Proprietà termiche. Reazione che oppone materiale alla somministrazione di calore. Corpo aumenta dimensioni e aumenta la sua temperatura

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Proprietà termiche. Reazione che oppone materiale alla somministrazione di calore. Corpo aumenta dimensioni e aumenta la sua temperatura"

Transcript

1 Proprietà termiche Reazione che oppone materiale alla somministrazione di calore Corpo aumenta dimensioni e aumenta la sua temperatura Gradiente di T, l energia viene trasportata dalle regioni più calde a quelle più fredde FUSIONE 1) Capacità termica 2) Espansione termica 3) Conducibilità termica

2 Capacità termica Quando di scalda un solido la sua temperatura aumenta assorbe energia termica CAPACITÀ TERMICA,C : capacità di un corpo di assorbire energia termica dall ambiente esterno quantità di energia richiesta per aumentare la T del corpo di un grado C = dq dt J/mole K o cal/mole K CALORE SPECIFICO, c: capacità termica per unità di massa J/kg K o cal/g K C v = dq dt v = du C dt p = dq = v dt p C p > C v A T ambiente la differenza è molto piccola du p dv dt p dt p p : Pressione esterna

3 Capacità termica vibrazionale Aumenta energia di vibrazione degli atomi Vibrazioni coordinate Onde attraversanti il reticolo Onde elastiche o onde sonore di bassa lunghezza d onda o elevata frequenza INTERAZIONE e-ph TRASPORTO DI ENERGIA Energia di queste onde assume solo certi valori È quantizzata Singolo quanto di energia : FONONE Energia termica : insieme di queste onde, distribuite su un intervallo di valori di frequenza

4 UN SOLIDO È COSTITUITO DA PARTICELLE (ELETTRONI E NUCLEI) IN MOVIMENTO MUTUAMENTE INTERAGENTI T e p i 2 H tot = + + V nucl (r i ) + ½ + ½ 2m P I 2 2M e 2 r i - r j T N i I i i j I J z I z J e 2 R I - R J dove V nucl (r) = - I z I e 2 r- R I H tot Ψ (r, R) = W Ψ (r, R) Ψ (r, R) e W del sistema nucleare-elettronico combinato funzioni d onda vibroniche ed energie vibroniche

5 UN SOLIDO È COSTITUITO DA PARTICELLE (ELETTRONI E NUCLEI) IN MOVIMENTO MUTUAMENTE INTERAGENTI T e p i 2 H tot = + + V nucl (r i ) + ½ + ½ 2m P I 2 2M e 2 r i - r j i I i i j I J Poiché dovem z V nucl (r) = - I e 2 e ~ 10-3 M I la loro dinamica è molto diversa e quindi si può immaginare disaccoppiata I r- R I H tot Ψ (r, R) = W Ψ (r, R) Ψ (r, R) e W APPROSSIMAZIONE ADIABATICA Per ogni configurazione spaziale dei nuclei R I o (R) considero approssimazione di reticolo rigido, risolvo l eq ne H e Ψ m (r;r) = (T e + V (r,r))ψ m (r;r) = E Ψ m (r;r) del sistema nucleare-elettronico combinato funzioni d onda vibroniche ed energie vibroniche T N z I z J e 2 R I - R J

6 gli autovalori E(R) descrivono le superfici adiabatiche di energia potenziale o superfici adiabatiche o superfici di potenziale (anche le autofunzioni Ψ (r;r) dipendono dalla configurazione spaziale dei nuclei, autofunzioni adiabatiche) Una volta note le superfici adiabatiche dinamica del nucleo Si parte dalle superfici dello stato fondamentale APPROCCIO CLASSICO Le forze agenti sui nuclei sono date dal gradiente delle superfici d energia potenziale cambiato di segno.

7 La soluzione dell eq ne di Schrödinger di un sistema elettronico-nucleare sarà dato da autofunzioni adiabatiche Ψ m (r;r) appartenenti a superfici adiabatiche non degeneri E m (R), (ben separate da altre superfici adiabatiche). Da un punto di vista classico: La dinamica dei nuclei è quella di un insieme di punti materiali di massa M I soggetto a forze dovute a: E m (R). Se considero poi lo stato fondamentale adiabatico, le eq ni classiche per i nuclei diventano: M I R I = - Le traiettorie descritte da queste eq ni dinamica molecolare... E 0 ( R J ) R I sono l oggetto di studio della

8 Si è interessati al comportamento delle superfici adiabatiche di energia per lo stato fondamentale nell intorno del suo minimo assoluto R 0. Nei cristalli, questi spostamenti u I = R I R I0 dalle loro posizioni di equilibrio sono piccoli rispetto alle costanti reticolari. La funzione potenziale E 0 (R) può essere espansa in serie di Taylor: E 0 (R) = E 0 (R 0 ) + ½ IJ 2 E 0 R I R J u I u J + termini d ordine superiore 0 APPROSSIMAZIONE ARMONICA APPROCCIO QUANTISTICO IN APPROSSIMAZIONE DI DEBYE T θ D C v = 3R θ D 10 2 K T θ D C v = AT 3 C v a RT 25 J/mole K

