I Appello di Calcolo delle Probabilità Laurea Triennale in Matematica 2016/17

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "I Appello di Calcolo delle Probabilità Laurea Triennale in Matematica 2016/17"

Transcript

1 I Appello di Calcolo delle Probabilità Laurea Triennale in Matematica 6/7 Martedì gennaio 7 Cognome: Nome: Se non è espressamente indicato il contrario, per la soluzione degli esercizi è possibile usare tutti i risultati visti a lezione (compresi quelli di cui non è stata fornita la dimostrazione) Esercizio Ho una moneta A regolare e una moneta B per cui la probabilità di ottenere testa vale Scelgo una moneta a caso, con uguale probabilità, e la lancio ripetutamente (a) Qual è la probabilità p che in un lancio esca testa? E la probabilità p n che in n lanci escano n teste? (b) Se in n lanci escano n teste, qual è la probabilità che la moneta scelta sia A? Che cosa succede nel limite n!? Soluzione (a) Introduciamo gli eventi A := scelgo la moneta A e T i := esce testa all i-esimo lancio Si ha P(A) =, P(T i A c )=, P(T i A) =, dunque la probabilità che in un lancio esca una testa vale p =P(T i A)P(A)+P(T i A c )P(A c )= + = 5 Introduciamo ora l evento B n := in n lanci escono n teste Per costruzione, gli eventi (T i ) in sono indipendenti rispetto alle probabilità condizionali P( A) e P( A c )Datoche B n = T \ T \ \ T n, si ottiene da cui P(B n A) =P(T A) n = n, P(B n A c )=P(T A c ) n = p n =P(B n )=P(B n A)P(A)+P(B n A c )P(A c )= (b) Per la formula di Bayes P(A B n )= P(B n A)P(A) P(B n ) Si noti che P(A B n ) n! per n! = n + n n = n + + n, n n

2 Esercizio Siano X U(, ) e Y Geo(p) variabili aleatorie indipendenti Sia := Y X (a) Si dica se sono ben definite e, nel caso, si determinino E[], Var[], Cov[, Y ] (b) Si fissi n N Qual è la distribuzione della variabile aleatoria W n := n X? (c) Dato m N, si calcoli la funzione di ripartizione F (z) per ogni z [m,m] [Sugg Si considerino gli eventi {Y < m}, {Y = m}, {Y > m}] (d) Si mostri che P( = z) =per ogni z R Soluzione (a) ÈnotocheX, Y L,dunqueanche L, quindi valore medio, varianza e covarianza sono ben definiti È noto che E[X] =, Var[X] =, E[Y ]= p quindi per linearità E[] =E[Y ] E[X] = p, Var[Y ]= p p, = p p ; per proprietà della varianza della somma di va indipendenti (essendo Cov[X, Y ]=) Var[] = Var[Y ] + Var[X] = p p + = p p + p ; per la bilinearità della covarianza Cov[, Y ]=Cov[Y,Y ] Cov[X, Y ] = Var[Y ]= p p (b) Dato che X (, ), sihaw n (n,n), pertanto F Wn (w) =se w apple n mentre F Wn (w) =se w n Nel regime interessante n <w<nsi ha F Wn (w) =P(W n apple w) =P(X n w) = (n w) =w (n ), dato che P(X x) = x per <x< In definitiva >< se w apple n F Wn (w) = w (n ) se n <w<n >: se w n È facile riconoscere la funzione di ripartizione di una va W n U(n,n) In alternativa, essendo F Wn di classe C atratti,w n è assolutamente continua con densità f Wn (w) = FW n (w) = (n,n) (w), da cui W n U(n,n) (c) Per la formula di disintegrazione, se m apple z<m, F (z) =P( apple z) =P( apple z,y < m)+p( apple z,y = m)+p( apple z,y > m) Se Y < m,ossiay apple m, alloraanche apple m, pertanto automaticamente apple z, quindi P( apple z,y < m) =P(Y < m)=p(y apple m ) Viceversa, se Y > m,ossiay m +, allora m, pertanto non si può avere apple z, quindip( apple z,y > m) = In definitiva F (z) =P(Y apple m ) + P( apple z,y = m) = P(Y > m ) + P(m X apple z,y = m) = ( p) m +P(W m apple z)p(y = m) = ( p) m +(z (m ))p( p) m

3 (d) Dal punto precedente si può notare che la funzione F ècontinuainognipuntoz R (infatti F (z) =per z < e F (m )=F (m) per m N) Pertanto P( = z) = F (z) F (z )= (In effetti, la funzione F è C atratti,dunquelava è assolutamente continua, con densità f (z) =P(Y = m) =p( p) m se m apple z apple m) In alternativa, in modo più diretto, disintegrando rispetto ai valori assunti da Y, si ha P( = z) = X nn P( = z,y = n) = X nn P(n X = z,y = n) = X nn P(X = n z)p(y = n) =, dove l ultima uguaglianza segue dal fatto che P(X = x) =per ogni x R, essendo X assolutamente continua

4 Esercizio Siano X, Y variabili aleatorie reali con densità congiunta f (X,Y ) (x, y) = < se (x, y) D D(x, y) =, : altrimenti avendo posto (a) Si calcolino le densità marginali di X e Y D := {(x, y) R : <x<, <y< p x } (b) Le variabili aleatorie X e Y sono indipendenti? (c) Si definisca la variabile aleatoria := XY e si dica per quali p (, ) si ha L p (d) Si calcoli per ogni t, z [, ] la probabilità P(X apple t, apple z) Le variabili aleatorie X e hanno la stessa legge? Sono indipendenti? Soluzione (a) Si noti che f X (x) =se x 6 (, ), perché in tal caso f (X,Y ) (x, y) =per ogni y R Per x (, ) px f X (x) = f (X,Y ) (x, y) dy = dy = p x R Analogamente, f Y (y) =se y 6 (, ) Conviene considerare separatamente i regime y (, ) e y (, ], dal momento che Dunque per y> D = { <yapple, <x<}[{ <y<, x< y } f Y (y) = mentre per <yapple f Y (y) = R f (X,Y ) (x, y) dx = R f (X,Y ) (x, y) dx = y dx = y, dx = (b) Le variabili aleatorie X e Y non sono indipendenti perché la densità congiunta f (X,Y ) (x, y) si annulla sull aperto { <x<, y > p x } mentre il prodotto delle densità marginali f X (x)f Y (y) è strettamente positivo su tale aperto, dunque non si può avere f (X,Y ) (x, y) = f X (x)f Y (y) per Leb-qo (x, y) R (c) Si noti che P((X, Y ) D) =, perché la densità f (X,Y ) (x, y) si annulla al di fuori di D Dunque <X< e <Y </ p X qc, da cui segue che <XY <, ossia << Ciò mostra che èlimitata,dunque L p per ogni p (, ) In alternativa, basta calcolare E[ p ]=E[X p Y p ]= x p y p f (X,Y ) (x, y) dx dy = R = x p dx = (p + )x p+ (p + ) p x p x y p dy dx p x dx = p + <

5 5 (d) Si noti che {X apple t, apple z} = {X apple t, XY apple z} = {(X, Y ) A} dove p z A = {(x, y) : x apple t, y apple p } x Di conseguenza, per t, z [, ], P(X apple t, apple z) = f (X,Y ) (x, y) dx dy = = A p {<xapplet, <yapple z p x } = p z p x dx dy = A\D t dx dy p z p x t dy dx = p z p x dx Ponendo t =si ottiene P( apple z) = p z per apple z apple Dunque è assolutamente continua con densità f (z) =F (z) = p z (,)(z), la stessa densità di X Abbiamo mostrato che P(X A, B) =P(X A)P( B) per ogni semiretta A =(,t] e B =(,z] Dato che le semirette sono una base dei boreliani, segue che X e sono indipendenti

