III Appello di Calcolo delle Probabilità Cognome: Laurea Triennale in Matematica 2013/14 Nome: 16 luglio

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "III Appello di Calcolo delle Probabilità Cognome: Laurea Triennale in Matematica 2013/14 Nome: 16 luglio"

Transcript

1 III Appello di Calcolo delle Probabilità Cognome: Laurea Triennale in Matematica 013/14 Nome: 16 luglio Quando non è espressamente indicato il contrario, per la soluzione degli esercizi è possibile usare tutti i risultati visti a lezione (compresi quelli di cui non è stata fornita la dimostrazione). Esercizio 1. Un indagine su un ampia popolazione di giovani mostra che il % suona la chitarra, il 60% ama la birra e il 0% fa entrambe le cose. (a) Se scelgo un giovane a caso e scopro che non suona la chitarra, qual è la probabilità che ami la birra? (b) Se scelgo tre giovani a caso, qual è la probabilità che esattamente uno non ami la birra? Soluzione 1. (a) Introdotti gli eventi A := il giovane suona la chitarra e B := il giovane ama la birra, si ha P(A) = 100 = 1, 4 60 P(B) = 100 = 3, 0 P(A B) = 100 = 1. Dato che P(B) = P(A c B) + P(A B), si ha P(A c B) = P(B) P(A B) = 3 1 =. La probabilità (condizionale) richiesta è P(B A c ) = P(Ac B) P(A c = ) 1 1 = (b) Introdotti gli eventi B i := l i-esimo giovane non ama la birra, per i = 1,, 3, la probabilità richiesta è ( ) 3 P(B1 c B B 3 ) + P(B 1 B c B 3 ) + P(B 1 B B3) c = 3 = %. Alternativamente, applicando uno schema di prove ripetute e indipendenti con probabilità di successo p = P(B) = 3, dobbiamo calcolare la probabilità di avere esattamente successi in 3 prove, ossia ( ) ( ) 3 3 p (1 p) = 3, ottenendo lo stesso risultato.

2 Esercizio. A Babilonia ogni giorno il clima può essere di tre tipi (mutuamente esclusivi): piovoso (p) con probabilità 40%, soleggiato (s) con probabilità 40% e coperto (c) con probabilità 0%. Indicando i giorni con i numeri naturali i = 1,, 3,..., sia X i il clima dell i-esimo giorno e assumiamo che (X i ) i N siano variabili aleatorie indipendenti a valori nell insieme {s, p, c}. Indichiamo con σ il primo giorno soleggiato e con τ il primo giorno piovoso, così che σ e τ sono entrambe variabili aleatorie a valori in N. (a) Quali sono le distribuzioni marginali delle variabili aleatorie σ e τ? (b) Si mostri che le variabili aleatorie σ e τ non sono indipendenti. (c) Si determini la densità discreta congiunta di σ e τ. [Sugg. Si esprima l evento {σ = m, τ = n} in termini delle variabili aleatorie (X i ) i N, distinguendo i casi m < n e m > n.] (d) Posto A := min{σ, τ} e B := max{σ, τ} min{σ, τ}, si mostri che A e B sono variabili aleatorie indipendenti e se ne determinino le distribuzioni marginali. [Sugg. Può essere utile distinguere gli eventi {σ < τ} e {σ > τ}.] Soluzione. (a) σ e τ hanno distribuzione geometrica di parametro =, perché sono entrambe l istante di primo successo in uno schema di prove ripetute e indipendenti. Più esplicitamente, si ha P(X i = s) = =, P(X i = p) = =, P(X i = c) = = 1, e per costruzione P(τ = n) = P(X 1 s,..., X n 1 s, X n = s) = P(X 1 s) n 1 P(X 1 = s) = e analogamente per σ. ( ) 3 n 1, (b) Basta notare che P(τ = 1, σ = 1) = P(X 1 = s, X 1 = p) = 0, mentre P(τ = 1) = P(σ = 1) = > 0. (c) Per m < n si ha P(σ = m, τ = n) = P(X 1 = c,..., X m 1 = c, X m = s, X m+1 {s, c},..., X n 1 {s, c}, X n = p) ( ) 1 m 1 ( ) 3 n m 1 =. Un conto analogo, scambiando p con s, conduce per m > n a P(σ = m, τ = n) = P(X 1 = c,..., X n 1 = c, X n = p, X n+1 {p, c},..., X m 1 {p, c}, X m = s) ( ) 1 n 1 ( ) 3 m n 1 = = P(σ = n, τ = m). (d) Si noti che sull evento {σ < τ} si ha A = σ e B = τ σ, mentre sull evento {σ > τ} si ha A = τ e B = σ τ. Calcoliamo ora P(A = m, B = ) per m, N: P(A = m, B = ) = P(A = m, B =, σ < τ) + P(A = m, B =, σ > τ) = P(σ = m, τ σ =, σ < τ) + P(τ = m, σ τ =, σ > τ) = P(σ = m, τ = m +, σ < τ) + P(τ = m, σ = m +, σ > τ) = P(σ = m, τ = m + ) + P(τ = m, σ = m + ), dove nell ultimo passaggio abbiamo usato il fatto che {σ = m, τ = m + } {σ < τ} e analogamente {τ = m, σ = m + } {σ > τ}. Osserviamo ora che i due termini nel membro

3 3 destro sono uguali, per quanto mostrato al punto precedente, quindi ( ) 1 m 1 ( ) 3 1 P(A = m, B = ) = P(σ = m, τ = m + ) = = 4 ( 1 ) m 1 ( ) 3 1. Nel membro destro riconosciamo il prodotto delle densità discrete di una variabile geometrica di parametri 1 e 3 rispettivamente. Segue facilmente che P(A = m) = 4 ( ) 1 m 1, P(B = ) = ( ) 3 1, dunque A e B sono indipendenti con distribuzioni marginali geometriche, di parametri 1 e 3 rispettivamente.

4 4 Esercizio 3. Siano X, Z variabili aleatorie reali con distribuzione congiunta assolutamente continua, con densità f X,Z (x, z) = e z 1 {0 x z}. (a) Si determinino le distribuzioni marginali delle variabili aleatorie X e Z. Esse sono indipendenti? (b) Si calcoli Cov(X, Z). (c) Si determini la distribuzione di Y := Z X e si mostri che X e Y sono indipendenti. Soluzione 3. (a) Per x < 0 si ha f X (x) = 0, mentre per x 0 f X (x) = f X,Z (x, z) dz = e z dz = e x, R da cui X Exp(1). Analogamente, f Z (z) = 0 se z < 0, mentre per z 0 z f Z (z) = f X,Z (x, z) dx = e z dx = z e z, R ossia Z Gamma(, 1). Le variabili aleatorie X e Z non sono indipendenti, perché f X,Z (x, z) f X (x)f Z (z) per q.o. (x, z) (basta verificarlo per (x, z) = (1, 1) e usare la continuità di entrambi i membri). (b) Si ha E[XY ] = xz e z 1 {0 x z} dx dz = R = 1 0 x 0 z 3 e z dz = 1 Γ(4) = 1 3! = 3. 0 z e z ( z 0 ) x dx dz D altro canto E[X] = 1 e E[Y ] = per le proprietà delle leggi Exp(1) e Gamma(, 1), quindi Cov(X, Y ) = E[XY ] E[X]E[Y ] = 3 = 1. (c) Scrivendo (X, Y ) = ϕ(x, Z) con ϕ(x, z) := (x, z x) e notando che ϕ è una trasformazione lineare con determinante 1, si ha che il vettore aleatorio (X, Y ) è assolutamente continuo con densità f X,Y (x, y) = f X,Z (ϕ 1 (x, y)) = f X,Z (x, x + y) = e x y 1 {0 x x+y} = e x 1 {x 0} e y 1 {y 0}. Notando che il membro destro è il prodotto di due densità Exp(1), si ottiene immediatamente che X Exp(1) (come già sapevamo) e Y Exp(1) e inoltre X e Y sono variabili aleatorie indipendenti.