9 Contributo elettronico alla capacità termica Elettroni assorbono energia termica e la trasformano in energia cinetica Elettroni liberi (elettroni che sono stati eccitati in banda di conduzione) Metalli :solo elettroni prossimi a E F Semiconduttori e Isolanti : frazione molto più bassa di elettroni C V = g T A basse T prevale il termine elettronico Contributo degli spin elettronici nei materiali ferromagnetici Picco nella Capacità termica alla T in cui avviene la randomizzazione degli spin elettronici non appena si supera la temperatura di Curie

10 Espansione termica In genere un solido si dilata per riscaldamento e si contrae per raffreddamento Variazione di lunghezza: l f l i l i = α l (T f T i ) o l l i = α l T Coefficiente di espansione termica lineare v v i = α v T Materiali anisotropi α v dipende dalla direzione cristallografica lungo la quale viene misurato Materiali isotropi : α v 3α l Aumento della distanza media tra gli atomi

11 Se fosse simmetrica Ampiezza vibrazionale dell atomo No variazione di distanza media tra atomi Non è valida l approx armonica Maggiore è l energia di legame, più stretta e profonda è la depressione dell energia potenziale minore coefficiente di espansione termica

12 5-25 x10-6 C x10-6 C -1 Ceramici amorfi o cubici isotropi Silice fusa bassa densità di compattazione atomica x10-6 C -1 Valori maggiori per polimeri lineari e ramificati bassa densità di legami incrociati e deboli legami secondari intermolecolari.

13 Conducibilità termica Conduzione termica: viene trasportato calore da una regione ad alta T verso una a bassa T Piccoli gradienti di T Se fornisco calore tanto velocemente quanto fluisce via Energia termica dal caldo al freddo FLUSSO TERMICO STAZIONARIO dt dx costante nel tempo q = k dt dx Flusso termico per unità di tempo e superficie perpendicolare alla direzione del flusso k Conducibilità termica (W/mK) k = k ph + k e

14 k = k ph + k e Cresce al crescere della concentrazione degli elettroni liberi, è il loro flusso che produce il trasferimento di calore Energia termica associata ai fononi è trasportata nella direzione del movimento Metalli Energia degli elettroni dissipata meno facilmente che quella dei fononi k = W/m K k e dominante LEGGE DI WIEDEMANN-FRANZ L = k 10-8 W W/K 2 σt L = 2.44 x 10-8 W W/K 2 Se l energia termica fosse trasportata solo dagli elettroni liberi

15 Ceramici Materiali non metallici termicamente isolanti Insufficiente numero di elettroni liberi k ph k e Tuttavia i fononi sono facilmente neutralizzati da imperfezioni reticolari k = 2-50 W/m K Gli amorfi e i vetri hanno k minori a causa del maggior numero di difetti k diminuisce con T, a basse T k aumenta con T, ad alte T a causa del trasporto del calore radiante POROSITÀ: maggiore volume dei pori minore conducibilità termica Trasferimento calore attraverso i pori è lento e poco efficiente a volte i pori contengono aria, la cui conducibilità termica è bassa 0.02 W/m K. La convezione gassosa nei pori è poco efficace.

16 Polimeri k = 0.3 W/m K Trasferimento di energia per vibrazione e rotazione delle catene molecolari Dipende dal grado di cristallinità. k maggiore per polimero con maggiore grado di cristallinità più efficace vibrazione coordinata delle catene molecolari.

17 Tensioni termiche Tensioni introdotte in un corpo a causa di variazioni di T Origine e natura delle tensioni termiche rottura o deformazione plastica non voluta Tensioni dovute a espansione o contrazione termica contrastata Riscaldamento o raffreddamento uniforme con barretta vincolata non può allungarsi o non può contrarsi tensione di compressione o di trazione σ = E α l (T i T f ) Variazione di lunghezza della barretta libera Tensioni dovute a gradienti termici Velocità di variazione della T, conducibilità termica differenza di T tra interno e superficie del materiale ; esterno varia T più rapidamente variazioni dimensionali tensioni di compressione o trazioni Shock termico dei materiali fragili Per materiali duttili e repentina variazione di T deformazione plastica Per materiali fragili e repentino raffreddamento aumenta probabilità rottura fragile Non avviene con riscaldamento che comporta tensioni di compressione. Resistenza allo shock termico maggiore per ceramici con elevata resistenza alla frattura, alto k, basso modulo di elasticità e basso a

CALCOLO DELLA STRUTTURA MOLECOLARE: 1. LE SUPERFICI DI ENERGIA POTENZIALE E L APPROSSIMAZIONE DI BORN-OPPENHEIMER

CALCOLO DELLA STRUTTURA MOLECOLARE: 1. LE SUPERFICI DI ENERGIA POTENZIALE E L APPROSSIMAZIONE DI BORN-OPPENHEIMER CALCOLO DELLA STRUTTURA MOLECOLARE: 1. LE SUPERFICI DI ENERGIA POTENZIALE E L APPROSSIMAZIONE DI BORN-OPPENHEIMER 1 COSA E UNA MOLECOLA Tutti gli atomi a piccola distanza si attraggono (forze di van der

Dettagli

XIV Indice ISBN

XIV Indice ISBN Indice 1 Struttura della materia.................................... 1 1.1 Stati di aggregazione.................................... 1 1.2 Struttura atomistica.................................... 2 1.2.1