6 6 Esercizio Sia X,X,una successione di variabili aleatorie iid con leggi Exp( ) Definiamo la successione Y,Y, ponendo Y i := X i Si osservi che le variabili aleatorie Y,Y,sono indipendenti e identicamente distribuite (perché?) (a) Si determini la legge di Y, mostrando che è assolutamente continua (b) Per quali p (, ) si ha Y L p? (c) Definiamo per n n := min{y,,y n }, W n := (log n) n Si mostri che W n converge in distribuzione e si identifichi il limite Soluzione Le variabili aleatorie Y i sono indipendenti per conservazione dell indipendenza (funzioni di va indipendenti) e identicamente distribuite per conservazione della legge (la stessa funzione applicata a va identicamente distribuite) (a) Chiaramente F Y (y) =se y apple, perché Y > qc Per y> F Y (y) =P(Y apple y) =P(X /y) =e y, perché P(X x)=e x se X Exp( ) e x Datochee y! per y #, la funzione F Y è C atratti,dunquelavay è assolutamente continua con densità (b) Usando la densità ricavata f Y (y) =F Y (y) = e y y (,)(y) E[ Y p ]=E[Y p ]= y p f Y (y) dy = e y y p dy La funzione integranda è continua, dunque integrabile (perché misurabile e limitata) in ogni intervallo compatto [a, b] (, ) Resta da studiare la finitezza dell integrale in un intorno di zero o infinito Per y # non ci sono problemi di integrabilità, grazie all esponenziale: la funzione integranda ha limite zero per y #, quindi è limitata (dunque integrabile) Per y "si ha e y!, dunque l integranda è asintotica a y p, quindi è integrabile se e solo se p>, ossiap< In definitiva, Y L p se e solo se p< Le stesse conclusioni si possono ottenere a partire dalla legge di X,inquanto E[Y p ]=E apple X p = x p e x dx, che è finito se e solo se p< (questa volta i possibili problemi sono solo per x # ) (c) Essendo n > qc, si ha F n (z) =per z apple, mentre per z> F n (z) =P( n >z)=p(y >z,,y n >z)=p(y >z) n =( F Y (z)) n =( e z ) n Di conseguenza si ha F Wn (w) =per w apple, mentre per w> F Wn (w) =P(W n apple w) =P( n apple w log n )=F n ( w log n )= e w log n n = n n w

7 7 Per valutare il limite di questa espressione, conviene ricordare che log( + x) =x( + o()) per x! Posto per brevità a := w, possiamo scrivere apple n log n a = n log n a = n n a ( + o()) Di conseguenza, per ogni w R, lim F limn! log[( W n! n (w) = e = n a ( + o())! n! n /w )n ] = G(w) := >< se a< se a = >: se a> >< e se w> e >: se w = e se w< >< se w> = e >: se w = se w< La funzione G(w) non è una funzione di ripartizione, perché non è continua da destra nel punto w = Tuttavia, modificando il valore della funzione in tale punto, ossia ponendo ( se w H(w) := se w<, si ottiene una funzione di ripartizione, più precisamente la funzione di ripartizione di una va costante W = qc Abbiamo dunque mostrato che lim n! F W n (w) =H(w) =F W (w) w 6= Dato che w = è l unico punto di discontinuità della funzione di ripartizione H = F W, abbiamo mostrato che W n converge in distribuzione verso la costante W =

8 Esercizio 5 È facoltativo giustificare il seguente integrale: t R : e tx e x p dx = e t (?) Diremo che una variabile aleatoria reale X ha distribuzione log-normale di parametro scriveremo X LN( ), se dove d = significa ha la stessa distribuzione di (a) Data X LN( ), simostrichee[x] = R X d = e, con N(, ), Siano X,X,,X n variabili aleatorie indipendenti log-normali di parametro (b) Si mostri che la seguente variabile aleatoria T n := X X X n ha distribuzione log-normale, determinandone il parametro Si osservi che E[T n ]= D ora in avanti poniamo = (c) Si mostri che lim P(T n >e n )= n! (d) Si mostri che T n! in probabilità Si dica se T n converge in L Soluzione 5 Per calcolare l integrale basta completare il quadrato scrivendo tx x (x t) Oppure, basta dividere ambo i membri per e t, ottenendo e t e tx e x (x t) e p dx = p dx =, R R dove l ultima uguaglianza segue dal fatto che l integranda è la densità di una N(t, ) (a) Usando l integrale (?) con t = E[X] =E[e ]=e R e x e x p dx = e e = = t (b) Siano,, n va iid N(, ) AlloraX,,X n hanno la stessa legge congiunta rispettivamente di e,,e n Segue che T n d = e e e n = e ( ++ n) n d p Dato che + + n N(,n), possiamo scrivere + + n = n con N(, ), pertanto d T n = e ( p n) ( p n), ossia T n LN( p n) Per il punto precedente, si ha E[T n ]= Questo valore si può anche calcolare direttamente, usando l indipendenza delle va X i : E[T n ]=E[X ]E[X ] E[X n ]= (c) Usando la rappresentazione T n d = e ( p n) ( p n) = e p n n,siha P(T n >e n )=P(e p n n >e n )=P( p n n > n) =P(> p n )! n!, e

9 9 (d) Per ogni "> fissato, si ha ">e n per n sufficientemente grande, da cui P( T n >")=P(T n >") apple P(T n >e n )! n!, dunque T n! in probabilità Se T n convergesse in L, si dovrebbe avere T n! in L, in particolare E[T n ]! E[] =, ma così non è, dato che E[T n ]=per ogni n N; dunquet n non ha limite in L

10 Esercizio 6 Sia X =(X n ) n grafo di transizione: una catena di Markov sull insieme E = {,,,, 5} con il seguente 5 Indichiamo come al solito P i ( ):=P( X = i) (a) Si scriva la matrice di transizione, si classifichino gli stati (transitori, ricorrenti positivi, ricorrenti nulli) e se ne determini il periodo (b) Partendo dallo stato, qual è la probabilità di raggiungere prima o poi lo stato? (c) (*) Quanto valgono lim n! P (X n = ) e lim n! P (X n = 5)? Soluzione 6 (a) Si ha p = C A Chiaramente {} e {5} sono classi di comunicazione chiuse e finite, dunque ricorrenti positive, mentre {,, } è una classe di comunicazione (infatti!!! ) nonchiusa(in quanto! ), quindi transitoria Gli stati e 5 hanno periodo, inquantop = p > e p 55 = p 55 > Ancheglistati,, hanno periodo, inquantop = p > (gli stati di una classe di comunicazione hanno lo stesso periodo) (b) Sia = {} := min{n : X n =} Le probabilià di assorbimento h i = h {} i := P i ( <) soddisfano il sistema >< h = h 5 = >: h i = P je p ijh j se i =,, Dunque >< h = h + h h = >: h + h + h = h + h La seconda relazine dà h = h + ossia h = h + Sostituendo nelle altre relazioni ( 7 9 h = 9 + h si ha ( h = 9 h h h = h + h + 6 () h = 7 h + 6

