Ottimizzazione Combinatoria Massimo Flusso - Algoritmi ANTONIO SASSANO

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Ottimizzazione Combinatoria Massimo Flusso - Algoritmi ANTONIO SASSANO"

Transcript

1 Oimizzazione Combinaoria Maimo Fluo - Algorimi ANTONIO SASSANO Univerià di Roma La Sapienza Diparimeno di Informaica e Siemiica Coro di Laurea in Ingegneria Geionale Roma, 13 Giugno

2 Maimo Fluo: definizioni G(N,A) grafo orienao enza archi ani-paralleli c A veore delle capacià x A fluo della coppia (G,c) H(x)=H(N,A(x)) grafo orienao con archi a capacià reidua poiiva A(x) = uv + : c uv - x uv >0 per ogni uv A vu - : x uv >0 per ogni uv A 2

3 Teorema dell arco ani-parallelo TEOREMA 10.1: Sia x =x+ con veore aumenane oenuo dal cammino aumenane P=(,v 1,, v i,v i+1,,v q,). Se uv A(x ) e uv A(x) allora v=v i-1 e u=v i per i 1,,q. Se la capacià reidua nulla di uv diviene poiiva allora l arco ani-parallelo vu appareneva al cammino aumenane P. DIMOSTRAZIONE: uv A(x ) r uv 0 uv A(x) r uv = 0 Se uv INVERSO r uv =x vu =0 e r uv =x vu > 0 ( vu >0) Se uv DIRETTO x uv =c uv e x uv <c uv ( uv <0) In enrambi i cai y vu >0 L arco vu appariene al cammino P v=v i-1 u=v i 3

4 Teorema dell arco ani-parallelo: Eempio (2,4) (4,4) (2,2) (2,2) (2,3) (0,4) (2,4) (G,c) con fluo x (2,3) v 1 (0,0) (0,4) v 3 (1,4) v 2 (0,0) v 4 (H(x),r) con cammino P e fluo y P (2+1,4) (4,4) (2,2) (2,2) (2-1,3) (0+1,4) (2,4) (G,c) con fluo x (2+1,3) (H(x ),r ) v v 3 v 2 1 v 4 P v 1 v 2 V 4 4

5 Cammino Aumenane: dianze d x (u,v) dianza ra u e v = numero di archi di un cammino di lunghezza minima ra u e v in H(x) u v d x (u,v)=2 P=(,v 1, v 2,, v i, v i+1, v q,) Cammino aumenane di lunghezza minima k in H(x) v 1 v i V i+1 d x (,v i )=i d x (v i,)=k-i 5

6 Teorema delle dianze TEOREMA 10.2: Se x =x+ e è un veore aumenane oenuo dal cammino aumenane di lunghezza minima (CAM) P=(,v 1,, v i,v i+1,,v q,) in H(x) allora: d x (,v) d x (,v) e d x (v,) d x (v,) La dianza dalla orgene (pozzo) non diminuice dopo ogni aumeno del fluo u un cammino aumenane di lunghezza minima DIMOSTRAZIONE (per la prima condizione, la econda è immerica): Supponi (per aurdo) che eia v N- ale che: i. d x (,v) < d x (,v) [(,v) viola la condizione] ii. d x (,v) d x (,w) w N-,v che oddifa (i) [v è il nodo a minima dianza da in H(x )] Sia P =(,,w,v) il cammino orienao minimo ra e v in H(x ): d x (,v) > d x (,v) = d x (,w)+1 d x (,w) < d x (,v) d x (,w) d x (,w) [(,w) NON viola la condizione] 6

7 Abbiamo che: Teorema delle dianze ( ) d x (,v) > d x (,v) = d x (,w)+1 d x (,w) d x (,w) d x (,v) > d x (,v) = d x (,w)+1 d x (,w)+1 wv A(x) (alrimeni d x (,v)=d x (,w)+1) wv A(x ) (wv appariene al cammino minimo P ) vw P ( v=v i-1 ; w=v i ) (Teorema 10.1) d x (,v)=d x (,v i-1 )=i-1 > d x (,w)+1= d x (,v i )+1=i+1 CONTRADDIZIONE 7

8 Archi appareneni a cammini minimi Sia E(x) la famiglia di archi che apparengono a qualche cammino minimo nel grafo reiduo H(x): TEOREMA 10.3: Sia x =x+ con veore aumenane oenuo dal CAM P=(,v 1,, v i,v i+1,,v q,). Se d x (,)=d x (,) allora E(x ) E(x) L inieme di archi che apparengono a qualche cammino minimo i riduce dopo ogni aumeno di fluo che non cambia la dianza da a DIMOSTRAZIONE: Sia d x (,)=k e upponi che vw E(x ). Eie un cammino minimo P in H(x ) di lunghezza k=d x (,) e un inero i per cui v=v i-1 ; w=v i v 1 d x (,v) = i-1 d x (w,) = k-i i-1 k-i v w V i-1 V i d x (,v) d x (,v) = i-1 d x (w,) d x (w,) =k-i

9 Abbiamo che: Teorema 10.3 ( ) d x (,v) d x (,v) = i-1 d x (w,) d x (w,) =k-i d x (,v)+d x (w,) k-1 Q v e Q w cammini minimi in H(x) da a v e da w a Se vw A(x), poiché vw A(x ) abbiamo che wv P (Teorema 10.1) Q v v P w + P v +1=k Q w P w Q v + Q w k-1 Q v + Q w + P v + P w 2(k-1) Q v + P v k-1 oppure P w + Q w k-1 P =numero di archi del cammino P Q v P v or P w Q w Walk - con meno di k archi CONTRADDIZIONE e dunque vw A(x)

10 Abbiamo che: Q v Teorema 10.3 ( ) vw A(x) v Q w Q=Q v (v,w) Q w walk in H(x) con k archi w Se Q non è un cammino allora coniene un cammino da a con meno di k archi. Ma queo conraddice d x (,)=k Q=Q v (v,w) Q w cammino in H(x) con k archi vw E(x) E(x ) E(x) Eie un arco uv nel cammino aumenane P in H(x) (uno degli archi con capacià reidua minima r min ) che ha capacià reidua nulla in H(x ) uv E(x ) E(x ) E(x)