Dettagli

Modi di Trasmissione del Calore

Modi di Trasmissione del Calore Modi di Trasmissione del Calore Trasmissione del Calore - 1 La Trasmissione del calore, fra corpi diversi, o all interno di uno stesso corpo, può avvenire secondo 3 diverse modalità: - Conduzione - Convezione

Dettagli

Calore specifico. Il calore che deve essere fornito per aumentare di un grado centigrado un chilogrammo della sostanza è il calore specifico:

Calore specifico. Il calore che deve essere fornito per aumentare di un grado centigrado un chilogrammo della sostanza è il calore specifico: Calore specifico L aumento (diminuzione) di temperatura in una sostanza è proporzionale all energia fornita (sottratta) alla sostanza sotto forma di calore: Il calore che deve essere fornito per aumentare

Dettagli

Corso di Chimica Generale CL Biotecnologie

Corso di Chimica Generale CL Biotecnologie Corso di Chimica Generale CL Biotecnologie STATI DELLA MATERIA Prof. Manuel Sergi MATERIA ALLO STATO GASSOSO MOLECOLE AD ALTA ENERGIA CINETICA GRANDE DISTANZA TRA LE MOLECOLE LEGAMI INTERMOLECOLARI DEBOLI

Dettagli

La foto dimostra che si può afferrare

La foto dimostra che si può afferrare Capitolo 19 Proprietà termiche La foto dimostra che si può afferrare a mano nuda un cubetto di materiale isolante, costituito da fibre di silice, appena estratto dal forno ove è stato riscaldato al calor

Dettagli

La misura della temperatura

La misura della temperatura Calore e temperatura 1. La misura della temperatura 2. La dilatazione termica 3. La legge fondamentale della termologia 4. Il calore latente 5. La propagazione del calore La misura della temperatura La

Dettagli

Conducibilità elettrica nei metalli, teoria classica di Drude

Conducibilità elettrica nei metalli, teoria classica di Drude Conducibilità elettrica nei metalli, teoria classica di Drude Gli elettroni in un metallo sono particelle classiche, libere di muoversi Sotto un campo elettrico E, gli elettroni sono accelerati da una

Dettagli

Fononi e calori reticolari - Testi degli esercizi

Fononi e calori reticolari - Testi degli esercizi Fononi e calori reticolari - Testi degli esercizi Fisica della Materia Condensata Dipartimento di Matematica e Fisica Università degli Studi Roma Tre A.A. 2016/2017 Fononi e calori reticolari Esercizio

Dettagli

Trasmissione del calore

Trasmissione del calore FISICA TECNICA Prof. Ing. Marina Mistretta Trasmissione del calore a.a. 2018/2019 Prof. Ing. Marina Mistretta L edificio è un sistema aperto che scambia con l ambiente massa ed energia: - energia termica

Dettagli

Proprietà dei materiali

Proprietà dei materiali Capacità termica Termiche Conducibilità termica Coefficiente di dilatazione Resistenza allo shock termico Temperatura di cambio di fase Capacità termica Si definisce Capacità termica di un materiale la

Dettagli

CENNI SULLA TEORIA DEGLI ORBITALI MOLECOLARI

CENNI SULLA TEORIA DEGLI ORBITALI MOLECOLARI CENNI SULLA TEORIA DEGLI ORBITALI MOLECOLARI Gli orbitali molecolari si ottengono dalla combinazione lineare degli orbitali atomici. Il numero di orbitali molecolari è pari al numero degli orbitali atomici

Dettagli

Lezione 14 Termologia Cambiamenti di stato. Dilatazioni termiche. Trasmissione del calore.

Lezione 14 Termologia Cambiamenti di stato. Dilatazioni termiche. Trasmissione del calore. Lezione 14 Termologia Cambiamenti di stato. Dilatazioni termiche. Trasmissione del calore. Cambiamenti di stati di aggregazione Gli stati di aggregazione della materia sono: solido, liquido gassoso (e

Dettagli

Elettronica dello Stato Solido Lezione 10: Strutture a bande in due e tre dimensioni

Elettronica dello Stato Solido Lezione 10: Strutture a bande in due e tre dimensioni Elettronica dello Stato Solido Lezione 10: Strutture a bande in due e tre dimensioni Daniele Ielmini DEI Politecnico di Milano ielmini@elet.polimi.it D. Ielmini Elettronica dello Stato Solido 10 2 Outline

Dettagli

Fononi e calori reticolari - Testi degli esercizi. Fisica della Materia Condensata

Fononi e calori reticolari - Testi degli esercizi. Fisica della Materia Condensata Fononi e calori reticolari - Testi degli esercizi Fisica della Materia Condensata A.A. 015/016 Fononi e calori reticolari Esercizio 1 Si consideri una catena lineare biatomica. Calcolare le relazioni di

Dettagli

Formazione delle bande di energia. Fisica Dispositivi Elettronici CdL Informatica A.A. 2003/4

Formazione delle bande di energia. Fisica Dispositivi Elettronici CdL Informatica A.A. 2003/4 Formazione delle bande di energia Calcolo formale: Equazione di Schröedinger L equazione di Schröedinger è una relazione matematica che descrive il comportamento ondulatorio di una particella (elettrone)