11 Sostituendo la seconda relazione nella prima si ottiene infine 7 9 h = h + 7 () 9 h = () h = 9 7 (c) Per il punto precedente si ha lim n! P (X n = ) = 7 Infatti gli eventi A n := {X n =} sono crescenti, ossia A n A n+ per ogni n N (questo perché, una volta raggiunto lo stato, non lo si lascia più), e vale che S nn A n = { {} < }, quindi per continuità dal basso della probabilità h =P ( {} < ) = lim n! P (A n )= lim n! P (X n = ) D altro canto lim n! P (X n = i) =per i =,,, perché tali stati sono transitori Dato che P 5 i= P (X n = i) =, segue che lim n! P (X n = 5) = 7

I Appello di Calcolo delle Probabilità Laurea Triennale in Matematica 2016/17

I Appello di Calcolo delle Probabilità Laurea Triennale in Matematica 2016/17 I Appello di Calcolo delle Probabilità Laurea Triennale in Matematica 6/7 Martedì 3 gennaio 7 Cognome: Nome: Email: Se non è espressamente indicato il contrario, per la soluzione degli esercizi è possibile

Dettagli

II Appello di Calcolo delle Probabilità Laurea Triennale in Matematica 2016/17

II Appello di Calcolo delle Probabilità Laurea Triennale in Matematica 2016/17 II Appello di Calcolo delle Probabilità Laurea Triennale in Matematica 6/7 Martedì 4 febbraio 7 Cognome: Nome: Email: Se non è espressamente indicato il contrario, per la soluzione degli esercizi è possibile

Dettagli

Calcolo delle Probabilità 2017/18 Foglio di esercizi 8

Calcolo delle Probabilità 2017/18 Foglio di esercizi 8 Calcolo delle Probabilità 07/8 Foglio di esercizi 8 Catene di Markov e convergenze Si consiglia di svolgere gli esercizi n 9,,,, 5 Catene di Markov Esercizio (Baldi, Esempio 5) Si consideri il grafo costituito

Dettagli

I Appello di Calcolo delle Probabilità Cognome: Laurea Triennale in Matematica 2012/13 Nome: 30 gennaio

I Appello di Calcolo delle Probabilità Cognome: Laurea Triennale in Matematica 2012/13 Nome: 30 gennaio I Appello di Calcolo delle Probabilità Cognome: Laurea Triennale in Matematica /3 Nome: 3 gennaio 3 Email: Se non è espressamente indicato il contrario, per la soluzione degli esercizi è possibile usare

Dettagli

I Appello di Processi Stocastici Cognome: Laurea Magistrale in Matematica 2014/15 Nome: 23 Giugno

I Appello di Processi Stocastici Cognome: Laurea Magistrale in Matematica 2014/15 Nome: 23 Giugno I Appello di Processi Stocastici Cognome: Laurea Magistrale in Matematica 014/15 Nome: 3 Giugno 015 Email: Quando non è espressamente indicato il contrario, per la soluzione degli esercizi è possibile

Dettagli

V Appello di Calcolo delle Probabilità Cognome: Laurea Triennale in Matematica 2012/13 Nome: 18 ottobre

V Appello di Calcolo delle Probabilità Cognome: Laurea Triennale in Matematica 2012/13 Nome: 18 ottobre V Appello di Calcolo delle Probabilità Cognome: Laurea Triennale in Matematica 202/ Nome: 8 ottobre 20 Email: Se non è espressamente indicato il contrario, per la soluzione degli esercizi è possibile usare

Dettagli

0 se y c 1 (y)) se c < y < d. 1 se y d

0 se y c 1 (y)) se c < y < d. 1 se y d Capitolo. Parte IX Exercise.. Sia X una variabile aleatoria reale assolutamente continua e sia (a,b) un intervallo aperto (limitato o illimitato) di R, tale che P(X (a,b)) =. Sia ϕ : (a,b) R una funzione

Dettagli

Calcolo delle Probabilità 2

Calcolo delle Probabilità 2 Prova d esame di Calcolo delle Probabilità 2 Maggio 2006 Sia X una variabile aleatoria distribuita secondo la densità seguente ke x 1 x < 0 f X (x) = 1/2 0 x 1. 1. Determinare il valore del parametro reale

Dettagli

CP410: Esame 2, 3 febbraio 2015

CP410: Esame 2, 3 febbraio 2015 Dipartimento di Matematica, Roma Tre Pietro Caputo 2014-15, I semestre 3 febbraio, 2015 CP410: Esame 2, 3 febbraio 2015 Cognome Nome Matricola Firma 1. Sia (Ω, F, P) lo spazio di probabilità definito da

Dettagli

I Appello di Calcolo delle Probabilità Cognome: Laurea Triennale in Matematica 2013/14 Nome: 6 febbraio

I Appello di Calcolo delle Probabilità Cognome: Laurea Triennale in Matematica 2013/14 Nome: 6 febbraio I Appello di Calcolo delle Probabilità Cognome: Laurea Triennale in Matematica 03/4 Nome: 6 febbraio 04 Email: Se non è espressamente indicato il contrario, per la soluzione degli esercizi è possibile

Dettagli

) la sua densità discreta sarà della forma. p X (0) = 1 2, p X(1) = 1 2,

) la sua densità discreta sarà della forma. p X (0) = 1 2, p X(1) = 1 2, Esercizi settimana 6 Esercizi applicati Esercizio. Siano X e Y due v.a. discrete indipendenti tali che X B(, ) e Y B(, ), n 0. (i) Si calcoli la legge di X + Y ; (ii) Si calcoli la legge di X Y ; (iii)

Dettagli

Prova scritta di Probabilità e Statistica Appello unico, II sessione, a.a. 2015/ Settembre 2016

Prova scritta di Probabilità e Statistica Appello unico, II sessione, a.a. 2015/ Settembre 2016 Prova scritta di Probabilità e Statistica Appello unico, II sessione, a.a. 205/206 20 Settembre 206 Esercizio. Un dado equilibrato viene lanciato ripetutamente. Indichiamo con X n il risultato dell n-esimo

Dettagli

(a) Qual è la probabilità che un neonato sopravviva al primo anno?

(a) Qual è la probabilità che un neonato sopravviva al primo anno? II Appello di Probabilità e Statistica Cognome: Laurea in Matematica Nome: 2 luglio 2009 Matricola: ESERCIZIO. Per una certa specie africana di uccelli, i neonati hanno indipendentemente l uno dal l altro

Dettagli

Esercizi settimana 5. Esercizi applicati. Esercizio 1. Si considerino tre monete truccate, ognuna con probabilità 2 3

Esercizi settimana 5. Esercizi applicati. Esercizio 1. Si considerino tre monete truccate, ognuna con probabilità 2 3 1 Esercizi settimana 5 Esercizi applicati Esercizio 1. Si considerino tre monete truccate, ognuna con probabilità 3 di ottenere testa. Se scegliete la prima moneta vincete 10 punti se esce testa e punti

Dettagli

Scrivere su ogni foglio NOME e COGNOME. Le risposte devono essere giustificate sui fogli protocollo e riportate nel foglio RISPOSTE.

