente di energia posta all interno della Terra. Le onde sismiche La sismologia implica l analisi del moto del suolo provocato da una sorgente di energia posta all interno della Terra. L energia liberata a8raversa il mezzo Terra mediante la propagazione

Dettagli

Onde. Perturbazioni dello stato di un corpo o di un campo che si propagano nello spazio con trasporto di energia ma senza trasporto di materia.

Onde. Perturbazioni dello stato di un corpo o di un campo che si propagano nello spazio con trasporto di energia ma senza trasporto di materia. Onde Perturbazioni dello stato di un corpo o di un campo che si propagano nello spazio con trasporto di energia ma senza trasporto di materia. Onde: generalità Onde meccaniche: si propagano all interno

Dettagli

La fisica di Feynmann Meccanica

La fisica di Feynmann Meccanica La fisica di Feynmann Meccanica 1.1 CINEMATICA Moto di un punto Posizione r = ( x, y, z ) = x i + y j + z k Velocità v = dr/dt v = vx 2 + vy 2 + vz 2 Accelerazione a = d 2 r/dt 2 Moto rettilineo Spazio

Dettagli

Corso di Fisica Generale 1

Corso di Fisica Generale 1 Corso di Fisica Generale 1 corso di laurea in Ingegneria dell'automazione ed Ingegneria Informatica (A-C) 21 lezione (15 / 12 /2015) Dr. Laura VALORE Email : laura.valore@na.infn.it / laura.valore@unina.it

Dettagli

Compito del 14 giugno 2004

Compito del 14 giugno 2004 Compito del 14 giugno 004 Un disco omogeneo di raggio R e massa m rotola senza strisciare lungo l asse delle ascisse di un piano verticale. Il centro C del disco è collegato da una molla di costante elastica

Dettagli

Cinematica in due o più dimensioni

Cinematica in due o più dimensioni Cinematica in due o più dimensioni Le grandezze cinematiche fondamentali: posizione, velocità, accelerazione, sono dei vettori nello spazio a due o tre dimensioni, dotati di modulo, direzione, verso. In

Dettagli

Principio di inerzia

Principio di inerzia Dinamica abbiamo visto come si descrive il moto dei corpi (cinematica) ma oltre a capire come si muovono i corpi è anche necessario capire perchè essi si muovono Partiamo da una domanda fondamentale: qual

Dettagli

FENOMENI ONDULATORI G. ROBERTI

FENOMENI ONDULATORI G. ROBERTI FENOMENI ONDULATORI G. ROBERTI ONDE MECCANICHE Una perturbazione viene trasmessa l acqua non si sposta onde meccaniche: trasferiscono energia propagando una perturbazione in un mezzo. Le particelle del

Dettagli

Elasticità e onde Caratteristica di elasticità di un corpo

Elasticità e onde Caratteristica di elasticità di un corpo 9. Elasticità e onde Caratteristica di elasticità di un corpo Facendo riferimento per esempio a una sbarra lunga l, con sezione trasversale A, sollecitata da una forza F (trazione o compressione) diretta

Dettagli

Unità didattica 2. Seconda unità didattica (Fisica) 1. Corso integrato di Matematica e Fisica per il Corso di Farmacia

Unità didattica 2. Seconda unità didattica (Fisica) 1. Corso integrato di Matematica e Fisica per il Corso di Farmacia Unità didattica 2 Dinamica Leggi di Newton.. 2 Le forze 3 Composizione delle forze 4 Esempio di forza applicata...5 Esempio: il piano inclinato.. 6 Il moto del pendolo.. 7 La forza gravitazionale 9 Lavoro

Dettagli

- In un moto circolare uniforme perché la forza centripeta è sempre diretta verso il centro? è la base del triangolo isoscele di lati v = v1 = v2

- In un moto circolare uniforme perché la forza centripeta è sempre diretta verso il centro? è la base del triangolo isoscele di lati v = v1 = v2 Doande: - In un oto irolare unifore perhé la forza entripeta è sepre diretta erso il entro? Perhé si onsidera un interallo di tepo Ottengo he il ettore α tende a zero e r r r t e il relatio interallo di

Dettagli

8. Campo magnetico nei mezzi materiali

8. Campo magnetico nei mezzi materiali 8.1 8. Capo agnetico nei ezzi ateriali Aspetti fenoenologici Ragioni storiche: il agnetiso nei ezzi ateriali è olto iportante (agnetite) agnetiso nella ateria polarizzazione dei dielettrici con iportanti

Dettagli

Cinematica: derivate e integrali che ci servono: appunti

Cinematica: derivate e integrali che ci servono: appunti 1. Cinematica: derivate e integrali che ci servono: appunti Primo esempio: moto uniforme Iniziamo con le derivate. Supponiamo una legge oraria del tipo: x(t) a+bt, dove a, b sono dei coefficienti costanti.

Dettagli

1 Simulazione di prova d Esame di Stato

1 Simulazione di prova d Esame di Stato Siulazione di prova d Esae di Stato Problea Risolvi uno dei due problei e 5 dei 0 quesiti in cui si articola il questionario Sia y = f) una funzione reale di variabile reale tale che la sua derivata seconda

Dettagli

Meccanica quantistica (5)

Meccanica quantistica (5) Meccanica quantistica (5) 0/7/14 1-MQ-5.doc 0 Oscillatore armonico Se una massa è sottoposta ad una forza di richiamo proporzionale allo spostamento da un posizione di equilibrio F = kx il potenziale (

Dettagli