5 Esercizio 4. Siano (X n ) n N variabili aleatorie reali i.i.d. con distribuzione Exp(1): f Xn (x) = e x 1 {x 0}. Introduciamo le variabili (Y n ) n N definite da Y n := 1/X n e poniamo M n := max { Y 1,..., Y n }. Per quali α R la successione di variabili aleatorie Z n := M n /n α converge in legge per n? Soluzione 4. La funzione di ripartizione di M n è data da F Mn (t) = P(M n t) = 0 se t 0, mentre per t > 0, usando il fatto che le variabili aleatorie (Y n ) n N sono i.i.d., F Mn (t) = P(M n t) = P(Y 1 t,..., Y n t) = P(Y 1 t) n = P(X 1 1/t) n = e n/t, perché P(X 1 > s) = s e x 1 {x 0} dx = e s per s > 0. Quindi la funzione di ripartizione di Z n è data da F Zn (z) = 0 se z 0, mentre per z > 0 F Zn (z) = P(Z n z) = P(M n zn α ) = F Mn (zn α ) = e n1 α /z. Questo mostra che lim n F Zn (z) = 0 se z 0, mentre per z > 0 0 se α < 1 lim F Z n n (z) = e 1/z se α = 1. 1 se α > 0 Nel caso α < 1 la funzione limite non coincide q.o. con una funzione di ripartizione, perché ha limite 0 a +, quindi Z n non converge in legge. Nel caso α 1 invece Z n converge in legge verso una variabile aleatoria con funzione di ripartizione { e 1/z 1 F (z) := {z 0} se α = 1 1 {z 0} se α > 0, perché lim n F Zn (z) = F (z) per ogni z R nel caso α = 1, e per ogni z R \ {0} per α > 1 (in questo caso 0 è l unico punto di discontinuità di F ).

6 6 Esercizio. Siano (X n ) n N variabili aleatorie indipendenti, ma non identicamente distribuite: assumiamo infatti che X n abbia distribuzione uniforme (discreta) nell insieme {1,,..., n}. Definiamo le variabili aleatorie (Z n (i) ) i,n N mediante Z (i) n := =i 1 A (i), dove poniamo A (i) := {X = i} per ogni i, N. (In altri termini, Z n (i) conta quante tra le variabili X 1,..., X n assumono il valore i. Si noti che la somma potrebbe equivalentemente partire da = 1, perché l evento A (i) è vuoto per < i.) (a) Si mostri che, per i N fissato, gli eventi (A (i) ) N sono indipendenti. Viceversa, per N fissato con, si mostri che gli eventi (A (i) ) i N non sono indipendenti. (b) Fissiamo i N. Si calcoli P(A (i) ) per ogni N, si determini P(lim sup N A (i) ) e si deduca che q.c. lim n Z n (i) =... (c) Fissiamo i, j N con i > j. Si calcoli Cov(1 (i) A, 1 (j) A ), per i e j, e si deduca che Cov(Z n (i), Z n (j) 1 ) =, n i. Che cosa si può dire riguardo all indipendenza delle variabili aleatorie (Z (i) n ) i,n N? =i Soluzione. (a) Per i N fissato, gli eventi (A (i) ) N sono indipendenti, perché le variabili aleatorie (X ) N sono indipendenti. Viceversa, per fissato, gli eventi (A (i) ) i N non sono indipendenti: infatti P(A () A( 1) ) = P(X =, X = 1) = 0 mentre P(A () ) > 0, P(A ( 1) ) > 0. (b) Si ha P(A (i) ) = P(X = i) = 1 se i mentre P(A(i) ) = 0 se i >. Di conseguenza P(A (i) ) = 1 =. N =i Essendo gli eventi (A (i) ) N indipendenti, applicando il lemma di Borel-Cantelli si ottiene P(lim sup N A (i) ) = 1. Questo significa che q.c. si verificano infiniti degli eventi (A(i) ) N e dunque lim n Z n (i) =. In altri termini, l evento {lim n Z n (i) = } = { =i 1 A (i) = } coincide proprio con l evento lim sup N A (i). (c) Si noti che Cov(1 (i) A, 1 (j) A ) = P(A (i) A(j) ) P(A (i) )P(A(j) ). Se, per il punto (a) si ha P(A (i) A(j) ) = P(A (i) )P(A(j) D altro canto, se =, essendo i > j per ipotesi, si ha P(A (i) j) = 0 e dunque Cov(1 (i) A, 1 (j) A ) = P(A (i) )P(A(j) della covarianza si ottiene la formula richiesta: Cov(Z (i) n, Z (j) n ) = =i =j ) = 1 Cov(1 (i) A, 1 (j) A ) = ), dunque Cov(1 A (i), 1 A (j) ) = 0. A(j) ) = P(X = i, X = 1 = 1. Usando la bilinearità Le variabili aleatorie (Z n (i) ) i,n N non sono indipendenti, perché in tal caso sarebbero scorrelate, ossia Cov(Z n (i), Z n (j) ) = 0 per ogni n, i, j N, mentre così non è, per quanto appena mostrato. =i 1.

7 7 Esercizio 6. Data una successione (q n ) n N0 a valori in [0, 1], definiamo la successione (r i ) i N0 ponendo i r 0 := q 0, r 1 := q 0 q 1,... r i := q j = q 0 q 1 q i,... (a) Si spieghi perché esiste il limite r := lim i r i [0, 1]. Si mostri quindi che r i 1 (1 q i ) = r 0 r. i N Consideriamo ora il seguente problema. Marta si trova alla base di una scalinata (infinita), in cui i gradini sono etichettati (dal basso verso l alto) con i numeri 0, 1,,.... Su ogni gradino i è appoggiata una moneta che dà testa con probabilità q i e croce con probabilità 1 q i ; assumiamo che q 0 = 1, mentre q i (0, 1) per i 1. Ad ogni istante, Marta lancia la moneta del gradino su cui si trova: se esce testa, sale di un gradino, mentre se esce croce ritorna al gradino di partenza, il numero 0. Indicando con X n la posizione di Marta nell istante n, il processo (X n ) n 0 è un opportuna catena di Marov sull insieme E = {0, 1,,...} (con X 0 = 0). (b) Si scriva il valore p ij della matrice di transizione della catena di Marov, per ogni i, j E. Si disegni quindi il grafo corrispondente, completando la figura seguente con frecce e numeri. Si mostri che la catena è irriducibile e se ne determini il periodo. j= (c) Assumiamo che r = 0 (vedi punto (a)). Si determini la misura invariante per la catena, esprimendola in termini della successione (r i ) i N0 e mostrando che essa è unica a meno di multipli. Si mostri quindi che la catena è ricorrente positiva se e solo se i 1 r i <. Soluzione 6. (a) La matrice di transizione è data da { p ij = 1 1 (δ i i+1 + δ i 0 ) = se j = i + 1 oppure j = 0 0 altrimenti Il grafo corrispondente è. 1 q 1 q q 3 q q 1 1 q 1 q 3 1 q 4 Chiaramente , quindi 0 i per ogni i E. D altro canto i 0, dunque 0 i per ogni i E, da cui segue che i j per ogni i, j E. C è dunque una sola classe di comunicazione, l intero spazio E, ossia la catena è irriducibile. In particolare, tutti