Dettagli

4πε. h m. Eq. di Schrödinger per un atomo di idrogeno:

4πε. h m. Eq. di Schrödinger per un atomo di idrogeno: Eq. di Schrödinger per un atomo di idrogeno: h m e 1 ψ 4πε r 0 ( r) = Eψ ( r) Questa equazione è esattamente risolubile ed il risultato sono degli orbitali di energia definita E n = m e 1 α 1 1 e mc n

Dettagli

Stati di aggregazione della materia. dal microscopico al macroscopico: struttura. interazioni GASSOSO. proprietà SOLIDO LIQUIDO

Stati di aggregazione della materia. dal microscopico al macroscopico: struttura. interazioni GASSOSO. proprietà SOLIDO LIQUIDO Stati di aggregazione della materia GASSOSO dal microscopico al macroscopico: struttura interazioni proprietà SOLIDO LIQUIDO Lo stato gassoso È uno dei tre stati di aggregazione della materia, caratterizzato

Dettagli

I legami fra molecole nei liquidi non sono forti ed esse possono fluire Riducendo l agitazione termica. legami tra molecole più stabili

I legami fra molecole nei liquidi non sono forti ed esse possono fluire Riducendo l agitazione termica. legami tra molecole più stabili I legami fra molecole nei liquidi non sono forti ed esse possono fluire Riducendo l agitazione termica legami tra molecole più stabili formazione una massa rigida Una disposizione ordinata delle molecole

Dettagli

Il reticolo cristallino e la cella elementare

Il reticolo cristallino e la cella elementare Il reticolo cristallino e la cella elementare Nei solidi gli atomi o molecole che li compongono solo vibrano, cioè oscillano intorno a un punto di equilibrio. SOLIDI AMORFI : con forme mal definite xchè

Dettagli

Il processo di cura - tecniche di studio Calorimetria a scansione differenziale (DSC) La calorimetria differenziale a scansione è la principale tecnica di analisi termica utilizzabile per caratterizzare

Dettagli

Lezione n. 19. L equazione. di Schrodinger L atomo. di idrogeno Orbitali atomici. 02/03/2008 Antonino Polimeno 1

Lezione n. 19. L equazione. di Schrodinger L atomo. di idrogeno Orbitali atomici. 02/03/2008 Antonino Polimeno 1 Chimica Fisica - Chimica e Tecnologia Farmaceutiche Lezione n. 19 L equazione di Schrodinger L atomo di idrogeno Orbitali atomici 02/03/2008 Antonino Polimeno 1 Dai modelli primitivi alla meccanica quantistica

Dettagli

Materiale Energy Gap

Materiale Energy Gap Semiconduttori Materiale diamante silicio germanio Energy Gap 5,3 ev 1,1 ev 0,7 ev 21 Semiconduttori Quando un elettrone, portatore di carica negativa, è promosso da banda di valenza a banda di conduzione,

Dettagli

STATI DI AGGREGAZIONE

STATI DI AGGREGAZIONE STATI DI AGGREGAZIONE SOLIDO HA FORMA E VOLUME PROPRIO LIQUIDO NON HA FORMA PROPRIA HA VOLUME PROPRIO GAS NON HA NE FORMA NE VOLUME PROPRI FORZE INTERMOLECOLARI Solidi > liquidi >> gas 0 Gas reali> gas

Dettagli

1. Le forze intermolecolari 2. Molecole polari e apolari 3. Le forze dipolo-dipolo e le forze di London 4. Il legame a idrogeno 5. Legami a confronto

1. Le forze intermolecolari 2. Molecole polari e apolari 3. Le forze dipolo-dipolo e le forze di London 4. Il legame a idrogeno 5. Legami a confronto Unità n 12 Le forze intermolecolari e gli stati condensati della materia 1. Le forze intermolecolari 2. Molecole polari e apolari 3. Le forze dipolo-dipolo e le forze di London 4. Il legame a idrogeno

Dettagli

Corso di Macromolecole LO STATO VETROSO

Corso di Macromolecole LO STATO VETROSO LO STATO VETROSO er studiare lo stato fisico del sistema ed introdurre quindi la discussione sullo stato vetroso si può descrivere come esso varia al variare della temperatura. Ø partendo dal cristallo

Dettagli

Capitolo 12 Le forze intermolecolari e gli stati condensati della materia

Capitolo 12 Le forze intermolecolari e gli stati condensati della materia Capitolo 12 Le forze intermolecolari e gli stati condensati della materia 1. Le forze intermolecolari 2. Molecole polari e apolari 3. Le forze dipolo-dipolo e le forze di London 4. Il legame a idrogeno

Dettagli

La risposta ad ogni quesito è scritta in carattere normale, ulteriori spiegazioni saranno scritte in corsivo.