Scrivere su ogni foglio NOME e COGNOME. Le risposte devono essere giustificate sui fogli protocollo e riportate nel foglio RISPOSTE. Corso di Laurea Triennale in Matematica Corso di Calcolo delle Probabilità (docenti G. Nappo, F. Spizzichino prova scritta giugno 5 (tempo a disposizione: ore La prova scritta consiste nello svolgimento

Dettagli

CP110 Probabilità: Esonero 2. Testo e soluzione

CP110 Probabilità: Esonero 2. Testo e soluzione Dipartimento di Matematica, Roma Tre Pietro Caputo 29-2, II semestre 25 maggio, 2 CP Probabilità: Esonero 2 Testo e soluzione . (7 pt) Siano T, T 2 variabili esponenziali indipendenti, di parametri λ =

Dettagli

Appello febbraio. Vero o falso. Es 1 Es 2 Es 3 Es 4 Tot

Appello febbraio. Vero o falso. Es 1 Es 2 Es 3 Es 4 Tot Es Es 2 Es 3 Es 4 Tot Appello febbraio Calcolo delle probabilità 5 febbraio 208 Studente: Matricola: Vero o falso Esercizio (0 pti). Si dica, motivando la propria risposta, se le seguenti affermazioni

Dettagli

Matematica e Statistica per Scienze Ambientali

Matematica e Statistica per Scienze Ambientali per Scienze Ambientali Variabili aleatorie - Appunti 1 1 Dipartimento di Matematica Sapienza, Università di Roma Roma, Gennaio 2013 Variabili aleatorie Un numero aleatorio è un esempio di variabile aleatoria.

Dettagli

UNIVERSITA` di ROMA TOR VERGATA

UNIVERSITA` di ROMA TOR VERGATA UNIVERSITA` di ROMA TOR VERGATA Corso di PS2-Probabilità 2 PBaldi appello, 23 giugno 29 Corso di Laurea in Matematica Esercizio Per α 2 consideriamo la catena di Markov su {, 2, 3} associata alla matrice

Dettagli

Esame di Calcolo delle Probabilità del 12 dicembre 2005 (Corso di Laurea Triennale in Matematica, Università degli Studi di Padova).

Esame di Calcolo delle Probabilità del 12 dicembre 2005 (Corso di Laurea Triennale in Matematica, Università degli Studi di Padova). Esame di Calcolo delle Probabilità del 2 dicembre 2005 (Corso di Laurea Triennale in Matematica, Università degli Studi di Padova). Cognome Nome Matricola Es. Es. 2 Es. 3 Es. 4 Somma Voto parziale Prima

Dettagli

Traccia della soluzione degli esercizi del Capitolo 4

Traccia della soluzione degli esercizi del Capitolo 4 Traccia della soluzione degli esercizi del Capitolo 4 Esercizio 6 Sia X una v.c. uniformenente distribuita nell intervallo ( π, π ), cioè f X (x) = π ( π, π ) (x). Posto Y = cos(x), trovare la distribuzione

Dettagli

UNIVERSITA` di ROMA TOR VERGATA

UNIVERSITA` di ROMA TOR VERGATA UNIVERSITA` di ROMA TOR VERGATA Corso di PS2-Probabilità 2 P.Baldi appello, 7 giugno 200 Corso di Laurea in Matematica Esercizio Siano X, Y v.a. indipendenti di legge Ŵ(2, λ). Calcolare densità e la media

Dettagli

CP110 Probabilità: Esonero 2. Testo e soluzione

CP110 Probabilità: Esonero 2. Testo e soluzione Dipartimento di Matematica, Roma Tre Pietro Caputo 2011-12, II semestre 29 maggio, 2012 CP110 Probabilità: Esonero 2 Testo e soluzione 1. (8 punti) La freccia lanciata da un arco è distribuita uniformemente

Dettagli

Esercizi settimana 4. Esercizi applicati. Esercizio 1. Si considerino tre monete truccate, ognuna con probabilità 2 3

Esercizi settimana 4. Esercizi applicati. Esercizio 1. Si considerino tre monete truccate, ognuna con probabilità 2 3 1 Esercizi settimana Esercizi applicati Esercizio 1. Si considerino tre monete truccate, ognuna con probabilità 3 di ottenere testa. Se scegliete la prima moneta vincete 10 punti se esce testa e punti

Dettagli

CP110 Probabilità: Esame 13 settembre Testo e soluzione

CP110 Probabilità: Esame 13 settembre Testo e soluzione Dipartimento di Matematica, Roma Tre Pietro Caputo 2011-12, II semestre 13 settembre, 2012 CP110 Probabilità: Esame 13 settembre 2012 Testo e soluzione 1. (6 pts) Una scatola contiene 10 palline, 8 bianche

Dettagli

! X (92) X n. P ( X n X ) =0 (94)

! X (92) X n. P ( X n X ) =0 (94) Convergenza in robabilità Definizione 2 Data una successione X 1,X 2,...,X n,... di numeri aleatori e un numero aleatorio X diremo che X n tende in probabilità a X escriveremo X n! X (92) se fissati comunque

Dettagli

Primo appello di Calcolo delle probabilità Laurea Triennale in Matematica 01/02/2019

Primo appello di Calcolo delle probabilità Laurea Triennale in Matematica 01/02/2019 Primo appello di Calcolo delle probabilità Laurea Triennale in Matematica 01/02/2019 COGNOME e NOME... N. MATRICOLA... Esercizio 1. Costruire, se esiste, un esempio con le seguenti proprietà 1. {F n }

Dettagli

CP110 Probabilità: Esame 4 luglio Testo e soluzione

CP110 Probabilità: Esame 4 luglio Testo e soluzione Dipartimento di Matematica, Roma Tre Pietro Caputo 2011-12, II semestre 4 luglio, 2012 CP110 Probabilità: Esame 4 luglio 2012 Testo e soluzione 1. (6 pts) Una scatola contiene 10 palline numerate da 1

Dettagli

Esercizi: fascicolo 4

Esercizi: fascicolo 4 Esercizi: fascicolo 4 Esercizio 1 Dimostrare le seguenti proprietà (1), (2) e (3): (1) X 1 = 0 X 0; (2) X L 1 (Ω, P ), λ R λx 1 = λ X 1 ; (3) X, Y L 1 (Ω, P ) X + Y 1 X 1 + Y 1. Esercizio 2 Si estraggono

Dettagli

Es.: una moneta viene lanciata 3 volte. X = n. di T nei primi 2 lanci Y = n. di T negli ultimi 2 lanci

Es.: una moneta viene lanciata 3 volte. X = n. di T nei primi 2 lanci Y = n. di T negli ultimi 2 lanci Es.: una moneta viene lanciata 3 volte. X = n. di T nei primi 2 lanci Y = n. di T negli ultimi 2 lanci X\Y 0 1 2 0 1/8 1/8 0 1/4 1 1/8 1/4 1/8 1/2 2 0 1/8 1/8 1/4 1/4 1/2 1/4 1 X e Y non sono indip. Se

Dettagli

Calcolo delle Probabilità e Statistica, Ingegneria Civile e A&T e Informatica I prova finale a.a. 2016/17

Calcolo delle Probabilità e Statistica, Ingegneria Civile e A&T e Informatica I prova finale a.a. 2016/17 Calcolo delle Probabilità e Statistica, Ingegneria Civile e A&T e Informatica I prova finale aa 6/ Punteggi: : 3 + 6; : + + + ; 3: + Una scatola contiene monete; 8 di queste sono equilibrate, mentre le

Dettagli

CP110 Probabilità: Esonero 2

CP110 Probabilità: Esonero 2 Dipartimento di Matematica, Roma Tre Pietro Caputo 22-3, II semestre 23 maggio, 23 CP Probabilità: Esonero 2 Cognome Nome Matricola Firma Nota:. L unica cosa che si puo usare durante l esame è una penna