11 Algorimo di Edmond-Karp (1972) - Coruici una equenza di flui x (1),x (2),.. relaivi a (G,c) - FASE INIZIALE: Poni x (1) :=0 A (fluo nullo); i:=1 - FASE (i) : Definici il Grafo Reiduo H(x (i) ) di x (i) con Capacià Reidue r (i) >0 (reamene poiive) Trova un Cammino Aumenane di lunghezza minima relaivo alla coppia (H(x (i) ) r (i) ) Se eie Definici il Veore Aumenane (i) : O(m) O(m) (i) uv=y (i) uv - y (i) + vu- Poni x (i+1) := (i) + x (i) Poni i:=i+1 e vai alla Fae i O(m) O(m) - Se non eie un Cammino Aumenane x (i) è il Fluo Maimo COMPLESSITÀ DI UNA FASE QUANTE FASI? = O(m). 11

12 Fai dell algorimo di Edmond-Karp TEOREMA 10.4: Il numero maimo di fai dell algorimo di Edmond-Karp è nm. DIMOSTRAZIONE: Per il Teorema 10.2 la lunghezza del cammino minimo ra e non diminuice dopo ogni ierazione. L algorimo procede per macro-fai. In ciacuna macro-fae vengono eeguie q fai nelle quali il fluo viene aumenao da cammini della ea lunghezza (minima). Le poibili lunghezze ono n (numero dei nodi del grafo) e dunque le macro-fai ono n. Sia P (1),P (2),,P (q) la equenza di cammini aumenani della ea macro-fae che, a parire da un fluo x (1), produce la equenza di flui x (1),x (2),,x (q) Per il Teorema 10.3 il numero di archi di E(x (i) ) diminuice ad ogni fae. Perano, in ogni macro-fae, il numero delle fai q m Segue che il numero maimo delle fai è nm

13 Compleià dell algorimo di Edmond-Karp TEOREMA 10.5: La compleià dell algorimo di Edmond-Karp è O(nm 2 ). Eegue al più nm fai di compleià O(m). Poiamo fare meglio? Idea 2: Definici un fluo ul grafo reiduo più compleo di un emplice cammino Come? In una macro-fae uilizza ui i cammini di lunghezza minima aociai al fluo x (1) (e non il olo cammino aumenane P (1) )

2.4 Flussi di valore massimo

2.4 Flussi di valore massimo .4 Flui di valore maimo I modelli di fluo hanno variae applicazioni in eori come elecomunicazioni informaica (muliproceori, proocolli inerne) rapori (aereo, radale, ferroviario, merci) Si raa di diribuire

Dettagli

Ottimizzazione Combinatoria Formulazioni e Formulazioni Ottime

Ottimizzazione Combinatoria Formulazioni e Formulazioni Ottime Oimizzazione Combinaoria Formulazioni e Formulazioni Oime Prof. Anonio Saano Diparimeno di Informaica e Siemiica Univerià di Roma La Sapienza A.A. 29 Formulazione Lineare Problema di PL: min {c T x : xs}

Dettagli

Applicazioni del Massimo flusso. Progettazione di Algoritmi a.a Matricole congrue a 1 Docente: Annalisa De Bonis

Applicazioni del Massimo flusso. Progettazione di Algoritmi a.a Matricole congrue a 1 Docente: Annalisa De Bonis Applicazioni del Maimo fluo Progeazione di Algorimi a.a. 0-6 Maricole congrue a Docene: Annalia De Boni Maching bipario Problema del max maching. Inpu: grafo non direzionao G = (V, E). M E e` un maching

Dettagli

Ottimizzazione Combinatoria Flussi, Cammini e Tagli

Ottimizzazione Combinatoria Flussi, Cammini e Tagli Oimizzazione Combinaoria Flui, Cammini e Tagli Prof. Anonio Saano Diparimeno di Informaica e Siemiica Univerià di Roma La Sapienza A.A. DATI: Un grafo orienao G(N,A) Un veore capacià c A DIREMO: FLUSSO

Dettagli

Ulteriori Esercizi su Grafi. Ugo Vaccaro

Ulteriori Esercizi su Grafi. Ugo Vaccaro Progeazione di Algorimi Anno Accademico 0 0 Uleriori Eercizi u Grafi. Ugo Vaccaro N.B. Si ricorda che ogni algorimo và accompagnao da una argomenazione ul perchè calcola correamene l oupu e da un analii

Dettagli

Progetto e Ottimizzazione di Reti A. A

Progetto e Ottimizzazione di Reti A. A Progeo e Oimizzazione di Rei A. A. 006-007 Docene Fabrizio Roi roi@di.univaq.i Orario Maredi 15-17 aula.5 Mercoledi 11.30-13.30 aula.5 Giovedi 11.30-13.30 aula.5 Orario di ricevimeno Mercoledi 17-19 Progeo

Dettagli

Problema del flusso massimo

Problema del flusso massimo Rei di fluo Problema del fluo maimo Moivazione iniziale: problemi di raffico u rei di raporo Trapori ferroviari, auoradali, Traporo di liquidi in rei idriche Traporo di pacchei di dai in una ree di comunicazione.

Dettagli

Progettazione di Algoritmi Anno Accademico Esercizi su Grafi: Parte Seconda

Progettazione di Algoritmi Anno Accademico Esercizi su Grafi: Parte Seconda Progeazione di Algorimi Anno Accademico 0 09 Eercizi Ugo Vaccaro Eercizi u Grafi: Pare Seconda N.B. Si ricorda che ogni algorimo và accompagnao da una argomenazione ul perchè calcola correamene l oupu

Dettagli

Massimo flusso. Progettazione di Algoritmi a.a Matricole congrue a 1. Docente: Annalisa De Bonis

Massimo flusso. Progettazione di Algoritmi a.a Matricole congrue a 1. Docente: Annalisa De Bonis Maimo fluo Progeazione di Algorimi a.a. 2017-18 Maricole congrue a 1 Docene: Annalia De Boni 1 Maimizzare il # di PC prodoi 2 Decrizione del problema Una fabbrica (orgene) di PC deve abilire il numero

Dettagli

Problema del flusso massimo

Problema del flusso massimo Rei di fluo Problema del fluo maimo Moivazione iniziale: problemi di raffico u rei di raporo Trapori ferroviari, auoradali, Traporo di liquidi in rei idriche Traporo di pacchei di dai in una ree di comunicazione.