La risposta ad ogni quesito è scritta in carattere normale, ulteriori spiegazioni saranno scritte in corsivo. La risposta ad ogni quesito è scritta in carattere normale, ulteriori spiegazioni saranno scritte in corsivo. ESERCIZIO 1 a) Dall osservazione del diagramma si evince che ad un elevata temperatura di fusione

Dettagli

03. Le oscillazioni meccaniche. 03 d. I fononi

03. Le oscillazioni meccaniche. 03 d. I fononi 03. 03 d. I fononi 03. Contenuti : le oscillazioni di un cristallo, la relazione di dispersione, la frequenza di ebye, l energia del fonone. slide#3 Peter ebye Olanda, 1884 1966 Leon Brillouin Francia,

Dettagli

http://www.fis.unipr.it/corsi/fisicacing/cinformatica/ Da compilare dal 15/10/06 in poi Termodinamica Temperatura e Calore I Principio della Termodinamica Teoria cinetica dei gas II Principio della

Dettagli

Meccanica quantistica (5)

Meccanica quantistica (5) Meccanica quantistica (5) 0/7/14 1-MQ-5.doc 0 Oscillatore armonico Se una massa è sottoposta ad una forza di richiamo proporzionale allo spostamento da un posizione di equilibrio F = kx il potenziale (

Dettagli

La conducibilità elettrica del semiconduttore

La conducibilità elettrica del semiconduttore Viene presentata una classificazione dei materiali allo stato solido in riferimento alla conducibilità elettrica, che ne misura la attitudine a condurre corrente elettrica. Sulla base di questa classificazione

Dettagli

Fononi e calori reticolari - Soluzioni degli esercizi

Fononi e calori reticolari - Soluzioni degli esercizi Fononi e calori reticolari - Soluzioni degli esercizi Fisica della Materia Condensata Dipartimento di Matematica e Fisica Università degli Studi Roma Tre A.A. 2016/2017 Fononi e calori reticolari Esercizio

Dettagli

Scritto Appello IV, Materia Condensata. AA 2017/2018

Scritto Appello IV, Materia Condensata. AA 2017/2018 Scritto Appello IV, Materia Condensata AA 017/018 17/07/018 1 Esercizio 1 Un metallo monovalente cristallizza nella struttura cubica a corpo centrato La densità degli elettroni del metallo è n el = 65

Dettagli

i tre stati di aggregazione

i tre stati di aggregazione Temperatura e Calore -temperatura -calore e calore specifico -lavoro in termodinamica -trasformazioni termodinamiche -trasformazioni di stato -energia interna 1 i tre stati di aggregazione solido Ordine

Dettagli

S.I.C.S.I. Scuola Interuniversitaria Campana di Specializzazione all Insegnamento VIII ciclo - a.a. 2008/2009

S.I.C.S.I. Scuola Interuniversitaria Campana di Specializzazione all Insegnamento VIII ciclo - a.a. 2008/2009 S.I.C.S.I. Scuola Interuniversitaria Campana di Specializzazione all Insegnamento VIII ciclo - a.a. 2008/2009 Conduzione elettrica nei metalli (conduttori e semiconduttori) Corso di Laboratorio di Didattica

Dettagli

Unità didattica 3. Terza unità didattica (Fisica) 1. Corso integrato di Matematica e Fisica per il Corso di Farmacia

Unità didattica 3. Terza unità didattica (Fisica) 1. Corso integrato di Matematica e Fisica per il Corso di Farmacia Unità didattica 3 Elasticità dei materiali Deformazione di un solido..2 Legge di Hooke.. 3 Forza elastica.. 4 Deformazione elastica di una molla... 5 Accumulo di energia attraverso la deformazione elastica..6

Dettagli

SOLUZIONE Esercitazione 1 La soluzione è scritto normale, ulteriori spiegazioni (non necessarie per rispondere alle domande) in corsivo.

SOLUZIONE Esercitazione 1 La soluzione è scritto normale, ulteriori spiegazioni (non necessarie per rispondere alle domande) in corsivo. SOLUZIONE Esercitazione 1 La soluzione è scritto normale, ulteriori spiegazioni (non necessarie per rispondere alle domande) in corsivo. ESERCIZIO 1 a) Dalla osservazione del diagramma, si evince che ad

Dettagli

Tecnologie dei vetri e dei

Tecnologie dei vetri e dei Tecnologie dei vetri e dei polimeri organici PROPRIETA DEI VETRI Per i processi di formatura è importante conoscere il comportamento viscositàtemperatura del vetro. La lavorabilità del vetro dipende dalla

Dettagli

Elettroni negli Atomi

Elettroni negli Atomi Elettroni negli Atomi Solo alcune orbite sono stabili In realtànon sonoorbitema FUNZIONI D ONDA Ψ Ψ 2 è la DENSITA di probabilità di trovare l elettrone in una certa posizione rispetto al nucleo Le varie

Dettagli

Comune ordine di riempimento degli orbitali di un atomo

Comune ordine di riempimento degli orbitali di un atomo Comune ordine di riempimento degli orbitali di un atomo Le energie relative sono diverse per differenti elementi ma si possono notare le seguenti caratteristiche: (1) La maggior differenza di energia si

Dettagli

Elettronica dello Stato Solido Lezione 10: Strutture a bande in. Daniele Ielmini DEI Politecnico di Milano

Elettronica dello Stato Solido Lezione 10: Strutture a bande in. Daniele Ielmini DEI Politecnico di Milano Elettronica dello Stato Solido Lezione 10: Strutture a bande in due e tre dimensioni Daniele Ielmini DEI Politecnico di Milano ielmini@elet.polimi.it Outline Il reticolo reciproco Zone di Brillouin in

Dettagli

Generalità delle onde elettromagnetiche

Generalità delle onde elettromagnetiche Generalità delle onde elettromagnetiche Ampiezza massima: E max (B max ) Lunghezza d onda: (m) E max (B max ) Periodo: (s) Frequenza: = 1 (s-1 ) Numero d onda: = 1 (m-1 ) = v Velocità della luce nel vuoto

Dettagli

Figura 3.1: Semiconduttori.