Dettagli

Matematica con elementi di Informatica

Matematica con elementi di Informatica Variabili aleatorie Matematica con elementi di Informatica Tiziano Vargiolu Dipartimento di Matematica vargiolu@math.unipd.it Corso di Laurea Magistrale in Chimica e Tecnologie Farmaceutiche Anno Accademico

Dettagli

Calcolo delle Probabilità e Statistica Matematica Fisciano, 10/1/2012

Calcolo delle Probabilità e Statistica Matematica Fisciano, 10/1/2012 Fisciano, 10/1/2012 Esercizio 1 Un esperimento consiste nel generare a caso un vettore di interi (x 1, x 2, x 3, x 4 ), dove x i {1, 2, 3, 4, 5, 6} i. (i) Si individui lo spazio campionario, determinandone

Dettagli

ESERCIZI DATI A LEZIONE TPA - anno 2006 CAPITOLO 2

ESERCIZI DATI A LEZIONE TPA - anno 2006 CAPITOLO 2 ESECIZI DATI A LEZIONE TPA - anno 2006 CAPITOLO 2 1. Una σ algebra è chiusa rispetto a intersezioni finite e numerabili, e rispetto a differenze e differenze simmetriche. 2. Una σ algebra è anche un algebra,

Dettagli

Probabilità 1, laurea triennale in Matematica I prova scritta sessione estiva a.a. 2008/09

Probabilità 1, laurea triennale in Matematica I prova scritta sessione estiva a.a. 2008/09 Probabilità, laurea triennale in Matematica I prova scritta sessione estiva a.a. 2008/09. Due roulette regolari vengono azionate più volte; sia T il numero di volte che occorre azionare la prima roulette

Dettagli

Variabili aleatorie discrete. Giovanni M. Marchetti Statistica Capitolo 5 Corso di Laurea in Economia

Variabili aleatorie discrete. Giovanni M. Marchetti Statistica Capitolo 5 Corso di Laurea in Economia Variabili aleatorie discrete Giovanni M. Marchetti Statistica Capitolo 5 Corso di Laurea in Economia 2015-16 1 / 45 Variabili aleatorie Una variabile aleatoria è simile a una variabile statistica Una variabile

Dettagli

P ( X n X > ɛ) = 0. ovvero (se come distanza consideriamo quella euclidea)

P ( X n X > ɛ) = 0. ovvero (se come distanza consideriamo quella euclidea) 10.4 Convergenze 166 10.4.3. Convergenza in Probabilità. Definizione 10.2. Data una successione X 1, X 2,...,,... di vettori aleatori e un vettore aleatorio X aventi tutti la stessa dimensione k diremo

Dettagli

Esame di Calcolo delle Probabilità del 11 dicembre 2007 (Corso di Laurea Triennale in Matematica, Università degli Studi di Padova).

Esame di Calcolo delle Probabilità del 11 dicembre 2007 (Corso di Laurea Triennale in Matematica, Università degli Studi di Padova). Esame di Calcolo delle Probabilità del dicembre 27 (Corso di Laurea Triennale in Matematica, Università degli Studi di Padova). Cognome Nome Matricola Es. Es. 2 Es. Es. 4 Somma Voto finale Attenzione:

Dettagli

Prima prova in itenere di Istituzioni di Probabilità

Prima prova in itenere di Istituzioni di Probabilità Prima prova in itenere di Istituzioni di Probabilità 14 novembre 2012 Esercizio 1. Un processo di Ornstein-Uhlenbec modificato (OUM) è un processo reale, con R come insieme dei tempi, con traiettorie continue,

Dettagli

PROVE SCRITTE DI MATEMATICA APPLICATA, ANNO 2006/07

PROVE SCRITTE DI MATEMATICA APPLICATA, ANNO 2006/07 PROVE SCRITTE DI MATEMATICA APPLICATA, ANNO 006/07 Esercizio 1 Prova scritta del 16/1/006 In un ufficio postale lavorano due impiegati che svolgono lo stesso compito in maniera indipendente, sbrigando

Dettagli

Corso di Laurea in Informatica Calcolo delle Probabilità e Statistica (269AA) A.A. 2016/17 - Prova del

Corso di Laurea in Informatica Calcolo delle Probabilità e Statistica (269AA) A.A. 2016/17 - Prova del Corso di Laurea in Informatica Calcolo delle Probabilità e Statistica (69AA) A.A. 06/7 - Prova del 07-07-07 La durata della prova è di tre ore. Le risposte devono essere adeguatamente giustificate. Problema

Dettagli

Prova Scritta di Probabilità e Statistica Cognome: Laurea in Matematica. 28 giugno 2012 Matricola: Nome:

Prova Scritta di Probabilità e Statistica Cognome: Laurea in Matematica. 28 giugno 2012 Matricola: Nome: Prova Scritta di Probabilità e Statistica Cognome: Laurea in Matematica Nome: 8 giugno 01 Matricola: ESERCIZIO 1. Sia (A n n una successione di eventi indipendenti, tali che P (A n 1 1 n. Sia B := + n=

Dettagli

Cognome Nome Matricola. Es. 1 Es. 2 Es. 3 Es. 4 Somma Voto finale

Cognome Nome Matricola. Es. 1 Es. 2 Es. 3 Es. 4 Somma Voto finale Esame di Calcolo delle Probabilità mod. B del 9 settembre 2003 (Corso di Laurea in Matematica, Università degli Studi di Padova). Cognome Nome Matricola Es. 1 Es. 2 Es. 3 Es. 4 Somma Voto finale Attenzione:

Dettagli

CP410: Esonero 1, 31 ottobre 2013

CP410: Esonero 1, 31 ottobre 2013 Dipartimento di Matematica, Roma Tre Pietro Caputo 2013-14, I semestre 31 ottobre, 2013 CP410: Esonero 1, 31 ottobre 2013 Cognome Nome Matricola Firma 1. Fare un esempio di successione di variabili aleatorie

Dettagli

CP110 Probabilità: Esonero 2. Testo e soluzione

CP110 Probabilità: Esonero 2. Testo e soluzione Dipartimento di Matematica, Roma Tre Pietro Caputo 212-13, II semestre 23 maggio, 213 CP11 Probabilità: Esonero 2 Testo e soluzione 1. (7 punti) Una scatola contiene 1 palline, 5 bianche e 5 nere. Ne vengono

Dettagli

Probabilità e Statistica per l Informatica Esercitazione 4

Probabilità e Statistica per l Informatica Esercitazione 4 Probabilità e Statistica per l Informatica Esercitazione 4 Esercizio : [Ispirato all Esercizio, compito del 7/9/ del IV appello di Statistica e Calcolo delle probabilità, professori Barchielli, Ladelli,

Dettagli

X (o equivalentemente rispetto a X n ) è la

X (o equivalentemente rispetto a X n ) è la Esercizi di Calcolo delle Probabilità della 5 a settimana (Corso di Laurea in Matematica, Università degli Studi di Padova). Esercizio 1. Siano (X n ) n i.i.d. di Bernoulli di parametro p e definiamo per

Dettagli

con distribuzione gaussiana standard e si ponga

con distribuzione gaussiana standard e si ponga Laurea Triennale in Matematica, Università La Sapienza Corso di Probabilità, AA 6/7 Prova di Esonero Maggio 7 Testi e soluzioni degli esercizi proposti Siano Z, Z, Z variabili aleatorie indipendenti e