Dettagli

Claudio Arbib Università dell Aquila. Ricerca Operativa. Problemi di cammino ottimo

Claudio Arbib Università dell Aquila. Ricerca Operativa. Problemi di cammino ottimo Claudio Arbib Univerià dell Aquila Ricerca Operaiva Problemi di cammino oimo Sommario Il problema del cammino più breve Il problema del cammino più icuro Una formulazione come PL 0- Proprieà della formulazione

Dettagli

Massimo flusso. Progettazione di Algoritmi a.a Matricole congrue a 1 Docente: Annalisa De Bonis

Massimo flusso. Progettazione di Algoritmi a.a Matricole congrue a 1 Docente: Annalisa De Bonis Maimo fluo Progeazione di Algorimi a.a. 2016-17 Maricole congrue a 1 Docene: Annalia De Boni 1 Maimizzare il # di PC prodoi 2 Decrizione del problema Una fabbrica (orgene) di PC deve abilire il numero

Dettagli

Ricerca Operativa. Facoltà di Ingegneria dell Informazione, Informatica e Statistica. (Massimo Flusso) Giovanni Fasano.

Ricerca Operativa. Facoltà di Ingegneria dell Informazione, Informatica e Statistica. (Massimo Flusso) Giovanni Fasano. Facolà di Ingegneria dell Informazione, Informaica e Saiica Appuni dalle lezioni di Ricerca Operaiva (Maimo Fluo) ede di Laina Giovanni Faano faano@unive.i hp://venu.unive.i/ faano anno accademico 2013-2014

Dettagli

09/12/11. Chapter 7. Network Flow. Rete ferroviaria sovietica. Altri esempi di network. Rete ferroviaria sovietica, 1955

09/12/11. Chapter 7. Network Flow. Rete ferroviaria sovietica. Altri esempi di network. Rete ferroviaria sovietica, 1955 ee ferroviaria ovieica Chaper Nework Flow Hanno analizzao problemi di raporo relai alla ree ferroviaria ovieica:.n. Toloi, Mehod of finding he minimal oal kilomerage in cargoranporaion planning in pace,,

Dettagli

Laboratorio di Algoritmi e Strutture Dati

Laboratorio di Algoritmi e Strutture Dati Laboraorio di Algorimi e Sruure Dai Aniello Murano hp://people.na.infn.i people.na.infn.i/~murano/ 1 Algorimi per il calcolo di percori minimi u un grafo 1 Un emplice problema Problema: Supponiamo che

Dettagli

Note per la Lezione 28 Ugo Vaccaro

Note per la Lezione 28 Ugo Vaccaro Progeazione di Algorimi Anno Accademico 2017 2018 Noe per la Lezione 28 Ugo Vaccaro In quea lezione udieremo ancora problemi u cammini minimi, ma in grafi in cui vi poono eere archi di coo negaivo. Quindi,

Dettagli

Ottimizzazione Combinatoria Proprietà dei Grafi. Ottimizzazione Combinatoria

Ottimizzazione Combinatoria Proprietà dei Grafi. Ottimizzazione Combinatoria Ottimizzazione Combinatoria Ottimizzazione Combinatoria Proprietà dei Grafi ANTONIO SASSANO Università di Roma La Sapienza Dipartimento di Informatica e Sistemistica Corso di Laurea in Ingegneria Gestionale

Dettagli

Riprendiamo l algoritmo di Ford-Fulkerson che risolve il problema del flusso per vederne una delle innumerevoli applicazioni

Riprendiamo l algoritmo di Ford-Fulkerson che risolve il problema del flusso per vederne una delle innumerevoli applicazioni Riprendiamo l algoritmo di Ford-Fulkeron che riolve il problema del fluo per vederne una delle innumerevoli applicazioni Reti di fluo Atrazione per materiale che corre attravero gli archi (come liquidi

Dettagli

Note per la Lezione 29 Ugo Vaccaro

Note per la Lezione 29 Ugo Vaccaro Progeaione di Algorimi Anno Accademico 1 1 Noe per la Leione Ugo Vaccaro In quea leione coninueremo lo udio di cammini minimin grafi in cui vi poono eere archi di coo negaivo. Ricordiamo l algorimo baao

Dettagli

Cammini minimi con una sorgente

Cammini minimi con una sorgente Cammini minimi con na orgene Problema dei cammini minimi Variani e archi negaii Soorra oima di n cammino minimo Algorimo di Dijkra Compleià dell algorimo Rappreenazione dei cammini minimi Problema dei

Dettagli

Note per la Lezione 33 Ugo Vaccaro

Note per la Lezione 33 Ugo Vaccaro Progeazione di Algorimi Anno Accademico 208 209 Noe per la Lezione 33 Ugo Vaccaro In quea lezione vedremo alcune applicazioni dei riulai ul calcolo del fluo maimo, derivai nelle lezioni precedeni. Prima

Dettagli

Algoritmi greedy III parte

Algoritmi greedy III parte Algorimi greedy III pare Progeazione di Algorimi a.a. -1 Maricole congrue a 1 Docene: Annalia De Boni 1 Cammini minimi Si vuole andare da Napoli a Milano in auo percorrendo il minor numero di chilomeri

Dettagli

Problemi di Network Flow

Problemi di Network Flow Problemi di Nework Flow Massimo Paolucci (paolucci@dis.unige.i) DIST Universià di Genova Grafi di Flusso - Nework Flow I modelli di flusso (rei di flusso) sono uilizzai per prendere decisioni in vari conesi