Figura 3.1: Semiconduttori. Capitolo 3 Semiconduttori Con il termine semiconduttori si indicano alcuni elementi delle colonne III, IV e V della tavola periodica, caratterizzati da una resistività elettrica ρ intermedia tra quella

Dettagli

Trasmissione del calore

Trasmissione del calore FISICA TECNICA Prof. Ing. Marina Mistretta Trasmissione del calore a.a. 2017/2018 05/12/2017 Lezione 05/12/2017 Prof. Ing. Marina Mistretta L edificio è un sistema aperto che scambia con l ambiente massa

Dettagli

Semiconduttori. Bande di energia. Un cristallo è formato da atomi disposti in modo da costituire una struttura periodica regolare

Semiconduttori. Bande di energia. Un cristallo è formato da atomi disposti in modo da costituire una struttura periodica regolare Semiconduttori Bande di energia Un cristallo è formato da atomi disposti in modo da costituire una struttura periodica regolare Quando gli atomi formano un cristallo, il moto degli elettroni dello strato

Dettagli

STATI DI AGGREGAZIONE

STATI DI AGGREGAZIONE STATI DI AGGREGAZIONE SOLIDO HA FORMA E VOLUME PROPRIO LIQUIDI NON HA FORMA PROPRIA HA VOLUME PROPRIO GAS NON HA NE FORMA NE VOLUME PROPRI FORZE INTERMOLECOLARI Solidi > liquidi >> gas 0 Gas reali> gas

Dettagli

Onde meccaniche. 1. Velocità delle onde. 2. Equazione delle onde. 3. Onde di compressione. 4. Soluzioni dell equazione delle onde I - 0

Onde meccaniche. 1. Velocità delle onde. 2. Equazione delle onde. 3. Onde di compressione. 4. Soluzioni dell equazione delle onde I - 0 Onde meccaniche 1. Velocità delle onde 2. Equazione delle onde 3. Onde di compressione 4. Soluzioni dell equazione delle onde I - 0 Onde meccaniche Onde meccaniche: trasporto di oscillazioni da un punto

Dettagli

Introduzione alla Meccanica Quantistica (MQ):

Introduzione alla Meccanica Quantistica (MQ): Introduzione alla Meccanica Quantistica (MQ): 1 MECCANICA QUANTISTICA ELETTRONI MATERIA MOLECOLE ATOMI NUCLEI La nostra attuale comprensione della struttura atomica e molecolare si basa sui principi della

Dettagli

Proprietà meccaniche. Proprietà dei materiali

Proprietà meccaniche. Proprietà dei materiali Proprietà meccaniche Proprietà dei materiali Proprietà meccaniche Tutti i materiali sono soggetti a sollecitazioni (forze) di varia natura che ne determinano deformazioni macroscopiche. Spesso le proprietà

Dettagli

Valitutti, Falasca, Tifi, Gentile. Chimica. concetti e modelli.blu

Valitutti, Falasca, Tifi, Gentile. Chimica. concetti e modelli.blu Valitutti, Falasca, Tifi, Gentile Chimica concetti e modelli.blu 2 Capitolo 15 Le forze intermolecolari e gli stati condensati della materia 3 Sommario 1. Le forze intermolecolari 2. Molecole polari e

Dettagli

Elettronica II L equazione di Schrödinger p. 2

Elettronica II L equazione di Schrödinger p. 2 Elettronica II L equazione di Schrödinger Valentino Liberali Dipartimento di Tecnologie dell Informazione Università di Milano, 26013 Crema e-mail: liberali@dti.unimi.it http://www.dti.unimi.it/ liberali

Dettagli

PROPRIETÀ MECCANICHE DEI MATERIALI

PROPRIETÀ MECCANICHE DEI MATERIALI PROPRIETÀ MECCANICHE DEI MATERIALI Il comportamento meccanico di un materiale rappresenta la risposta ad una forza o ad un carico applicato 1. Comportamento elastico 2. Comportamento plastico 3. Comportamento

Dettagli

a) determinare le fasi presenti, la loro quantità (percentuale) e la loro composizione in una lega Pb30% - Sn a 300, 200 e 184, 180 e 20 C.

a) determinare le fasi presenti, la loro quantità (percentuale) e la loro composizione in una lega Pb30% - Sn a 300, 200 e 184, 180 e 20 C. ESERCIZIO 1 E dato il diagramma di stato del sistema Pb-Sn (figura). a) determinare le fasi presenti, la loro quantità (percentuale) e la loro composizione in una lega Pb30% - Sn a 300, 200 e 184, 180

Dettagli

Metalli come gas di elettroni liberi

Metalli come gas di elettroni liberi Metalli come gas di elettroni liberi I metalli sono caratterizzati da elevata conducibilità elettrica e termica. La conducibilità elettrica in particolare (o il suo inverso, la resistività) è una delle