8 8 gli stati hanno lo stesso periodo e basta calcolare quello dello stato 0. Dato che p (1) 01 p(1) 10 > 0 e p (1) 01 p(1) 1 p(1) 0 > 0, si ha che p() 00 > 0 e p(3) 00 > 0; il periodo della catena è il massimo comune divisore di un insieme che contiene e 3, pertanto vale 1, ossia la catena è aperiodica. (b) Il limite esiste perché la successione è decrescente. La serie è telescopica. (c) Il sistema di equazioni soddisfatto da una misura invariante (µ i ) i E è µ j = i E µ i p ij, j E. (1) Per j 1 tale sistema dà µ j = µ j 1 p j 1,j = µ j 1 q j 1. Di conseguenza, induttivamente, µ j = µ j 1 q j 1 = µ j q j q j 1 =... = µ 0 q 0 q 1 q j q j 1 = µ 0 r j 1, j 1. Questo mostra che, se una misura invariante esiste, essa è unica a meno di multipli ed è data da µ j = µ 0 r j 1 per j 1. Resta solo da verificare che (1) è soddisfatta anche per j = 0: applicando la relazione dimostrata nel punto (a), e ricordando che r 0 = 1 e r = 0 per ipotesi, si ottiene µ 0 = i 1 µ i p i0 = i 1 µ 0 r i 1 (1 q i ) = µ 0 (r 0 r ) = µ 0. La catena è ricorrente positiva se e solo se la misura invariante ha massa totale finita, e la condizione i E µ i < è equivalente a i 1 r i <, essendo µ i = µ 0 r i 1 per i 1.

9 9 Tavola della distribuzione normale La tabella seguente riporta i valori di Φ(z) := z e 1 x π dx, la funzione di ripartizione della distribuzione normale standard N(0, 1), per 0 z 3.. Ricordiamo che I valori di Φ(z) per z < 0 possono essere ricavati grazie alla formula Φ(z) = 1 Φ( z). z

II Appello di Calcolo delle Probabilità Laurea Triennale in Matematica 2016/17

II Appello di Calcolo delle Probabilità Laurea Triennale in Matematica 2016/17 II Appello di Calcolo delle Probabilità Laurea Triennale in Matematica 6/7 Martedì 4 febbraio 7 Cognome: Nome: Email: Se non è espressamente indicato il contrario, per la soluzione degli esercizi è possibile

Dettagli

I Appello di Calcolo delle Probabilità Laurea Triennale in Matematica 2016/17

I Appello di Calcolo delle Probabilità Laurea Triennale in Matematica 2016/17 I Appello di Calcolo delle Probabilità Laurea Triennale in Matematica 6/7 Martedì 3 gennaio 7 Cognome: Nome: Email: Se non è espressamente indicato il contrario, per la soluzione degli esercizi è possibile

Dettagli

Calcolo delle Probabilità 2017/18 Foglio di esercizi 8

Calcolo delle Probabilità 2017/18 Foglio di esercizi 8 Calcolo delle Probabilità 07/8 Foglio di esercizi 8 Catene di Markov e convergenze Si consiglia di svolgere gli esercizi n 9,,,, 5 Catene di Markov Esercizio (Baldi, Esempio 5) Si consideri il grafo costituito

Dettagli

V Appello di Calcolo delle Probabilità Cognome: Laurea Triennale in Matematica 2012/13 Nome: 18 ottobre

V Appello di Calcolo delle Probabilità Cognome: Laurea Triennale in Matematica 2012/13 Nome: 18 ottobre V Appello di Calcolo delle Probabilità Cognome: Laurea Triennale in Matematica 202/ Nome: 8 ottobre 20 Email: Se non è espressamente indicato il contrario, per la soluzione degli esercizi è possibile usare

Dettagli

I Appello di Processi Stocastici Cognome: Laurea Magistrale in Matematica 2014/15 Nome: 23 Giugno

I Appello di Processi Stocastici Cognome: Laurea Magistrale in Matematica 2014/15 Nome: 23 Giugno I Appello di Processi Stocastici Cognome: Laurea Magistrale in Matematica 014/15 Nome: 3 Giugno 015 Email: Quando non è espressamente indicato il contrario, per la soluzione degli esercizi è possibile

Dettagli

I Appello di Calcolo delle Probabilità Cognome: Laurea Triennale in Matematica 2012/13 Nome: 30 gennaio

I Appello di Calcolo delle Probabilità Cognome: Laurea Triennale in Matematica 2012/13 Nome: 30 gennaio I Appello di Calcolo delle Probabilità Cognome: Laurea Triennale in Matematica /3 Nome: 3 gennaio 3 Email: Se non è espressamente indicato il contrario, per la soluzione degli esercizi è possibile usare

Dettagli

Prova scritta di Probabilità e Statistica Appello unico, II sessione, a.a. 2015/ Settembre 2016

Prova scritta di Probabilità e Statistica Appello unico, II sessione, a.a. 2015/ Settembre 2016 Prova scritta di Probabilità e Statistica Appello unico, II sessione, a.a. 205/206 20 Settembre 206 Esercizio. Un dado equilibrato viene lanciato ripetutamente. Indichiamo con X n il risultato dell n-esimo

Dettagli

I Appello di Calcolo delle Probabilità Cognome: Laurea Triennale in Matematica 2013/14 Nome: 6 febbraio

I Appello di Calcolo delle Probabilità Cognome: Laurea Triennale in Matematica 2013/14 Nome: 6 febbraio I Appello di Calcolo delle Probabilità Cognome: Laurea Triennale in Matematica 03/4 Nome: 6 febbraio 04 Email: Se non è espressamente indicato il contrario, per la soluzione degli esercizi è possibile

Dettagli

Appello febbraio. Vero o falso. Es 1 Es 2 Es 3 Es 4 Tot

Appello febbraio. Vero o falso. Es 1 Es 2 Es 3 Es 4 Tot Es Es 2 Es 3 Es 4 Tot Appello febbraio Calcolo delle probabilità 5 febbraio 208 Studente: Matricola: Vero o falso Esercizio (0 pti). Si dica, motivando la propria risposta, se le seguenti affermazioni

Dettagli

0 se y c 1 (y)) se c < y < d. 1 se y d

0 se y c 1 (y)) se c < y < d. 1 se y d Capitolo. Parte IX Exercise.. Sia X una variabile aleatoria reale assolutamente continua e sia (a,b) un intervallo aperto (limitato o illimitato) di R, tale che P(X (a,b)) =. Sia ϕ : (a,b) R una funzione

Dettagli

Cognome Nome Matricola. Es. 1 Es. 2 Es. 3 Es. 4 Somma Voto finale

Cognome Nome Matricola. Es. 1 Es. 2 Es. 3 Es. 4 Somma Voto finale Esame di Calcolo delle Probabilità mod. B del 9 settembre 2003 (Corso di Laurea in Matematica, Università degli Studi di Padova). Cognome Nome Matricola Es. 1 Es. 2 Es. 3 Es. 4 Somma Voto finale Attenzione:

Dettagli

ESERCIZI DATI A LEZIONE TPA - anno 2006 CAPITOLO 2

ESERCIZI DATI A LEZIONE TPA - anno 2006 CAPITOLO 2 ESECIZI DATI A LEZIONE TPA - anno 2006 CAPITOLO 2 1. Una σ algebra è chiusa rispetto a intersezioni finite e numerabili, e rispetto a differenze e differenze simmetriche. 2. Una σ algebra è anche un algebra,

Dettagli

CP110 Probabilità: Esonero 2. Testo e soluzione

CP110 Probabilità: Esonero 2. Testo e soluzione Dipartimento di Matematica, Roma Tre Pietro Caputo 2011-12, II semestre 29 maggio, 2012 CP110 Probabilità: Esonero 2 Testo e soluzione 1. (8 punti) La freccia lanciata da un arco è distribuita uniformemente

Dettagli

Traccia della soluzione degli esercizi del Capitolo 4

Traccia della soluzione degli esercizi del Capitolo 4 Traccia della soluzione degli esercizi del Capitolo 4 Esercizio 6 Sia X una v.c. uniformenente distribuita nell intervallo ( π, π ), cioè f X (x) = π ( π, π ) (x). Posto Y = cos(x), trovare la distribuzione

Dettagli

(a) Qual è la probabilità che un neonato sopravviva al primo anno?