Dettagli

Esercizi per il corso di Algoritmi, anno accademico 2014/15

Esercizi per il corso di Algoritmi, anno accademico 2014/15 Eercizi per il coro di Algorimi, anno accademico 0/ Eercizi u Union-Find. Eercizio: Scrivere peudocodice per Make-Se, Union, e Find-Se uando la rappreenazione aravero lie linkae e la euriica di unione

Dettagli

Dato un cammino P indichiamo con c(p ) il costo dell insieme di archi A(P ) del cammino, ovvero c(p )=c(a(p )) = uv P c uv. c 1

Dato un cammino P indichiamo con c(p ) il costo dell insieme di archi A(P ) del cammino, ovvero c(p )=c(a(p )) = uv P c uv. c 1 Capiolo 7 Cammini minimi 7. Definizioni fondamenali Sia dao un grafo non orienao G(N,A) conneo, con coi aociai agli archi c uv R per ogni uv A. Siano anche dai due nodi peciali, N. Faremo la eguene: Aunzione

Dettagli

Progetto e Ottimizzazione di Reti 2. Nozioni base di Teoria dei Grafi

Progetto e Ottimizzazione di Reti 2. Nozioni base di Teoria dei Grafi Progetto e Ottimizzazione di Reti 2. Nozioni base di Teoria dei Grafi ANTONIO SASSANO (A-L) CARLO MANNINO(M-Z) Uniersità di Roma La Sapienza Dipartimento di Informatica e Sistemistica Corso di Larea in

Dettagli

Introduzione alla Teoria dei Grafi

Introduzione alla Teoria dei Grafi Sapienza Uniersità di Roma - Dipartimento di Ingegneria Informatica, Automatica e Gestionale Introduzione alla Teoria dei Grafi Docente: Renato Bruni bruni@dis.uniroma1.it Corso di: Ottimizzazione Combinatoria

Dettagli

Un problema molto comune

Un problema molto comune Cammini Minimi [CLRS cap. 4] Un problema molto comune Si vuole andare da Salerno a Milano in auto percorrendo il minor numero di chilometri Soluzione inefficiente: i coniderano TUTTI i percori poibili

Dettagli

Laboratorio di Algoritmi e Strutture Dati

Laboratorio di Algoritmi e Strutture Dati Laboraorio di Algorimi e Sruure Dai Aniello Murano hp://people.na.infn.i people.na.infn.i/ ~murano/ 1 Algorimi per il calcolo di percori minimi u un grafo 1 Un emplice problema Pr oblema: Supponiamo che

Dettagli

Lezione 5. Calcolo dell antitrasformata di Laplace. F. Previdi - Automatica - Lez. 5 1

Lezione 5. Calcolo dell antitrasformata di Laplace. F. Previdi - Automatica - Lez. 5 1 Lezione 5. Calcolo dell aniraormaa di Laplace. Previdi - Auomaica - Lez. 5 Schema della lezione. Inroduzione. Aniraormazione di Laplace. Srumeni per l aniraormazione 4. Teorema del valore iniziale 5. Teorema

Dettagli

Ad ogni arco (i,j) del grafo e' associato un valore intero c(i,j) detto capacita' dell'arco

Ad ogni arco (i,j) del grafo e' associato un valore intero c(i,j) detto capacita' dell'arco 6) FLUSSI Definizione di flusso Si definisce rete di flusso un grafo orientato e connesso con i) un solo vertice con esclusivamente archi uscenti ii) un solo vertice con esclusivamente archi entranti Tradizionalmente

Dettagli

RICERCA OPERATIVA GRUPPO A prova scritta del 5 luglio 2010

RICERCA OPERATIVA GRUPPO A prova scritta del 5 luglio 2010 RICERCA OPERATIVA GRUPPO A prova cria del luglio 00. Dao il problema di programmazione lineare P) min z = x +x +x max y + y x x x = y +y < x + x x y + y < x, x, x 0 y y < y > 0 a) coruirne il duale D;

Dettagli

Lezione 9. Calcolo dell antitrasformata di Laplace. F. Previdi - Fondamenti di Automatica - Lez. 9 1

Lezione 9. Calcolo dell antitrasformata di Laplace. F. Previdi - Fondamenti di Automatica - Lez. 9 1 ezione 9. Calcolo dell aniraormaa di aplace. Previdi - ondameni di Auomaica - ez. 9 Schema della lezione. Inroduzione. Aniraormazione di aplace. Srumeni per l aniraormazione 4. Teorema del valore iniziale

Dettagli

Massimo Flusso. Ulteriori vincoli. Descrizione del problema. Rete di flusso. Flusso in G

Massimo Flusso. Ulteriori vincoli. Descrizione del problema. Rete di flusso. Flusso in G Maimizzare il # di PC prodoi Maimo Flo rre dai 2 Decrizione del problema Una fabbrica (orgene) di PC dee abilire il nmero di PC da aemblare giornalmene. Ti i PC prodoi erranno endi in n negozio (deinazione).

Dettagli

Esercizi per il corso di Algoritmi

Esercizi per il corso di Algoritmi Esercizi per il corso di Algorimi Esercizi su Union-Find. Esercizio: Scrivere pseudocodice per Make-Se, Union, e Find-Se usando la rappresenazione araverso lise linkae e la eurisica di unione pesaa. Si

Dettagli

SOLUZIONI PROVA SCRITTA DI AUTOMATICA I

SOLUZIONI PROVA SCRITTA DI AUTOMATICA I SOLUZIONI PROVA SCRITTA DI AUTOMATICA I (Prof Biani, BIO A-K 6 Seembre 7 Si conideri il eguene iema dinamico lineare a coefficieni coani a empo coninuo: u ( G ( y ( con G ( 5 a Di quale o quali, ra i iemi

Dettagli

algoritmi e strutture di dati

algoritmi e strutture di dati algoritmi e strutture di dati grafi m.patrignani nota di copyright queste slides sono protette dalle leggi sul copyright il titolo ed il copyright relativi alle slides (inclusi, ma non limitatamente, immagini,