Dettagli

Scritto Appello III, Materia Condensata. AA 2017/2018

Scritto Appello III, Materia Condensata. AA 2017/2018 Scritto Appello III, Materia Condensata. AA 2017/2018 21/06/2018 1 Esercizio 1 Sia un A un solido monoatomico che cristallizza in una struttura cubica a facce centrate con lato del cubo a e velocità del

Dettagli

Cenni sulle proprietà elastiche dei solidi

Cenni sulle proprietà elastiche dei solidi Cenni sulle proprietà elastiche dei solidi La nozione di corpo rigido deriva dal fatto che i corpi solidi sono caratterizzati dall avere una forma ed un volume non facilmente modificabili. Nella realtà

Dettagli

Corso di Elettronica Industriale (CdL in Ingegneria Meccatronica, sede di Mantova) Semiconduttori intrinseci e drogati

Corso di Elettronica Industriale (CdL in Ingegneria Meccatronica, sede di Mantova) Semiconduttori intrinseci e drogati Corso di Elettronica Industriale (CdL in Ingegneria Meccatronica, sede di Mantova) Isolanti, conduttori e semiconduttori In un solido si può avere conduzione di carica elettrica (quindi passaggio di corrente)

Dettagli

1.La forma delle molecole 2.La teoria VSEPR 3.Molecole polari e apolari 4.Le forze intermolecolari 5.Legami a confronto

1.La forma delle molecole 2.La teoria VSEPR 3.Molecole polari e apolari 4.Le forze intermolecolari 5.Legami a confronto 1.La forma delle molecole 2.La teoria VSEPR 3.Molecole polari e apolari 4.Le forze intermolecolari 5.Legami a confronto 1 1. La forma delle molecole Molte proprietà delle sostanze dipendono dalla forma

Dettagli

Soluzioni degli esercizi

Soluzioni degli esercizi Soluzioni degli esercizi Compito 1. Formula risolutiva: t = V ρ g h / W con V = volume pozza, ρ = densità assoluta dell'acqua, h = altezza, W = potenza pompa Tempo = 0.1490E+03 s Formula risolutiva: c

Dettagli

Gli stati di aggregazione della materia.

Gli stati di aggregazione della materia. Gli stati di aggregazione della materia. Stati di aggregazione della materia: Solido, liquido, gassoso Passaggi di stato: Solido Liquido (fusione) e liquido solido (solidificazione); Liquido aeriforme

Dettagli

Dispositivi elettronici

Dispositivi elettronici Dispositivi elettronici Sommario Richiami sui semiconduttori conduttori, isolanti e semiconduttori bande di energia droganti nei semiconduttori corrente di deriva e diffusione Funzionamento della giunzione

Dettagli

Struttura Elettronica degli Atomi Meccanica quantistica

Struttura Elettronica degli Atomi Meccanica quantistica Prof. A. Martinelli Struttura Elettronica degli Atomi Meccanica quantistica Dipartimento di Farmacia 1 Il comportamento ondulatorio della materia 2 1 Il comportamento ondulatorio della materia La diffrazione

Dettagli

SCIENZA E TECNOLOGIA DEI MATERIALI

SCIENZA E TECNOLOGIA DEI MATERIALI Laurea Specialistica in Ingegneria Meccanica anno acc. 2007/08 25/09/2007 Scienza e Tecnologia dei Materiali Lez. 01 1 SCIENZA E TECNOLOGIA DEI MATERIALI Gianfranco Dell Agli Ufficio (piano 1) Laboratorio

Dettagli

Legame Covalente Polare e MOT. Polarità del legame aumenta con differenza di elettronegatività.

Legame Covalente Polare e MOT. Polarità del legame aumenta con differenza di elettronegatività. Legame Covalente Polare e MOT Polarità del legame aumenta con differenza di elettronegatività. Legame Ionico Se differenza di elettronegatività è molto grande si ottiene un legame ionico. Legame Ionico

Dettagli

Fenomeno di trasporto di materiale per movimento di atomi

Fenomeno di trasporto di materiale per movimento di atomi Diffusione Fenomeno di trasporto di materiale per movimento di atomi Reazioni e processi (es. termici) basati sul trasferimento di massa all interno di uno stesso solido (autodiffusione) tra solido e liquido

Dettagli

Cavo Carbonio. Sergio Rubio Carles Paul Albert Monte

Cavo Carbonio. Sergio Rubio Carles Paul Albert Monte Cavo o Sergio Rubio Carles Paul Albert Monte o, Rame e Manganina PROPRIETÀ FISICHE PROPRIETÀ DEL CARBONIO Proprietà fisiche del o o Coefficiente di Temperatura α o -0,0005 ºC -1 o Densità D o 2260 kg/m

Dettagli

1. Scrivere l equazione di Schrödinger unidimensionale per una particella di massa m con energia potenziale V (x) = mω2

1. Scrivere l equazione di Schrödinger unidimensionale per una particella di massa m con energia potenziale V (x) = mω2 1 Teoria Una particella di massa m = 1 g e carica elettrica q = 1 c viene accelerata per un tratto pari a l = m da una differenza di potenziale pari av = 0 volt Determinare la lunghezza d onda di De Broglie

Dettagli

TERMOLOGIA & TERMODINAMICA II

TERMOLOGIA & TERMODINAMICA II TERMOLOGIA & TERMODINAMICA II 1 TRASMISSIONE DEL CALORE Il calore può essere trasmesso attraverso tre modalità: conduzione: il trasporto avviene per contatto, a causa degli urti fra le molecole dei corpi,

Dettagli

Fisica della Materia Condensata

Fisica della Materia Condensata Fisica della Materia Condensata Prof. Paola Gallo Soluzioni della prova di esame del II appello - 13 Febbraio 2017 Esercizio 1 Considerare un cristallo con reticolo monoclino semplice con base monoatomica.