(a) Qual è la probabilità che un neonato sopravviva al primo anno? II Appello di Probabilità e Statistica Cognome: Laurea in Matematica Nome: 2 luglio 2009 Matricola: ESERCIZIO. Per una certa specie africana di uccelli, i neonati hanno indipendentemente l uno dal l altro

Dettagli

Primo appello di Calcolo delle probabilità Laurea Triennale in Matematica 01/02/2019

Primo appello di Calcolo delle probabilità Laurea Triennale in Matematica 01/02/2019 Primo appello di Calcolo delle probabilità Laurea Triennale in Matematica 01/02/2019 COGNOME e NOME... N. MATRICOLA... Esercizio 1. Costruire, se esiste, un esempio con le seguenti proprietà 1. {F n }

Dettagli

X (o equivalentemente rispetto a X n ) è la

X (o equivalentemente rispetto a X n ) è la Esercizi di Calcolo delle Probabilità della 5 a settimana (Corso di Laurea in Matematica, Università degli Studi di Padova). Esercizio 1. Siano (X n ) n i.i.d. di Bernoulli di parametro p e definiamo per

Dettagli

con distribuzione gaussiana standard e si ponga

con distribuzione gaussiana standard e si ponga Laurea Triennale in Matematica, Università La Sapienza Corso di Probabilità, AA 6/7 Prova di Esonero Maggio 7 Testi e soluzioni degli esercizi proposti Siano Z, Z, Z variabili aleatorie indipendenti e

Dettagli

Esame di Calcolo delle Probabilità del 11 dicembre 2007 (Corso di Laurea Triennale in Matematica, Università degli Studi di Padova).

Esame di Calcolo delle Probabilità del 11 dicembre 2007 (Corso di Laurea Triennale in Matematica, Università degli Studi di Padova). Esame di Calcolo delle Probabilità del dicembre 27 (Corso di Laurea Triennale in Matematica, Università degli Studi di Padova). Cognome Nome Matricola Es. Es. 2 Es. Es. 4 Somma Voto finale Attenzione:

Dettagli

) la sua densità discreta sarà della forma. p X (0) = 1 2, p X(1) = 1 2,

) la sua densità discreta sarà della forma. p X (0) = 1 2, p X(1) = 1 2, Esercizi settimana 6 Esercizi applicati Esercizio. Siano X e Y due v.a. discrete indipendenti tali che X B(, ) e Y B(, ), n 0. (i) Si calcoli la legge di X + Y ; (ii) Si calcoli la legge di X Y ; (iii)

Dettagli

CP110 Probabilità: Esame del 6 giugno Testo e soluzione

CP110 Probabilità: Esame del 6 giugno Testo e soluzione Dipartimento di Matematica, Roma Tre Pietro Caputo 21-11, II semestre 6 giugno, 211 CP11 Probabilità: Esame del 6 giugno 211 Testo e soluzione 1. (6 pts) Ci sono 6 palline, di cui nere e rosse. Ciascuna,

Dettagli

Prima prova in itenere di Istituzioni di Probabilità

Prima prova in itenere di Istituzioni di Probabilità Prima prova in itenere di Istituzioni di Probabilità 14 novembre 2012 Esercizio 1. Un processo di Ornstein-Uhlenbec modificato (OUM) è un processo reale, con R come insieme dei tempi, con traiettorie continue,

Dettagli

Scrivere su ogni foglio NOME e COGNOME. Le risposte devono essere giustificate sui fogli protocollo e riportate nel foglio RISPOSTE.

Scrivere su ogni foglio NOME e COGNOME. Le risposte devono essere giustificate sui fogli protocollo e riportate nel foglio RISPOSTE. Corso di Laurea Triennale in Matematica Corso di Calcolo delle Probabilità (docenti G. Nappo, F. Spizzichino prova scritta giugno 5 (tempo a disposizione: ore La prova scritta consiste nello svolgimento

Dettagli

Probabilità 1, laurea triennale in Matematica I prova scritta sessione estiva a.a. 2008/09

Probabilità 1, laurea triennale in Matematica I prova scritta sessione estiva a.a. 2008/09 Probabilità, laurea triennale in Matematica I prova scritta sessione estiva a.a. 2008/09. Due roulette regolari vengono azionate più volte; sia T il numero di volte che occorre azionare la prima roulette

Dettagli

CP410: Esonero 1, 31 ottobre 2013

CP410: Esonero 1, 31 ottobre 2013 Dipartimento di Matematica, Roma Tre Pietro Caputo 2013-14, I semestre 31 ottobre, 2013 CP410: Esonero 1, 31 ottobre 2013 Cognome Nome Matricola Firma 1. Fare un esempio di successione di variabili aleatorie

Dettagli

CP410: Esame 2, 3 febbraio 2015

CP410: Esame 2, 3 febbraio 2015 Dipartimento di Matematica, Roma Tre Pietro Caputo 2014-15, I semestre 3 febbraio, 2015 CP410: Esame 2, 3 febbraio 2015 Cognome Nome Matricola Firma 1. Sia (Ω, F, P) lo spazio di probabilità definito da

Dettagli

Esercizio 1. Una obbligazione può avere rating A, B, C o D e passare da un rating all altro secondo la matrice di transizione

Esercizio 1. Una obbligazione può avere rating A, B, C o D e passare da un rating all altro secondo la matrice di transizione Esercizi di Calcolo delle Probabilità della 10 a Matematica, Università degli Studi di Padova). settimana (Corso di Laurea in Esercizio 1. Una obbligazione può avere rating A, B, C o D e passare da un

Dettagli

Prova Scritta di Probabilità e Statistica Cognome: Laurea in Matematica. 28 giugno 2012 Matricola: Nome:

Prova Scritta di Probabilità e Statistica Cognome: Laurea in Matematica. 28 giugno 2012 Matricola: Nome: Prova Scritta di Probabilità e Statistica Cognome: Laurea in Matematica Nome: 8 giugno 01 Matricola: ESERCIZIO 1. Sia (A n n una successione di eventi indipendenti, tali che P (A n 1 1 n. Sia B := + n=

Dettagli

Calcolo delle Probabilità 2

Calcolo delle Probabilità 2 Prova d esame di Calcolo delle Probabilità 2 Maggio 2006 Sia X una variabile aleatoria distribuita secondo la densità seguente ke x 1 x < 0 f X (x) = 1/2 0 x 1. 1. Determinare il valore del parametro reale

Dettagli

CP110 Probabilità: Esonero 2. Testo e soluzione

CP110 Probabilità: Esonero 2. Testo e soluzione Dipartimento di Matematica, Roma Tre Pietro Caputo 212-13, II semestre 23 maggio, 213 CP11 Probabilità: Esonero 2 Testo e soluzione 1. (7 punti) Una scatola contiene 1 palline, 5 bianche e 5 nere. Ne vengono

Dettagli

CP110 Probabilità: Esonero 2. Testo e soluzione

CP110 Probabilità: Esonero 2. Testo e soluzione Dipartimento di Matematica, Roma Tre Pietro Caputo 29-2, II semestre 25 maggio, 2 CP Probabilità: Esonero 2 Testo e soluzione . (7 pt) Siano T, T 2 variabili esponenziali indipendenti, di parametri λ =

Dettagli

Corso di Laurea in Informatica Calcolo delle Probabilità e Statistica (269AA) A.A. 2017/18 - Prova scritta

Corso di Laurea in Informatica Calcolo delle Probabilità e Statistica (269AA) A.A. 2017/18 - Prova scritta Corso di Laurea in Informatica Calcolo delle Probabilità e Statistica (269AA A.A. 2017/18 - Prova scritta 2018-09-12 La durata della prova è di tre ore. Le risposte devono essere adeguatamente giustificate.