Dettagli

Istituzioni di Probabilità Laurea magistrale in Matematica prova scritta del 20/6/2013

Istituzioni di Probabilità Laurea magistrale in Matematica prova scritta del 20/6/2013 Iiuzioni di Probabilià Laurea magirale in Maemaica prova cria del 0/6/03 Exercie. (puni 8 circa) Sia W un moo browniano reale. Sia ϕ : 0, + 0, + una funzione crecene, ia c : 0, + 0, + una funzione miurabile;

Dettagli

Cammini Minimi. Un problema molto comune. Formalizziamo. Peso di un cammino. Esempio. Ritorniamo all esempio iniziale. Input:

Cammini Minimi. Un problema molto comune. Formalizziamo. Peso di un cammino. Esempio. Ritorniamo all esempio iniziale. Input: Cammini Minimi Un problema molto comune i uole andare da alerno a Milano in auto percorrendo il minor numero di chilometri oluzione inefficiente: i coniderano TUTTI i percori poibili e e ne calcola la

Dettagli

Alberi di copertura. Mauro Passacantando. Dipartimento di Informatica Largo B. Pontecorvo 3, Pisa

Alberi di copertura. Mauro Passacantando. Dipartimento di Informatica Largo B. Pontecorvo 3, Pisa Alberi di copertura Mauro Passacantando Dipartimento di Informatica Largo B. Pontecorvo, Pisa mpassacantando@di.unipi.it M. Passacantando TFA 0/ - Corso di Ricerca Operativa Università di Pisa / 9 Definizioni

Dettagli

Flusso a Costo Minimo

Flusso a Costo Minimo Sapienza Università di Roma - Dipartimento di Ingegneria Informatica, Automatica e Gestionale Flusso a Costo Minimo Docente: Renato Bruni bruni@dis.uniroma.it Corso di: Ottimizzazione Combinatoria Dal

Dettagli

Modelli di Programmazione Lineare. PRTLC - Modelli

Modelli di Programmazione Lineare. PRTLC - Modelli Modelli di Programmazione Lineare PRTLC - Modelli Schema delle esercitazioni Come ricavare la soluzione ottima Modelli Solver Come ricavare una stima dell ottimo Rilassamento continuo - generazione di

Dettagli

Tema 3. Insiemi, elementi di logica, calcolo combinatorio, relazioni e funzioni

Tema 3. Insiemi, elementi di logica, calcolo combinatorio, relazioni e funzioni Tema 3 Iniemi, elemeni di logica, calcolo combinaorio, relazioni e funzioni 3.1 Queii di livello bae 3.1.1 Si coniderino i egueni enunciai: n è un muliplo di 3 o è un numero pari, e inolre è minore di

Dettagli

Claudio Arbib Università di L Aquila. Ricerca Operativa. Reti di flusso

Claudio Arbib Università di L Aquila. Ricerca Operativa. Reti di flusso Claudio Arbib Università di L Aquila Ricerca Operativa Reti di flusso Sommario Definizioni di base Flusso di un campo vettoriale Divergenza Integrale di Gauss-Greene Flusso in una rete Sorgenti, pozzi

Dettagli

ANALISI MATEMATICA II Sapienza Università di Roma - Laurea in Ingegneria Informatica Esame del 17 gennaio Soluzioni compito 1

ANALISI MATEMATICA II Sapienza Università di Roma - Laurea in Ingegneria Informatica Esame del 17 gennaio Soluzioni compito 1 ANALISI MATEMATICA II Sapiena Univerità di Roma - Laurea in Ingegneria Informatica Eame del 7 gennaio 07 - Soluioni compito E Calcolare il eguente integrale di funione di variabile reale con i metodi della

Dettagli

Esercitazione 6 Ancora sul Network Flow

Esercitazione 6 Ancora sul Network Flow Esercitazione 6 Ancora sul Network Flow Problema 14 (appello 28/09/2015) Un importante azienda di sviluppo software ha n progetti da portare a termine entro la fine dell anno. Il manager dell azienda stima

Dettagli

Problemi di flusso. Reti. Problemi di flusso. Problemi di flusso. Problemi di percorso. minσ (i,j) E c ij x ij. i N (i,j) E.

Problemi di flusso. Reti. Problemi di flusso. Problemi di flusso. Problemi di percorso. minσ (i,j) E c ij x ij. i N (i,j) E. Problemi di fluo Rei Problemi di percoro Fluo a coo minimo MinoFlow(G(V,E),b,l,u,c,min) Ianza: una ree G(V,E) per cui è dao un valore inero b i (fluo prodoo dal nodo) per ogni nodo v i un coo c ij per

Dettagli

Ottimizzazione su grafi: massimo flusso (parte 1) Ottimizzazione su grafi:massimo flusso (parte 1) p. 1/33

Ottimizzazione su grafi: massimo flusso (parte 1) Ottimizzazione su grafi:massimo flusso (parte 1) p. 1/33 Ottimizzazione su grafi: massimo flusso (parte 1) Ottimizzazione su grafi:massimo flusso (parte 1) p. 1/33 Ottimizzazione su grafi:massimo flusso (parte 1) p. 2/33 Reti di flusso Una rete di flusso è una

Dettagli

1) Progettazione di codici ciclici. 2) Esercizi sui codici ciclici. Mauro De Sanctis corso di Informazione e Codifica Università di Roma Tor Vergata

1) Progettazione di codici ciclici. 2) Esercizi sui codici ciclici. Mauro De Sanctis corso di Informazione e Codifica Università di Roma Tor Vergata Argomenti della Lezione Progettazione di codici ciclici Eercizi ui codici ciclici Codici ciclici Oervazione: Se g divide ia m che n con m

Dettagli

2.3.3 Cammini ottimi nei grafi senza circuiti

2.3.3 Cammini ottimi nei grafi senza circuiti .. Cammini ottimi nei grafi senza circuiti Sia un grafo G = (N, A) orientato senza circuiti e una funzione di costo che assegna un valore c ij R ad ogni arco (i, j) A circuito Proprietà I nodi di un grafo