Dettagli

COPPIE DI VARIABILI ALEATORIE

COPPIE DI VARIABILI ALEATORIE COPPIE DI VAIABILI ALEATOIE E DI NADO 1 Funzioni di ripartizione congiunte e marginali Definizione 11 Siano X, Y va definite su uno stesso spazio di probabilità (Ω, F, P La coppia (X, Y viene detta va

Dettagli

Corso di Statistica - Prof. Fabio Zucca IV Appello - 5 febbraio Esercizio 1

Corso di Statistica - Prof. Fabio Zucca IV Appello - 5 febbraio Esercizio 1 Corso di Statistica - Prof. Fabio Zucca IV Appello - 5 febbraio 2015 Nome e cognome: Matricola: c I diritti d autore sono riservati. Ogni sfruttamento commerciale non autorizzato sarà perseguito. 8994

Dettagli

CP110 Probabilità: esame del 20 luglio 2017

CP110 Probabilità: esame del 20 luglio 2017 Dipartimento di Matematica, Roma Tre Pietro Caputo 2016-17, II semestre 20 luglio, 2017 CP110 Probabilità: esame del 20 luglio 2017 Cognome Nome Matricola Firma Nota: 1. L unica cosa che si puo usare durante

Dettagli

UNIVERSITÀ DEGLI STUDI ROMA TRE Corso di Laurea in Matematica ST410 - Statistica 1 - A.A. 2013/2014. I Esonero - 29 Ottobre Tot.

UNIVERSITÀ DEGLI STUDI ROMA TRE Corso di Laurea in Matematica ST410 - Statistica 1 - A.A. 2013/2014. I Esonero - 29 Ottobre Tot. UNIVERSITÀ DEGLI STUDI ROMA TRE Corso di Laurea in Matematica ST410 - Statistica 1 - A.A. 2013/2014 I Esonero - 29 Ottobre 2013 1 2 3 4 5 6 7 8 Tot. Avvertenza: Svolgere ogni esercizio nello spazio assegnato,

Dettagli

Scrivere su ogni foglio NOME e COGNOME. Le risposte devono essere giustificate sui fogli protocollo e riportate nel foglio RISPOSTE.

Scrivere su ogni foglio NOME e COGNOME. Le risposte devono essere giustificate sui fogli protocollo e riportate nel foglio RISPOSTE. Corso di Laurea Triennale in Matematica Corso di Calcolo delle Probabilità 1 A. A. 4/5 a prova in itinere 8/6/5docenti G. Nappo, F. Spizzichino La prova scritta consiste nello svolgimento degli Esercizi

Dettagli

CP110 Probabilità: Esame 30 gennaio Testo e soluzione

CP110 Probabilità: Esame 30 gennaio Testo e soluzione Dipartimento di Matematica, Roma Tre Pietro Caputo 2010-11, II semestre 30 gennaio, 2012 CP110 Probabilità: Esame 30 gennaio 2012 Testo e soluzione 1. (5 pts) Un gioco consiste in n prove ripetute, tali

Dettagli

Corso di Laurea in Informatica Calcolo delle Probabilità e Statistica (269AA) A.A. 2017/18 - Prova scritta

Corso di Laurea in Informatica Calcolo delle Probabilità e Statistica (269AA) A.A. 2017/18 - Prova scritta Corso di Laurea in Informatica Calcolo delle Probabilità e Statistica (69AA) A.A. 7/8 - Prova scritta 8-7-3 La durata della prova è di tre ore. Le risposte devono essere adeguatamente giustificate. Problema

Dettagli

Scritto del

Scritto del Dip. di Ingegneria, Univ. Roma Tre Prof. E. Scoppola, Dott.M. Quattropani Probabilità e Statistica, 17-18, I semestre Settembre 18 Scritto del - 9-18 Cognome Nome Matricola Esercizio 1. Un urna contiene

Dettagli

Esercizi di Calcolo delle Probabilità

Esercizi di Calcolo delle Probabilità Esercizi di Calcolo delle Probabilità Versione del 1/05/005 Corso di Statistica Anno Accademico 00/05 Antonio Giannitrapani, Simone Paoletti Calcolo delle probabilità Esercizio 1. Un dado viene lanciato

Dettagli

Corsi di Probabilità ecc., per Ing. dell Automazione, Informatica e Inf.Gest.Azienda, 17/9/2011. B 0 0 a=3 b=3 0 0 b=3 a=3 0 A : 0 b=3 0 0 a=3

Corsi di Probabilità ecc., per Ing. dell Automazione, Informatica e Inf.Gest.Azienda, 17/9/2011. B 0 0 a=3 b=3 0 0 b=3 a=3 0 A : 0 b=3 0 0 a=3 Corsi di Probabilità ecc., per Ing. dell Automazione, Informatica e Inf.Gest.Azienda, 7/9/ mjx j Esercizio. Si consideri la funzione f (x) = C jx j e i) Stabilire per quali valori di m e di C è una densità

Dettagli

Corso di Laurea Triennale in Matematica Calcolo delle Probabilità I (docenti G. Nappo, F. Spizzichino)

Corso di Laurea Triennale in Matematica Calcolo delle Probabilità I (docenti G. Nappo, F. Spizzichino) Corso di Laurea Triennale in Matematica Calcolo delle Probabilità I (docenti G. Nappo, F. Spizzichino Prova di Mercoledì giugno 4 (tempo a disposizione: ore. Scrivere su ogni foglio NOME e COGNOME. Le

Dettagli

Calcolo delle Probabilità: esercitazione 11

Calcolo delle Probabilità: esercitazione 11 Argomento: Distribuzioni bivariate discrete (pag. 44 e seguenti) e covarianza (pag 45 e seguenti). Distribuzione bivariate assolutamente continue (pag. 48 e seguenti del libro di testo). La v.c. trinomiale

Dettagli

Tutorato di Complementi di Analisi Matematica e Statistica 26 maggio 2016

Tutorato di Complementi di Analisi Matematica e Statistica 26 maggio 2016 Tutorato di Complementi di Analisi Matematica e Statistica 26 maggio 2016 Esercizi possibili di probabilità e statistica Notazioni: U(a, b) è la distribuzione di probabilità uniforma nell intervallo (a,

Dettagli

Scrivere su ogni foglio NOME e COGNOME. Le risposte devono essere giustificate sui fogli protocollo e riportate nel foglio RISPOSTE.

Scrivere su ogni foglio NOME e COGNOME. Le risposte devono essere giustificate sui fogli protocollo e riportate nel foglio RISPOSTE. CORSO DI CALCOLO DELLE PROBABILITÀ o modulo - PROVA d esame del 9/02/200 - Laurea Quadriennale in Matematica - Prof. Nappo Scrivere su ogni foglio NOME e COGNOME. Le risposte devono essere giustificate

Dettagli

Statistica ARGOMENTI. Calcolo combinatorio

Statistica ARGOMENTI. Calcolo combinatorio Statistica ARGOMENTI Calcolo combinatorio Probabilità Disposizioni semplici Disposizioni con ripetizione Permutazioni semplici Permutazioni con ripetizioni Combinazioni semplici Assiomi di probabilità

Dettagli

Esercitazioni di Statistica

Esercitazioni di Statistica Esercitazioni di Statistica Variabili casuali Prof. Livia De Giovanni statistica@dis.uniroma.it Esercizio Determinare se le funzioni seguenti: 0.0 se x < 0. se x = g(x) = 0.5 se x = 0.7 se x = 3 se x =

Dettagli

CP110 Probabilità: esame del 20 giugno 2017

CP110 Probabilità: esame del 20 giugno 2017 Dipartimento di Matematica, Roma Tre Pietro Caputo 6-7, II semestre giugno, 7 CP Probabilità: esame del giugno 7 Cognome Nome Matricola Firma Nota:. L unica cosa che si puo usare durante l esame è una

Dettagli

Corso di Laurea in Informatica Calcolo delle Probabilità e Statistica (269AA) A.A. 2017/18 - Prova scritta

Corso di Laurea in Informatica Calcolo delle Probabilità e Statistica (269AA) A.A. 2017/18 - Prova scritta Corso di Laurea in Informatica Calcolo delle Probabilità e Statistica (269AA A.A. 2017/18 - Prova scritta 2018-09-12 La durata della prova è di tre ore. Le risposte devono essere adeguatamente giustificate.