Dettagli

UNIVERSITA` di ROMA TOR VERGATA

UNIVERSITA` di ROMA TOR VERGATA UNIVERSITA` di ROMA TOR VERGATA Corso di PS2-Probabilità 2 PBaldi appello, 23 giugno 29 Corso di Laurea in Matematica Esercizio Per α 2 consideriamo la catena di Markov su {, 2, 3} associata alla matrice

Dettagli

Esercizi settimana 5. Esercizi applicati. Esercizio 1. Si considerino tre monete truccate, ognuna con probabilità 2 3

Esercizi settimana 5. Esercizi applicati. Esercizio 1. Si considerino tre monete truccate, ognuna con probabilità 2 3 1 Esercizi settimana 5 Esercizi applicati Esercizio 1. Si considerino tre monete truccate, ognuna con probabilità 3 di ottenere testa. Se scegliete la prima moneta vincete 10 punti se esce testa e punti

Dettagli

Laurea triennale in INFORMATICA, Corso di CALCOLO DELLE PROBABILITÀ COMPITO - 2 luglio FOGLIO RISPOSTE

Laurea triennale in INFORMATICA, Corso di CALCOLO DELLE PROBABILITÀ COMPITO - 2 luglio FOGLIO RISPOSTE Laurea triennale in INFORMATICA, Corso di CALCOLO DELLE PROBABILITÀ COMPITO - 2 luglio 202 - FOGLIO RISPOSTE NOME e COGNOME SOLUZIONI CANALE: G. Nappo VOTO: N.B. Scrivere le risposte dei vari punti degli

Dettagli

1. Si scelga a caso un punto X dell intervallo [0, 2], con distribuzione uniforme di densità. f X (x) = [0,2](x)

1. Si scelga a caso un punto X dell intervallo [0, 2], con distribuzione uniforme di densità. f X (x) = [0,2](x) Esercizi di Calcolo delle Probabilità della 3 a settimana (Corso di Laurea in Matematica, Università degli Studi di Padova). Esercizio.. Sia (X, Y ) un vettore aleatorio bidimensionale con densità uniforme

Dettagli

CP410: Esame 2, 30 gennaio Testo e soluzione

CP410: Esame 2, 30 gennaio Testo e soluzione Dipartimento di Matematica, Roma Tre Pietro Caputo 23-4, I semestre 3 gennaio, 24 CP4: Esame 2, 3 gennaio 24 Testo e soluzione Cognome Nome Matricola Firma . Per ogni n N, sia X n la variabile aleatoria

Dettagli

Esercizi: fascicolo 4

Esercizi: fascicolo 4 Esercizi: fascicolo 4 Esercizio 1 Dimostrare le seguenti proprietà (1), (2) e (3): (1) X 1 = 0 X 0; (2) X L 1 (Ω, P ), λ R λx 1 = λ X 1 ; (3) X, Y L 1 (Ω, P ) X + Y 1 X 1 + Y 1. Esercizio 2 Si estraggono

Dettagli

CP410: Esonero 1, 7 novembre, 2018

CP410: Esonero 1, 7 novembre, 2018 Dipartimento di Matematica, Roma Tre Pietro Caputo 2018-19, I semestre 7 novembre, 2018 CP410: Esonero 1, 7 novembre, 2018 Cognome Nome Matricola Firma 1. Sia X una variabile aleatoria su uno spazio di

Dettagli

Matematica e Statistica per Scienze Ambientali

Matematica e Statistica per Scienze Ambientali per Scienze Ambientali Variabili aleatorie - Appunti 1 1 Dipartimento di Matematica Sapienza, Università di Roma Roma, Gennaio 2013 Variabili aleatorie Un numero aleatorio è un esempio di variabile aleatoria.

Dettagli

PROVE SCRITTE DI MATEMATICA APPLICATA, ANNO 2006/07

PROVE SCRITTE DI MATEMATICA APPLICATA, ANNO 2006/07 PROVE SCRITTE DI MATEMATICA APPLICATA, ANNO 006/07 Esercizio 1 Prova scritta del 16/1/006 In un ufficio postale lavorano due impiegati che svolgono lo stesso compito in maniera indipendente, sbrigando

Dettagli

Esame di Calcolo delle Probabilità del 12 dicembre 2005 (Corso di Laurea Triennale in Matematica, Università degli Studi di Padova).

Esame di Calcolo delle Probabilità del 12 dicembre 2005 (Corso di Laurea Triennale in Matematica, Università degli Studi di Padova). Esame di Calcolo delle Probabilità del 2 dicembre 2005 (Corso di Laurea Triennale in Matematica, Università degli Studi di Padova). Cognome Nome Matricola Es. Es. 2 Es. 3 Es. 4 Somma Voto parziale Prima

Dettagli

CP110 Probabilità: Esame 13 settembre Testo e soluzione

CP110 Probabilità: Esame 13 settembre Testo e soluzione Dipartimento di Matematica, Roma Tre Pietro Caputo 2011-12, II semestre 13 settembre, 2012 CP110 Probabilità: Esame 13 settembre 2012 Testo e soluzione 1. (6 pts) Una scatola contiene 10 palline, 8 bianche

Dettagli

CP110 Probabilità: Esonero 2

CP110 Probabilità: Esonero 2 Dipartimento di Matematica, Roma Tre Pietro Caputo 22-3, II semestre 23 maggio, 23 CP Probabilità: Esonero 2 Cognome Nome Matricola Firma Nota:. L unica cosa che si puo usare durante l esame è una penna

Dettagli

Calcolo delle Probabilità e Statistica Matematica Fisciano, 10/1/2012

Calcolo delle Probabilità e Statistica Matematica Fisciano, 10/1/2012 Fisciano, 10/1/2012 Esercizio 1 Un esperimento consiste nel generare a caso un vettore di interi (x 1, x 2, x 3, x 4 ), dove x i {1, 2, 3, 4, 5, 6} i. (i) Si individui lo spazio campionario, determinandone

Dettagli

Corso di Laurea in Ingegneria Informatica e Automatica (M-Z) Università di Roma La Sapienza

Corso di Laurea in Ingegneria Informatica e Automatica (M-Z) Università di Roma La Sapienza Corso di Laurea in Ingegneria Informatica e Automatica (M-Z) Università di Roma La Sapienza CALCOLO DELLE PROBABILITÀ E STATISTICA ESAME DEL 16/06/2016 NOME: COGNOME: MATRICOLA: Esercizio 1 Cinque lettere

Dettagli

Variabili casuali multidimensionali

Variabili casuali multidimensionali Capitolo 1 Variabili casuali multidimensionali Definizione 1.1 Le variabili casuali multidimensionali sono k-ple ordinate di variabili casuali unidimensionali definite sullo stesso spazio di probabilità.