Dettagli

Algoritmi e Strutture di Dati

Algoritmi e Strutture di Dati Algoritmi e Strutture di Dati I grafi m.patrignani Nota di copyright queste slides sono protette dalle leggi sul copyright il titolo ed il copyright relativi alle slides (inclusi, ma non limitatamente,

Dettagli

3 CENNI DI TEORIA DELLA COMPLESSITA COMPUTAZIONALE. E. Amaldi Fondamenti di R.O. Politecnico di Milano 1

3 CENNI DI TEORIA DELLA COMPLESSITA COMPUTAZIONALE. E. Amaldi Fondamenti di R.O. Politecnico di Milano 1 3 CENNI DI TEORIA DELLA COMPLESSITA COMPUTAZIONALE E. Amaldi Fondamenti di R.O. Politecnico di Milano 1 Scopo: Stimare l onere computazionale per risolvere problemi di ottimizzazione e di altra natura

Dettagli

16/10/11. Capitolo Basic Definitions and Applications. Chapter 3. Graphs. Undirected Graphs. Grafi Diretti

16/10/11. Capitolo Basic Definitions and Applications. Chapter 3. Graphs. Undirected Graphs. Grafi Diretti Chapter 3 3.1 Baic Definition and Application Graph 1 Undirected Graph Grafi Diretti Undirected graph. G = (V, E) V = nodi (anche vertici). E = archi tra coppie di nodi. Modella relazioni tra coppie di

Dettagli

Esercizio 1 Data la rete riportata con i costi indicati in figura, si usi l algoritmo di Dijkstra per calcolare il percorso più breve da F a tutti i

Esercizio 1 Data la rete riportata con i costi indicati in figura, si usi l algoritmo di Dijkstra per calcolare il percorso più breve da F a tutti i Eercitazione 2 Eercizio Data la rete riportata con i coti indicati in figura, i ui l algoritmo di Dijktra per calcolare il percoro più breve da F a tutti i nodi della rete. Si diegni l albero di coto minimo

Dettagli

Progettazione di algoritmi. Reti di flusso (2)

Progettazione di algoritmi. Reti di flusso (2) Progettazione di algoritmi Reti di flusso (2) Correttezza e complessità dell algoritmo di Ford-Fulkerson Il teorema del massimo flusso-minimo taglio L algoritmo di Ford-Fulkerson per il calcolo del massimo

Dettagli

Progetto e ottimizzazione di reti 2

Progetto e ottimizzazione di reti 2 Progetto e ottimizzazione di reti 2 Esercitazione AMPL A.A. 29-2 Esercitazione a cura di Silvia Canale contatto e-mail: canale@dis.uniroma.it Università di Roma La Sapienza Dipartimento di Informatica

Dettagli

Totale schede: 26 - Formato di acquisizione: A3(297x420) - Formato stampa richiesto: A4(210x297)

Totale schede: 26 - Formato di acquisizione: A3(297x420) - Formato stampa richiesto: A4(210x297) Totale schede: 26 - Formato di acquisizione: A3(297x420) - Formato stampa richiesto: A4(210x297) Totale schede: 26 - Formato di acquisizione: A3(297x420) - Formato stampa richiesto: A4(210x297) Totale

Dettagli

Catasto dei Fabbricati - Situazione al 24/07/ Comune di TRIESTE (L424) - < Sez.Urb.: Q - Foglio: 36 - Particella: 4099/1 - Subalterno: 5 >

Catasto dei Fabbricati - Situazione al 24/07/ Comune di TRIESTE (L424) - < Sez.Urb.: Q - Foglio: 36 - Particella: 4099/1 - Subalterno: 5 > Totale schede: 33 - Formato di acquisizione: A4(210x297) - Formato stampa richiesto: A3(297x420) Totale schede: 33 - Formato di acquisizione: A4(210x297) - Formato stampa richiesto: A3(297x420) Totale

Dettagli

Cammini minimi in grafi:

Cammini minimi in grafi: Algoritmi e strutture dati Camil Demetrescu, Irene Finocchi, Giuseppe F. Italiano Cammini minimi in grafi: una trilogia Cammini minimi in grafi: Episodio III: la fine della trilogia Input: nelle puntate

Dettagli

CRESCITA. Modello di Solow

CRESCITA. Modello di Solow CRESCITA Modello di Solow Modello di Solow (956) Idea: la crecia è dovua all accumulo di capiale. Capiale fiico () Y S I ecc. (idea di circolarià, ma aenzione a rendimeni decreceni di Ipoei: Economia chiua

Dettagli

Esercitazione 16 Novembre 2012 Circuiti dinamici del secondo ordine. t come riportato in figura.

Esercitazione 16 Novembre 2012 Circuiti dinamici del secondo ordine.  t come riportato in figura. Eercitazione Noembre ircuiti dinamici del econdo ordine ircuito L- erie Per quanto riguarda queto circuito, l eercizio egue la traccia della oluzione del compito d eame numero, reperibile in rete al olito

Dettagli

Formulazioni. Consideriamo il seguente problema di Knapsack 0-1. max (5x x 2. ) st 3x x 2. < 6 x {0,1} 2

Formulazioni. Consideriamo il seguente problema di Knapsack 0-1. max (5x x 2. ) st 3x x 2. < 6 x {0,1} 2 Formulazioni Consideriamo il seguente problema di Knapsack 0-1 max (5x 1 + 2x 2 ) st 3x 1 + 4x 2 < 6 x {0,1} 2 Insiemi ammissibili F = {(0, 0), (0, 1), (1, 0)} Rappresentiamo sul piano gli insiemi ammissibili.

Dettagli

Geometria analitica del piano pag 1 Adolfo Scimone

Geometria analitica del piano pag 1 Adolfo Scimone Geomeria analiica del piano pag Adolfo Scimone GEOMETRIA ANALITICA Lo scopo della geomeria analiica è quello di individuare i puni di una rea, di un piano, dello spazio, o più in generale gli eni geomerici

Dettagli

Definizione 1.3 (Arco accoppiato) Un arco è accoppiato se è appartenente al matching M.