Dettagli

Esercizio 1. Una obbligazione può avere rating A, B, C o D e passare da un rating all altro secondo la matrice di transizione

Esercizio 1. Una obbligazione può avere rating A, B, C o D e passare da un rating all altro secondo la matrice di transizione Esercizi di Calcolo delle Probabilità della 10 a Matematica, Università degli Studi di Padova). settimana (Corso di Laurea in Esercizio 1. Una obbligazione può avere rating A, B, C o D e passare da un

Dettagli

Teoria dei Fenomeni Aleatori AA 2012/13. Il Concetto di Distribuzione Condizionata

Teoria dei Fenomeni Aleatori AA 2012/13. Il Concetto di Distribuzione Condizionata Il Concetto di Distribuzione Condizionata Se B è un evento, la probabilità di un evento A condizionata a B vale: ponendo: P A B P A B P B A x si giunge al concetto di distribuzione condizionata della v.a.

Dettagli

CP410: Esonero 1, 7 novembre, 2018

CP410: Esonero 1, 7 novembre, 2018 Dipartimento di Matematica, Roma Tre Pietro Caputo 2018-19, I semestre 7 novembre, 2018 CP410: Esonero 1, 7 novembre, 2018 Cognome Nome Matricola Firma 1. Sia X una variabile aleatoria su uno spazio di

Dettagli

PROVE SCRITTE DI MATEMATICA APPLICATA, ANNO 2011/12

PROVE SCRITTE DI MATEMATICA APPLICATA, ANNO 2011/12 PROVE SCRITTE DI MATEMATICA APPLICATA, ANNO 0/ Esercizio Prova scritta del 7/06/0 Siano X e Y due v.a. indipendenti, con distribuzione continua Γ(, ). Si trovino la distribuzione di X Y e di (X Y ). Esercizio

Dettagli

CORSO DI STATISTICA (parte 2) - ESERCITAZIONE 3

CORSO DI STATISTICA (parte 2) - ESERCITAZIONE 3 CORSO DI STATISTICA (parte 2) - ESERCITAZIONE 3 Dott.ssa Antonella Costanzo a.costanzo@unicas.it Esercizio 1. La variabile casuale normale Da un analisi di bilancio è emerso che, durante i giorni feriali

Dettagli

5. Distribuzioni. Corso di Simulazione. Anno accademico 2009/10

5. Distribuzioni. Corso di Simulazione. Anno accademico 2009/10 Anno accademico 2009/10 Spazio di probabilità Ω spazio campione F 2 Ω spazio degli eventi: (i) Ω F (ii) A F = Ω \ A F (iii) A, B F = A B F P: F [0, 1] funzione di probabilità: (i) P(A) 0 (ii) P(Ω) = 1

Dettagli

Laurea triennale in INFORMATICA, Corso di CALCOLO DELLE PROBABILITÀ COMPITO - 2 luglio FOGLIO RISPOSTE

Laurea triennale in INFORMATICA, Corso di CALCOLO DELLE PROBABILITÀ COMPITO - 2 luglio FOGLIO RISPOSTE Laurea triennale in INFORMATICA, Corso di CALCOLO DELLE PROBABILITÀ COMPITO - 2 luglio 202 - FOGLIO RISPOSTE NOME e COGNOME SOLUZIONI CANALE: G. Nappo VOTO: N.B. Scrivere le risposte dei vari punti degli

Dettagli

Prova Scritta di Probabilità e Statistica Cognome: Laurea in Matematica. 10 settembre 2012 Matricola: Nome:

Prova Scritta di Probabilità e Statistica Cognome: Laurea in Matematica. 10 settembre 2012 Matricola: Nome: Prova Scritta di Probabilità e Statistica Cognome: Laurea in Matematica Nome: 10 settembre 2012 Matricola: ESERCIZIO 1. Facendo uso solamente della definizione di spazio di probabilità, dell additività

Dettagli

ESERCIZI HLAFO ALFIE MIMUN

ESERCIZI HLAFO ALFIE MIMUN ESERCIZI HLAFO ALFIE MIMUN December, 27. Testo degli esercizi Risolvere i seguenti problemi: () Siano X, X 2, X 3 variabili aleatorie i.i.d. bernulliane di media.5 e siano Y, Y 2, Y 3, Y 4 variabili aleatorie

Dettagli

3. Distribuzioni. Corso di Simulazione. Anno accademico 2006/07

3. Distribuzioni. Corso di Simulazione. Anno accademico 2006/07 Anno accademico 2006/07 Spazio di probabilità Ω spazio campione F 2 Ω spazio degli eventi: (i) Ω F (ii) A F = Ω \ A F (iii) A, B F = A B F P: F [0, 1] funzione di probabilità: (i) P(A) 0 (ii) P(Ω) = 1

Dettagli

Note di Teoria della Probabilità.

Note di Teoria della Probabilità. Note di Teoria della Probabilità. In queste brevi note, si richiameranno alcuni risultati di Teoria della Probabilità, riguardanti le conseguenze elementari delle definizioni di probabilità e σ-algebra.

Dettagli

Variabili casuali multidimensionali

Variabili casuali multidimensionali Capitolo 1 Variabili casuali multidimensionali Definizione 1.1 Le variabili casuali multidimensionali sono k-ple ordinate di variabili casuali unidimensionali definite sullo stesso spazio di probabilità.

Dettagli

Foglio di esercizi 4-12 Aprile 2019 Probabilità e statistica Ingegneria Meccanica Alessandro Ciallella

Foglio di esercizi 4-12 Aprile 2019 Probabilità e statistica Ingegneria Meccanica Alessandro Ciallella Esercizio. Foglio di esercizi 4 - Aprile 9 Probabilità e statistica Ingegneria Meccanica Alessandro Ciallella Un punto viene scelto a caso uniformemente nel cerchio di raggio 3 centrato nell origine. Dette

Dettagli

Probabilità e Statistica

Probabilità e Statistica Diario delle lezioni e del tutorato di Probabilità e Statistica a.a. 2014/2015 www.mat.uniroma2.it/~caramell/did 1415/ps.htm 02/03/2015 - Lezioni 1, 2 Breve introduzione al corso. Fenomeni deterministici

Dettagli

Esercitazione 4. Aprile 2019

Esercitazione 4. Aprile 2019 Esercitazione Aprile ALCUNE NOTE Versione aggiornata! Dal momento che questa esercitazione è stata svolta a più puntate, vi prego (soprattutto chi non ha potuto partecipare alle ore supplementari) di prestare

Dettagli

1 Esercizi tutorato 1/4

1 Esercizi tutorato 1/4 Esercizi tutorato 1/ 1 1 Esercizi tutorato 1/ Esercizio 11 Siano X e Y due va discrete indipendenti di distribuzione geometrica con parametro p [0, 1] (i) Si calcoli la legge di X + Y, è una legge nota?