Dettagli

Matematica con elementi di Informatica

Matematica con elementi di Informatica Variabili aleatorie Matematica con elementi di Informatica Tiziano Vargiolu Dipartimento di Matematica vargiolu@math.unipd.it Corso di Laurea Magistrale in Chimica e Tecnologie Farmaceutiche Anno Accademico

Dettagli

Facoltà di Ingegneria Calcolo delle Probabilità e Statistica Ingegneria Civile e A&T e Informatica

Facoltà di Ingegneria Calcolo delle Probabilità e Statistica Ingegneria Civile e A&T e Informatica Facoltà di Ingegneria Calcolo delle Probabilità e Statistica Ingegneria Civile e A&T e Informatica Prima prova scritta A.A. 8-9 Durata della prova h Punteggi: ) + + ; ) + + + ; ) +. Totale. Esercizio Sia

Dettagli

Scrivere su ogni foglio NOME e COGNOME. Le risposte devono essere giustificate sui fogli protocollo e riportate nel foglio RISPOSTE.

Scrivere su ogni foglio NOME e COGNOME. Le risposte devono essere giustificate sui fogli protocollo e riportate nel foglio RISPOSTE. Corso di Laurea Triennale in Matematica Corso di Calcolo delle Probabilità 1 A. A. 4/5 a prova in itinere 8/6/5docenti G. Nappo, F. Spizzichino La prova scritta consiste nello svolgimento degli Esercizi

Dettagli

Università di Pavia Econometria. Richiami di teoria delle distribuzioni statistiche. Eduardo Rossi

Università di Pavia Econometria. Richiami di teoria delle distribuzioni statistiche. Eduardo Rossi Università di Pavia Econometria Richiami di teoria delle distribuzioni statistiche Eduardo Rossi Università di Pavia Distribuzione di Bernoulli La variabile casuale discreta Y f Y (y; θ) = 0 θ 1, dove

Dettagli

CORSO DI STATISTICA (parte 2) - ESERCITAZIONE 3

CORSO DI STATISTICA (parte 2) - ESERCITAZIONE 3 CORSO DI STATISTICA (parte 2) - ESERCITAZIONE 3 Dott.ssa Antonella Costanzo a.costanzo@unicas.it Esercizio 1. La variabile casuale normale Da un analisi di bilancio è emerso che, durante i giorni feriali

Dettagli

Calcolo delle Probabilità e Statistica, Ingegneria Civile e A&T e Informatica I prova finale a.a. 2016/17

Calcolo delle Probabilità e Statistica, Ingegneria Civile e A&T e Informatica I prova finale a.a. 2016/17 Calcolo delle Probabilità e Statistica, Ingegneria Civile e A&T e Informatica I prova finale aa 6/ Punteggi: : 3 + 6; : + + + ; 3: + Una scatola contiene monete; 8 di queste sono equilibrate, mentre le

Dettagli

Corso di Laurea in Informatica Calcolo delle Probabilità e Statistica (269AA) A.A. 2016/17 - Prova del

Corso di Laurea in Informatica Calcolo delle Probabilità e Statistica (269AA) A.A. 2016/17 - Prova del Corso di Laurea in Informatica Calcolo delle Probabilità e Statistica (69AA) A.A. 06/7 - Prova del 07-07-07 La durata della prova è di tre ore. Le risposte devono essere adeguatamente giustificate. Problema

Dettagli

Nome e cognome:... Matricola...

Nome e cognome:... Matricola... Nome e cognome:................................................... Matricola................. CALCOLO DELLE PROBABILITA - 0/07/008 CdS in Economia e Finanza - Cds in Informatica - Cds SIGAD Motivare dettagliatamente

Dettagli

Esercizi settimana 4. Esercizi applicati. Esercizio 1. Si considerino tre monete truccate, ognuna con probabilità 2 3

Esercizi settimana 4. Esercizi applicati. Esercizio 1. Si considerino tre monete truccate, ognuna con probabilità 2 3 1 Esercizi settimana Esercizi applicati Esercizio 1. Si considerino tre monete truccate, ognuna con probabilità 3 di ottenere testa. Se scegliete la prima moneta vincete 10 punti se esce testa e punti

Dettagli

Traccia della soluzione degli esercizi del Capitolo 3

Traccia della soluzione degli esercizi del Capitolo 3 Traccia della soluzione degli esercizi del Capitolo 3 Esercizio 68 Sia X una v.c. uniformenente distribuita nell intervallo ( π, π, cioè f X ( = π ( π, π (. Posto Y = cos(x, trovare la distribuzione di

Dettagli

Richiami di TEORIA DELLE PROBABILITÀ

Richiami di TEORIA DELLE PROBABILITÀ corso di Teoria dei Sistemi di Trasporto Sostenibili 6 CFU A.A. 015-016 Richiami di TEORIA DELLE PROBABILITÀ Prof. Ing. Umberto Crisalli Dipartimento di Ingegneria dell Impresa crisalli@ing.uniroma.it

Dettagli

Esercizi su leggi Gaussiane

Esercizi su leggi Gaussiane Esercizi su leggi Gaussiane. Siano X e Y v.a. indipendenti e con distribuzione normale standard. Trovare le densità di X, X +Y e X, X. Mostrare che queste due variabili aleatorie bidimensionali hanno le

Dettagli

Probabilità e Statistica

Probabilità e Statistica Diario delle lezioni e del tutorato di Probabilità e Statistica a.a. 2014/2015 www.mat.uniroma2.it/~caramell/did 1415/ps.htm 02/03/2015 - Lezioni 1, 2 Breve introduzione al corso. Fenomeni deterministici

Dettagli

Esercizi di Calcolo delle Probabilità

Esercizi di Calcolo delle Probabilità Esercizi di Calcolo delle Probabilità M. Pratelli e M. Romito Gli esercizi che seguono sono stati proposti nel corso Probabilità dell Università di Pisa negli a.a. 2012-13 e 2013-14 (M. Romito) e 2014-15

Dettagli

Corso di Statistica - Prof. Fabio Zucca V Appello - 19 febbraio 2015

Corso di Statistica - Prof. Fabio Zucca V Appello - 19 febbraio 2015 Corso di Statistica - Prof. Fabio Zucca V Appello - 19 febbraio 215 Nome e cognome: Matricola: c I diritti d autore sono riservati. Ogni sfruttamento commerciale non autorizzato sarà perseguito. 8994 Esercizio

Dettagli

P ( X n X > ɛ) = 0. ovvero (se come distanza consideriamo quella euclidea)

P ( X n X > ɛ) = 0. ovvero (se come distanza consideriamo quella euclidea) 10.4 Convergenze 166 10.4.3. Convergenza in Probabilità. Definizione 10.2. Data una successione X 1, X 2,...,,... di vettori aleatori e un vettore aleatorio X aventi tutti la stessa dimensione k diremo

Dettagli

X Vincita (in euro) Tabella 1: Vincite

X Vincita (in euro) Tabella 1: Vincite Cognome e Nome:....................................... Matricola............. CdS............. CALCOLO DELLE PROBABILITA - 9 Giugno 1 CdS in STAD, SIGAD - docente: G. Sanfilippo Motivare dettagliatamente

Dettagli

Due variabili aleatorie X ed Y si dicono indipendenti se comunque dati due numeri reali a e b si ha. P {X = a, Y = b} = P {X = a}p {Y = b}

Due variabili aleatorie X ed Y si dicono indipendenti se comunque dati due numeri reali a e b si ha. P {X = a, Y = b} = P {X = a}p {Y = b} Due variabili aleatorie X ed Y si dicono indipendenti se comunque dati due numeri reali a e b si ha P {X = a, Y = b} = P {X = a}p {Y = b} Una variabile aleatoria χ che assume i soli valori 1, 2,..., n

Dettagli

Esercizi - Fascicolo IV

Esercizi - Fascicolo IV Esercizi - Fascicolo IV Esercizio Una compagnia di assicurazioni emette una polizza che pagherà n euro se l evento E si verificherà entro un anno. Se la compagnia stima che l evento E si verificherà entro

Dettagli

Scrivere su ogni foglio NOME e COGNOME. Le risposte devono essere giustificate sui fogli protocollo e riportate nel foglio RISPOSTE.