Definizione 1.3 (Arco accoppiato) Un arco è accoppiato se è appartenente al matching M. Matching. Definizioni Definizione. (Matching di un grafo G = (N, A)) Il matching di un grafo è un sottoinsieme M di archi tali per cui nessuna coppia di essi condivida lo stesso nodo. Definizione.2 (Matching

Dettagli

Progettazione di Algoritmi Anno Accademico 2018/2019 Appello del 8/11/2018 (6 CFU)

Progettazione di Algoritmi Anno Accademico 2018/2019 Appello del 8/11/2018 (6 CFU) Cognom Nom: Numro i Mariola: Spazio rirao alla orrzion 1 2 3 4 Toal /25 /30 /20 /25 /100 1.Grafi a) Fornir lo puooi un algorimo riorio h in O(n+m) roa l orinamno opologio i un DAG. Oorr aggiungr allo puooi

Dettagli

UNIVERSITÀ DI ROMA ``TOR VERGATA'

UNIVERSITÀ DI ROMA ``TOR VERGATA' Algorimi e sruure di dai Corso di Laurea in Informaica Dispense aa 0-0 Giorgio Gambosi UNIVERSITÀ DI ROMA ``TOR VERGATA'' Indice Indice Problemi di flusso su rei Definizioni Algorimo greedy per max-flow

Dettagli

REGISTRAZIONE DEL MOTO. Lo scopo è riempire una tabella t/s (istante di tempo/posizione occupata)

REGISTRAZIONE DEL MOTO. Lo scopo è riempire una tabella t/s (istante di tempo/posizione occupata) REGISTRAZIONE DEL MOTO Lo copo è riempire una abella / (iane di empo/poizione occupaa) (ec) (meri) Ciò i può fare in due modi: 1) Prefiare le poizioni e miurare a quale empo vengano raggiune. Si compila

Dettagli

Ottimizzazione Combinatoria

Ottimizzazione Combinatoria Ottimizzazione Combinatoria Esercitazione AMPL A.A. 2-22 Esercitazione a cura di Silvia Canale contatto e-mail: canale@dis.uniroma.it Università i di Roma La Sapienza Dipartimento di Informatica e Sistemistica

Dettagli

Trasformazione di Laplace

Trasformazione di Laplace Traformazione di Laplace Gabriele Sicuro. Definizioni fondamentali Sia data una funzione f : C; ea i dice originale e ono oddifatte le eguenti condizioni: () f (t) per t

Dettagli

Appunti lezione Capitolo 13 Programmazione dinamica

Appunti lezione Capitolo 13 Programmazione dinamica Appunti lezione Capitolo 13 Programmazione dinamica Alberto Montresor 12 Novembre, 2015 1 Domanda: Fattore di crescita dei numeri catalani Vogliamo dimostrare che cresce almeno come 2 n. La nostra ipotesi

Dettagli

Processi di cost management - Programmazione multiperiodale

Processi di cost management - Programmazione multiperiodale Processi di cost management - Programmazione multiperiodale Queste slide (scrte da Carlo Mannino) riguardano il problema di gestione delle attivà di un progetto allorché i costi di esecuzione sono legati

Dettagli

3.3 Problemi di PLI facili

3.3 Problemi di PLI facili 3.3 Problemi di PLI facili Consideriamo un generico problema di PLI espresso in forma standard min{c t x : Ax = b, x Z n +} (1) dove A Z m n con n m, e b Z m. Supponiamo che A sia di rango pieno. Sia P

Dettagli

Cammini Minimi. Cammino in un grafo. Connettività in grafi non orientati. Connettività in grafi orientati

Cammini Minimi. Cammino in un grafo. Connettività in grafi non orientati. Connettività in grafi orientati Cammini Minimi Algoritmo di Dijktra Cammino in un grafo Dato un grafo G=(V,E), un Cammino (Percoro) in G è un inieme di vertici v 1, v 2,.., v k tali che (v i, v i+1 ) E v 1 v 2 v v k In un grafo orientato

Dettagli

A-2 a PI. Esercizio 2. Domanda 3

A-2 a PI. Esercizio 2. Domanda 3 A-2 a PI Ricerca Operativa 1 Seconda prova intermedia È dato il problema di PL in figura. 1. Facendo uso delle condizioni di ortogonalità, dimostrare o confutare l ottimalità della soluzione x = 1; x =

Dettagli

UNIVERSITÀ DEGLI STUDI ROMA TRE Collegio Didattico in Ingegneria Informatica corso di Ricerca operativa 2. Esercizi sul problema dell assegnamento

UNIVERSITÀ DEGLI STUDI ROMA TRE Collegio Didattico in Ingegneria Informatica corso di Ricerca operativa 2. Esercizi sul problema dell assegnamento UNIVERSITÀ DEGLI STUDI ROMA TRE Collegio Didattico in Ingegneria Informatica corso di Ricerca operativa Esercizi sul problema dell assegnamento Richiami di Teoria Ricordiamo che, dato un grafo G=(N,A),

Dettagli

SOLUZIONI PROVA SCRITTA DI AUTOMATICA I (Prof. Bittanti, BIO A-K) 21 Luglio 2008

SOLUZIONI PROVA SCRITTA DI AUTOMATICA I (Prof. Bittanti, BIO A-K) 21 Luglio 2008 SOLUZIONI PROVA SCRITTA DI AUTOMATICA I (Prof. Biani, BIO A-K) Luglio 8. Si conideri il eguene iema dinamico lineare a empo coninuo: x () x() 36 x() + u() x () x() x 3() x() x3() u() y () 5 x() x().a Si

Dettagli

Ordinamento parziale

Ordinamento parziale Ordinamento parziale Ordinamento parziale di un insieme A: relazione d'ordine parziale sugli elementi di A possono esistere coppie tra le quali non è definito alcun ordine Un grafo diretto aciclico (DAG)

Dettagli

2. Grafi e proprietà topologiche

2. Grafi e proprietà topologiche . Grafi e proprieà opologiche Grafo. Marice di incidenza complea. Soografo. Ordine di un nodo. Percorso, maglia, veore opologico di maglia. Taglio, veore opologico di aglio. Orogonalià ra agli e maglie.