Dettagli

Secondo appello di Istituzioni di probabilità Laurea Triennale in scienze statistiche Matr pari 17/06/2019

Secondo appello di Istituzioni di probabilità Laurea Triennale in scienze statistiche Matr pari 17/06/2019 Secondo appello di Istituzioni di probabilità Laurea Triennale in scienze statistiche Matr pari 17/6/219 COGNOME e NOME... N. MATRICOLA... Esercizio 1. Un forno produce rosette di pane. Il peso di una

Dettagli

UNIVERSITÀ di ROMA TOR VERGATA

UNIVERSITÀ di ROMA TOR VERGATA UNIVERSITÀ di ROMA TOR VERGATA Corso di Statistica, anno 2010-11 P.Baldi Lista di esercizi 3. Corso di Laurea in Biotecnologie Esercizio 1 Una v.a. X segue una legge N(2, ). Calcolare a1) P(X 1) a2) P(2

Dettagli

CP110 Probabilità: esame del 18 settembre 2017

CP110 Probabilità: esame del 18 settembre 2017 Dipartimento di Matematica, Roma Tre Pietro Caputo 206-7, II semestre 8 settembre, 207 CP0 Probabilità: esame del 8 settembre 207 Cognome Nome Matricola Firma Nota:. L unica cosa che si puo usare durante

Dettagli

VETTORI DI VARIABILI ALEATORIE

VETTORI DI VARIABILI ALEATORIE VETTOI DI VAIABILI ALEATOIE E. DI NADO 1. Funzioni di ripartizione congiunte e marginali Definizione 1.1. Siano X 1, X 2,..., X n v.a. definite su uno stesso spazio di probabilità (Ω, F, P ). La n-pla

Dettagli

Corso di Laurea in Informatica Calcolo delle Probabilità e Statistica (269AA) A.A. 2016/17 - Prova del

Corso di Laurea in Informatica Calcolo delle Probabilità e Statistica (269AA) A.A. 2016/17 - Prova del Corso di Laurea in Informatica Calcolo delle Probabilità e Statistica (269AA) A.A. 206/7 - Prova del 207-09-08 La durata della prova è di tre ore. Le risposte devono essere adeguatamente giustificate.

Dettagli

Corso di Statistica - Prof. Fabio Zucca V Appello - 19 febbraio 2015

Corso di Statistica - Prof. Fabio Zucca V Appello - 19 febbraio 2015 Corso di Statistica - Prof. Fabio Zucca V Appello - 19 febbraio 215 Nome e cognome: Matricola: c I diritti d autore sono riservati. Ogni sfruttamento commerciale non autorizzato sarà perseguito. 8994 Esercizio

Dettagli

Nome e cognome:... Matricola...

Nome e cognome:... Matricola... Nome e cognome:................................................... Matricola................. CALCOLO DELLE PROBABILITA - 0/07/008 CdS in Economia e Finanza - Cds in Informatica - Cds SIGAD Motivare dettagliatamente

Dettagli

Esame di Probabilità e Statistica del 3 aprile 2007 (Corso di Laurea Triennale in Matematica, Università degli Studi di Padova).

Esame di Probabilità e Statistica del 3 aprile 2007 (Corso di Laurea Triennale in Matematica, Università degli Studi di Padova). Esame di Probabilità e Statistica del 3 aprile 007 (Corso di Laurea Triennale in Matematica, Università degli Studi di Padova). Cognome Nome Matricola Es. 1 Es. Es. 3 Es. 4 Somma Voto finale Attenzione:

Dettagli

Teoria delle Probabilità e Applicazioni programma 2004/05

Teoria delle Probabilità e Applicazioni programma 2004/05 Teoria delle Probabilità e Applicazioni programma 2004/05 Capitolo 1: esempio guida Lezioni: 8/3, 9/3 (5h) 1. Come modellizzare l esperimento infiniti lanci di una moneta equilibrata oppure l esperimento

Dettagli

I modelli probabilistici

I modelli probabilistici e I modelli probabilistici Finora abbiamo visto che esistono modelli probabilistici che possiamo utilizzare per prevedere gli esiti di esperimenti aleatori. Naturalmente la previsione è di tipo probabilistico:

Dettagli

Corso di Laurea in Informatica Calcolo delle Probabilità e Statistica (269AA) A.A. 2016/17 - Prima prova in itinere

Corso di Laurea in Informatica Calcolo delle Probabilità e Statistica (269AA) A.A. 2016/17 - Prima prova in itinere Corso di Laurea in Informatica Calcolo delle Probabilità e Statistica (69AA) A.A. 016/17 - Prima prova in itinere 017-01-13 La durata della prova è di tre ore. Le risposte devono essere adeguatamente giustificate.

Dettagli

Traccia della soluzione degli esercizi del Capitolo 3

Traccia della soluzione degli esercizi del Capitolo 3 Traccia della soluzione degli esercizi del Capitolo 3 Esercizio 68 Sia X una v.c. uniformenente distribuita nell intervallo ( π, π, cioè f X ( = π ( π, π (. Posto Y = cos(x, trovare la distribuzione di

Dettagli

Correzione Esercitazione 2

Correzione Esercitazione 2 Correzione Esercitazione Esercizio. Per contare correttamente i casi favorevoli all uscita del 9 e all uscita del bisogna considerare i modi in cui si possono ottenere le loro scomposizioni: in particolare,

Dettagli

Istituzioni di Probabilità Laurea magistrale in Matematica prova scritta del 22/7/2013

Istituzioni di Probabilità Laurea magistrale in Matematica prova scritta del 22/7/2013 Istituzioni di Probabilità Laurea magistrale in Matematica prova scritta del 22/7/213 Exercise 1 (punti 1 circa Diremo che un processo X = (X t t [,1] a valori reali è un ponte browniano se è un processo

Dettagli

Soluzione esercizi (quarta settimana)

Soluzione esercizi (quarta settimana) Soluzione esercizi (quarta settimana) Marco Riani Esempio totocalcio Gioco la schedina mettendo a caso i segni 1 X 2 Qual è la prob. di fare 14? 1 Esempio Gioco la schedina mettendo a caso i segni (1 X

Dettagli

Esercizi. 2. [Conteggio diretto] Due dadi vengono lanciati in successione. a) Qual è la probabilità che la somma dei due risultati faccia 7?

Esercizi. 2. [Conteggio diretto] Due dadi vengono lanciati in successione. a) Qual è la probabilità che la somma dei due risultati faccia 7? 1 E. Vitali Matematica (Scienze Naturali) Esercizi 1. [Conteggio diretto] Quattro ragazzi, A, B, C e D, dispongono di due biglietti per il teatro e decidono di tirare a sorte chi ne usufruirà. a) Qual

Dettagli

CP110 Probabilità: Esame del 6 giugno Testo e soluzione

CP110 Probabilità: Esame del 6 giugno Testo e soluzione Dipartimento di Matematica, Roma Tre Pietro Caputo 21-11, II semestre 6 giugno, 211 CP11 Probabilità: Esame del 6 giugno 211 Testo e soluzione 1. (6 pts) Ci sono 6 palline, di cui nere e rosse. Ciascuna,

Dettagli