Scrivere su ogni foglio NOME e COGNOME. Le risposte devono essere giustificate sui fogli protocollo e riportate nel foglio RISPOSTE. CORSO DI CALCOLO DELLE PROBABILITÀ o modulo - PROVA d esame del 9/02/200 - Laurea Quadriennale in Matematica - Prof. Nappo Scrivere su ogni foglio NOME e COGNOME. Le risposte devono essere giustificate

Dettagli

DATI DELLO STUDENTE: NomeeCognome:... NumerodiMatricola:... PROCESSI STOCASTICI 09/09/2015, ESAME SCRITTO

DATI DELLO STUDENTE: NomeeCognome:... NumerodiMatricola:... PROCESSI STOCASTICI 09/09/2015, ESAME SCRITTO DATI DELLO STUDENTE: NomeeCognome:... NumerodiMatricola:... PROCESSI STOCASTICI 09/09/20, ESAME SCRITTO L uso di testi, appunti, formulari e gadget elettronici non è autorizzato. Avete 2 ore di tempo a

Dettagli

UNIVERSITA` di ROMA TOR VERGATA

UNIVERSITA` di ROMA TOR VERGATA UNIVERSITA` di ROMA TOR VERGATA Corso di PS2-Probabilità 2 P.Baldi appello, 7 giugno 200 Corso di Laurea in Matematica Esercizio Siano X, Y v.a. indipendenti di legge Ŵ(2, λ). Calcolare densità e la media

Dettagli

Teoria delle Probabilità e Applicazioni programma 2004/05

Teoria delle Probabilità e Applicazioni programma 2004/05 Teoria delle Probabilità e Applicazioni programma 2004/05 Capitolo 1: esempio guida Lezioni: 8/3, 9/3 (5h) 1. Come modellizzare l esperimento infiniti lanci di una moneta equilibrata oppure l esperimento

Dettagli

Il fenomeno del cuto nelle catene di Markov

Il fenomeno del cuto nelle catene di Markov Candidato: Diego Stucchi Relatore: prof. Francesco Caravenna Università degli studi di Milano-Bicocca 29-11-2016 1 Catene di Markov 2 Il fenomeno del cuto 3 Stime dall'alto per il t mix 1 Catene di Markov

Dettagli

CALCOLO DELLE PROBABILITÀ 2 (Laurea Specialistica) 28 giugno Motivare dettagliatamente le risposte su fogli allegati

CALCOLO DELLE PROBABILITÀ 2 (Laurea Specialistica) 28 giugno Motivare dettagliatamente le risposte su fogli allegati CALCOLO DELLE PROBABILITÀ 2 (Laurea Specialistica) 28 giugno 2006 Motivare dettagliatamente le risposte su fogli allegati 1.- Sia X un numero aleatorio a valori { α, 0, α}, con α > 0 e P (X = α) = P (X

Dettagli

Alcuni complementi di teoria dell integrazione.

Alcuni complementi di teoria dell integrazione. Alcuni complementi di teoria dell integrazione. In ciò che segue si suppone di avere uno spazio di misura (,, µ) 1 Sia f una funzione misurabile su un insieme di misura positiva tale che f 0. Se fdµ =

Dettagli

Esame di Calcolo delle Probabilità del 11 gennaio 2006 (Corso di Laurea Triennale in Matematica, Università degli Studi di Padova).

Esame di Calcolo delle Probabilità del 11 gennaio 2006 (Corso di Laurea Triennale in Matematica, Università degli Studi di Padova). Esame di Calcolo delle Probabilità del gennaio 006 Corso di Laurea Triennale in Matematica, Università degli Studi di Padova). Cognome Nome Matricola Es. Es. Es. 3 Es. 4 Somma Voto finale Attenzione: si

Dettagli

Esercizi di Probabilità e Statistica

Esercizi di Probabilità e Statistica Esercizi di Probabilità e Statistica Samuel Rota Bulò 6 luglio 6 Vettori aleatori e funzioni di v.a. Esercizio Si lanciano due dadi equi. Qual è la probabilità che la somma sia? [ ] Siano X, X le v.a.

Dettagli

Corso di Laurea in Informatica Calcolo delle Probabilità e Statistica (269AA) A.A. 2016/17 - Prova del

Corso di Laurea in Informatica Calcolo delle Probabilità e Statistica (269AA) A.A. 2016/17 - Prova del Corso di Laurea in Informatica Calcolo delle Probabilità e Statistica (269AA) A.A. 206/7 - Prova del 207-09-08 La durata della prova è di tre ore. Le risposte devono essere adeguatamente giustificate.

Dettagli

1 Eventi. Operazioni tra eventi. Insiemi ed eventi. Insieme dei casi elementari. Definizione di probabilità.

1 Eventi. Operazioni tra eventi. Insiemi ed eventi. Insieme dei casi elementari. Definizione di probabilità. Quella che segue e la versione compatta delle slides usate a lezioni. NON sono appunti. Come testo di riferimento si può leggere Elementi di calcolo delle probabilità e statistica Rita Giuliano. Ed ETS

Dettagli

Esercitazioni di Statistica Matematica A Lezione 7. Variabili aleatorie continue

Esercitazioni di Statistica Matematica A Lezione 7. Variabili aleatorie continue Esercitazioni di Statistica Matematica A Lezione 7 Variabili aleatorie continue.) Determinare la costante k R tale per cui le seguenti funzioni siano funzioni di densità. Determinare poi la media e la

Dettagli

Istituzioni di Probabilità Laurea magistrale in Matematica prova scritta del 22/7/2013

Istituzioni di Probabilità Laurea magistrale in Matematica prova scritta del 22/7/2013 Istituzioni di Probabilità Laurea magistrale in Matematica prova scritta del 22/7/213 Exercise 1 (punti 1 circa Diremo che un processo X = (X t t [,1] a valori reali è un ponte browniano se è un processo

Dettagli

CP110 Probabilità: Esame 2 settembre 2013 Testo e soluzione

CP110 Probabilità: Esame 2 settembre 2013 Testo e soluzione Diartimento di Matematica, Roma Tre Pietro Cauto 212-13, II semestre 2 settembre, 213 CP11 Probabilità: Esame 2 settembre 213 Testo e soluzione 1. (6 ts) Abbiamo due mazzi di carte francesi, il mazzo A

Dettagli

Corso di probabilità e statistica

Corso di probabilità e statistica Università degli Studi di Verona Facoltà di Scienze MM.FF.NN. Corso di Laurea in Informatica Corso di probabilità e statistica (Prof. L.Morato) Esercizi Parte III: variabili aleatorie dipendenti e indipendenti,

Dettagli

Correzione di Esercizi 4 di Calcolo delle Probabilità e Statistica. Mercoledì 4 maggio 2016

Correzione di Esercizi 4 di Calcolo delle Probabilità e Statistica. Mercoledì 4 maggio 2016 Correzione di Esercizi di Calcolo delle Probabilità e Statistica. Mercoledì maggio 6 Chun Tian. Answer of Exercise Figure. Catena di Markov.. (a) Le classi di equivalenza e i loro periodi. Da Figure, si

Dettagli

Esame di Probabilità e Statistica del 23 agosto 2010 (Corso di Laurea Triennale in Matematica, Università degli Studi di Padova).