Dettagli

Cognome e Nome: Numero di Matricola: Spazio riservato alla correzione

Cognome e Nome: Numero di Matricola: Spazio riservato alla correzione Cognom Nom: Numro i Mariola: Progazion i Algorimi Anno Aamio 2016/2017 Appllo l 10/7/2017 Spazio rirao alla orrzion 1 2 3 4 Toal /20 /35 /20 /25 /100 1.Grafi a) Fornir lo puooi un algorimo riorio h in

Dettagli

Postulato delle reazioni vincolari

Postulato delle reazioni vincolari Potulato delle reazioni vincolari Ad ogni vincolo agente u un punto materiale P può eere otituita una forza, chiamata reazione vincolare, che realizza lo teo effetto dinamico del vincolo. reazione vincolare

Dettagli

Il Luogo delle Radici

Il Luogo delle Radici Il Luogo delle Radici Il luogo delle radici è un procedimento, otanzialmente grafico, che permette di analizzare come varia il poizionamento dei poli di un itema di controllo in retroazione al variare

Dettagli

Le ipotesi di base che si utilizzano sono le stesse quattro già viste con riferimento al caso della flessione semplice e cioè:

Le ipotesi di base che si utilizzano sono le stesse quattro già viste con riferimento al caso della flessione semplice e cioè: LEZIONI N 44 E 45 CALCOLO A ROTTURA DELLA SEZIONE PRESSOINFLESSA PROBLEMI DI VERIFICA La procedura di verifica dei pilatri di c.a., ottopoti a forzo normale e momento flettente, è baata ulla cotruzione

Dettagli

RICERCA OPERATIVA (a.a. 2003/04) Nome Cognome:

RICERCA OPERATIVA (a.a. 2003/04) Nome Cognome: o Appello 0//00 RICERCA OPERATIVA (a.a. 00/0) Nome Cognome: Corso di Laurea: I SI M Matricola Corso A B C ) La ditta di trasporti FurgonFast deve suddividere tra tre diversi trasportatori n oggetti da

Dettagli

1. Introduzione Il convertitore a semplice semionda Il sistema di controllo... 5

1. Introduzione Il convertitore a semplice semionda Il sistema di controllo... 5 . Introduzione... 2 2. Il convertitore a emplice emionda... 3 2. Il itema di controllo... 5 3. Il convertitore monofae nella configurazione a ponte... 7 4. Il fenomeno della commutazione... . Introduzione

Dettagli

Indici con gli alberi. Indici su memorie secondarie. Organizzazione logica di un disco

Indici con gli alberi. Indici su memorie secondarie. Organizzazione logica di un disco Indici con gli alberi Alberi perfeamene bilanciai per indici su memorie di massa: B-alberi Indici su memorie secondarie Spesso i dai da ordinare sono in quanià ale da richiedere disposiivi di memoria secondaria,

Dettagli

Capitolo IV L n-polo

Capitolo IV L n-polo Capitolo IV L n-polo Abbiamo oervato che una qualiai rete, vita da due nodi, diventa, a tutti gli effetti eterni, un bipolo unico e queto è in qualche miura ovvio e abbiamo anche motrato come cotruire

Dettagli

Totale Unimodularità. Sapienza Universitàdi Roma - Dipartimento di Ingegneria Informatica, Automatica e Gestionale.

Totale Unimodularità. Sapienza Universitàdi Roma - Dipartimento di Ingegneria Informatica, Automatica e Gestionale. Sapienza Sapienza Universitàdi Roma - Dipartimento di Ingegneria Informatica, Automatica e Gestionale Totale Unimodularità Docente: Renato runi bruni@dis.uniroma.it Corso di: Ottimizzazione Combinatoria

Dettagli

2.3.5 Pianificazione di progetti

2.3.5 Pianificazione di progetti ..5 Pianificazione di progetti Un progetto è costituito da un insieme di attività i, con i =,..., m, ciascuna di durata d i stima Tra alcune coppie di attività esistono relazioni di precedenza del tipo

Dettagli

Ricerca Operativa. G. Liuzzi. Lunedí 20 Aprile 2015

Ricerca Operativa. G. Liuzzi. Lunedí 20 Aprile 2015 1 Lunedí 20 Aprile 2015 1 Istituto di Analisi dei Sistemi ed Informatica IASI - CNR Rilassamento di un problema Rilassare un problema di Programmazione Matematica vuol dire trascurare alcuni (tutti i)

Dettagli

Trasformata di Laplace unilatera Teoria

Trasformata di Laplace unilatera Teoria Definizione Tafomaa di Laplace unilaea Teoia L[f()] = f() $ e ($) d = F() Dove: f() = funzione eale afomabile. E nulla pe

Dettagli

Cammini minimi con sorgente singola

Cammini minimi con sorgente singola Cammini minimi con sorgente singola Vittorio Maniezzo - Università di Bologna Cammini minimi con sorgente singola Dato: un grafo(orientatoo non orientato) G= (V,E,W) con funzionedi peso w:e R un particolarevertices

Dettagli

Cognome e Nome: Numero di Matricola: Spazio riservato alla correzione

Cognome e Nome: Numero di Matricola: Spazio riservato alla correzione Cognom Nom: Numro i Mariola: Spazio rirao alla orrzion 1 2 3 4 Toal /25 /30 /20 /25 /100 1. Grafi a. Si ria lo puooi ll'algorimo BFS h uilizza un array Dior un array L, om illurao nl liro i o i analizzi

Dettagli

Massimo Flusso Massimo Flusso 1 1

Massimo Flusso Massimo Flusso 1 1 Massimo Flusso 1 Massimizzare il # di PC prodotti Prof. Carlo Blundo LASD 2003-04 2 Descrizione del problema Una fabbrica (sorgente) di PC deve stabilire il numero di PC da assemblare giornalmente. Tutti

Dettagli