Esame di Probabilità e Statistica del 23 agosto 2010 (Corso di Laurea Triennale in Matematica, Università degli Studi di Padova). Esame di Probabilità e Statistica del 3 agosto 00 Corso di Laurea Triennale in Matematica, Università degli Studi di Padova). Cognome Nome Matricola Es. Es. Es. 3 Es. 4 Somma Voto finale Attenzione: si

Dettagli

Università degli Studi di Roma Tre Corso di Laurea in Matematica a.a. 2014/2015 GE220 Topologia Esonero 30 marzo 2015.

Università degli Studi di Roma Tre Corso di Laurea in Matematica a.a. 2014/2015 GE220 Topologia Esonero 30 marzo 2015. Università degli Studi di Roma Tre Corso di Laurea in Matematica a.a. 2014/2015 GE220 Topologia Esonero 30 marzo 2015 Nome e Cognome: Esercizio 1 6 punti Esercizio 2 4 punti Esercizio 3 6 punti Esercizio

Dettagli

Corso di Statistica - Prof. Fabio Zucca IV Appello - 5 febbraio Esercizio 1

Corso di Statistica - Prof. Fabio Zucca IV Appello - 5 febbraio Esercizio 1 Corso di Statistica - Prof. Fabio Zucca IV Appello - 5 febbraio 2015 Nome e cognome: Matricola: c I diritti d autore sono riservati. Ogni sfruttamento commerciale non autorizzato sarà perseguito. 8994

Dettagli

11. Misure con segno.

11. Misure con segno. 11. Misure con segno. 11.1. Misure con segno. Sia Ω un insieme non vuoto e sia A una σ-algebra in Ω. Definizione 11.1.1. (Misura con segno). Si chiama misura con segno su A ogni funzione ϕ : A R verificante

Dettagli

Materiale didattico per il corso di Statistica I Quinta esercitazione SOLUZIONI

Materiale didattico per il corso di Statistica I Quinta esercitazione SOLUZIONI Materiale didattico per il corso di Statistica I Quinta esercitazione SOLUZIONI Claudia Furlan Anno Accademico 006-007 Ringrazio Carlo Gaetan, Nicola Sartori e Aldo Solari per il materiale, aggiunte e

Dettagli

Catene di Markov - Foglio 1

Catene di Markov - Foglio 1 Catene di Markov - Foglio 1 1. Una pedina si muove su un circuito circolare a 4 vertici, numerati da 1 a 4. La pedina si trova inizialmente nel vertice 1. Ad ogni passo un giocatore lancia un dado equilibrato:

Dettagli

Calcolo delle Probabilità

Calcolo delle Probabilità Esercitazione 6 maggio 04 Calcolo delle Probabilità Davide Petturiti e-mail: davide.petturiti@sbai.uniroma.it web: https://sites.google.com/site/davidepetturiti Esercizio. Siano X e Y due variabili aleatorie

Dettagli

Secondo appello di Istituzioni di probabilità Laurea Triennale in scienze statistiche

Secondo appello di Istituzioni di probabilità Laurea Triennale in scienze statistiche Secondo appello di Istituzioni di probabilità Laurea Triennale in scienze statistiche Matr pari 9/7/18 COGNOME e NOME... N. MATRICOLA... Esercizio 1. punti Siano X e Y due variabilili aleatorie normali

Dettagli

Secondo appello di Istituzioni di probabilità Laurea Triennale in scienze statistiche Matr pari 17/06/2019

Secondo appello di Istituzioni di probabilità Laurea Triennale in scienze statistiche Matr pari 17/06/2019 Secondo appello di Istituzioni di probabilità Laurea Triennale in scienze statistiche Matr pari 17/6/219 COGNOME e NOME... N. MATRICOLA... Esercizio 1. Un forno produce rosette di pane. Il peso di una

Dettagli

CP110 Probabilità: Esame 5 giugno Testo e soluzione

CP110 Probabilità: Esame 5 giugno Testo e soluzione Dipartimento di Matematica, Roma Tre Pietro Caputo 21-11, II semestre 5 giugno, 212 CP11 Probabilità: Esame 5 giugno 212 Testo e soluzione 1. (6 pts) Sette biglietti numerati da 1 a 7 vengono distribuiti

Dettagli

1 Alcuni risultati sulle variabili Gaussiane multivariate

1 Alcuni risultati sulle variabili Gaussiane multivariate Il modello lineare-gaussiano e il filtro di Kalman Prof. P.Dai Pra 1 Alcuni risultati sulle variabili Gaussiane multivariate In questo paragrafo verranno enunciate e dimostrate alcune proprietà del valor

Dettagli

Es.: una moneta viene lanciata 3 volte. X = n. di T nei primi 2 lanci Y = n. di T negli ultimi 2 lanci

Es.: una moneta viene lanciata 3 volte. X = n. di T nei primi 2 lanci Y = n. di T negli ultimi 2 lanci Es.: una moneta viene lanciata 3 volte. X = n. di T nei primi 2 lanci Y = n. di T negli ultimi 2 lanci X\Y 0 1 2 0 1/8 1/8 0 1/4 1 1/8 1/4 1/8 1/2 2 0 1/8 1/8 1/4 1/4 1/2 1/4 1 X e Y non sono indip. Se

Dettagli

LE VARIABILI CASUALI A 1, A 2.,..., A k., p 2.,..., p k. generati da una specifica prova sono necessari ed incompatibili:

LE VARIABILI CASUALI A 1, A 2.,..., A k., p 2.,..., p k. generati da una specifica prova sono necessari ed incompatibili: LE VARIABILI CASUALI Introduzione Data prova, ad essa risultano associati i k eventi A, A,..., A k con le relative probabilità p, p,..., p k. I k eventi A i generati da una specifica prova sono necessari

Dettagli

PROBABILITÀ I. a.a. 2011/2012 DIARIO DELLE LEZIONI

PROBABILITÀ I. a.a. 2011/2012 DIARIO DELLE LEZIONI PROBABILITÀ I. a.a. 2011/2012 DIARIO DELLE LEZIONI Settimana 5-9 marzo. Elementi di analisi combinatoria (vedasi capitolo I del Ross). Integrazioni: triangolo di Tartaglia, dimostrazione diretta della

Dettagli

1 Esercizi tutorato 1/4

1 Esercizi tutorato 1/4 Esercizi tutorato 1/ 1 1 Esercizi tutorato 1/ Esercizio 11 Siano X e Y due va discrete indipendenti di distribuzione geometrica con parametro p [0, 1] (i) Si calcoli la legge di X + Y, è una legge nota?

Dettagli

Lezione 13 Corso di Statistica. Domenico Cucina

Lezione 13 Corso di Statistica. Domenico Cucina Lezione 13 Corso di Statistica Domenico Cucina Università Roma Tre D. Cucina (domenico.cucina@uniroma3.it) 1 / 20 obiettivi della lezione comprendere il concetto di variabile aleatoria continua familiarizzare

Dettagli

Scritto del

Scritto del Dip. di Ingegneria, Univ. Roma Tre Prof. E. Scoppola, Dott.M. Quattropani Probabilità e Statistica, 17-18, I semestre Settembre 18 Scritto del - 9-18 Cognome Nome Matricola Esercizio 1. Un urna contiene

Dettagli

ESERCIZIO 1. Sia (Ω, P ) uno spazio di probabilità, e B un evento tale che P (B) > 0. Si dimostri che la mappa P (Ω B) = P (B) P (B) = 1.

ESERCIZIO 1. Sia (Ω, P ) uno spazio di probabilità, e B un evento tale che P (B) > 0. Si dimostri che la mappa P (Ω B) = P (B) P (B) = 1. Prova Scritta di Probabilità e Statistica Cognome: Laurea in Matematica Nome: 4 settembre Matricola: ESERCIZIO. Sia (Ω, P ) uno spazio di probabilità, e B un evento tale che P (B) >. Si dimostri che la

Dettagli