Dettagli

Lo stato liquido. Un liquido non ha una forma propria, ma ha la forma del recipiente che lo contiene; ha però volume proprio e non è comprimibile.

Lo stato liquido. Un liquido non ha una forma propria, ma ha la forma del recipiente che lo contiene; ha però volume proprio e non è comprimibile. I liquidi Lo stato liquido Lo stato liquido rappresenta una condizione intermedia tra stato aeriforme e stato solido, tra lo stato di massimo disordine e quello di perfetto ordine Un liquido non ha una

Dettagli

14 Moto vibrazionale delle molecole. Moto vibrazionale di molecole biatomiche (in assenza di rotazioni)

14 Moto vibrazionale delle molecole. Moto vibrazionale di molecole biatomiche (in assenza di rotazioni) 14 Moto vibrazionale delle molecole Moto vibrazionale di molecole biatomiche (in assenza di rotazioni) 1 Modello analitico dell energia potenziale: potenziale di Morse ( r r ) V( r ) = D 1 e e e α Equazioni

Dettagli

3.La Diffusione nei metalli

3.La Diffusione nei metalli 3.La Diffusione nei metalli I Fenomeni di Trasporto della Materia Generalità sui fenomeni di trasporto Diffusione Generalità sui fenomeni di trasporto Esempi - Un gas diffonde attraverso un foro in una

Dettagli

Eccitazioni nucleari

Eccitazioni nucleari 1 Spettro rotazionale Lezione 28 Eccitazioni nucleari Consideriamo un nucleo pari pari, con spin zero, che abbia però una deformazione permanente. Supponiamo inoltre che il nucleo goda di una simmetria

Dettagli

Energia e reazioni chimiche. Cap , 19-21, 27-30, 47-48, 50, 59-62

Energia e reazioni chimiche. Cap , 19-21, 27-30, 47-48, 50, 59-62 2016-2017 CCS Biologia CCS Scienze Geologiche 1 Energia e reazioni chimiche Cap 5. 7-13, 19-21, 27-30, 47-48, 50, 59-62 2009 Brooks/Cole - Cengage Energia & Chimica 2 ENERGIA è la capacità di compiere

Dettagli

Nello stato solido le forze attrattive tra le particelle (ioni, atomi, molecole) prevalgono largamente sull effetto dell agitazione termica

Nello stato solido le forze attrattive tra le particelle (ioni, atomi, molecole) prevalgono largamente sull effetto dell agitazione termica Lo stato solido Nello stato solido le forze attrattive tra le particelle (ioni, atomi, molecole) prevalgono largamente sull effetto dell agitazione termica Libertà di movimento quasi completamente soppressa:

Dettagli

Termodinamica: introduzione

Termodinamica: introduzione Termodinamica: introduzione La Termodinamica studia i fenomeni che avvengono nei sistemi in seguito a scambi di calore (energia termica) ed energia meccanica, a livello macroscopico. Qualche concetto rilevante

Dettagli

Per questo sono stati proposti numerosi metodi di rinforzo.

Per questo sono stati proposti numerosi metodi di rinforzo. Dal punto di vista meccanico il vetro presenta numerosi limiti. Il tutto può essere racchiuso nella limitata tenacità a frattura (causa della fragilità, della danneggiabilità, della bassa resistenza, della

Dettagli

Tecnologia dei Materiali e Chimica Applicata Soluzione Esercitazione IV Prof. Dott. Bernhard Elsener

Tecnologia dei Materiali e Chimica Applicata Soluzione Esercitazione IV Prof. Dott. Bernhard Elsener Tecnologia dei Materiali e Chimica Applicata Soluzione Esercitazione IV ESERCIZIO 4.1 E dato il diagramma di stato del sistema Pb-Sn (figura 1). Figura 1 Diagramma di stato Pb-Sn 1. Determinare le fasi

Dettagli

Trasmissione del calore:

Trasmissione del calore: Trasmissione del calore: - Conduzione - Convezione - Irraggiamento Cos è la Convezione: È lo scambio di calore che avviene tra una superficie e un fluido che si trovano a diversa temperatura e in movimento

Dettagli

11 aprile Annalisa Tirella.

11 aprile Annalisa Tirella. Scienze dei Materiali A.A. 2010/2011 11 aprile 2011 Annalisa Tirella a.tirella@centropiaggio.unipi.it Metalli I metalli sono elementi chimici che possono essere utilizzati sia puri che in forma di leghe

Dettagli

Esame di stato 2014_2 2 M.Vincoli

Esame di stato 2014_2 2 M.Vincoli Esame di stato 0_ M.Vincoli . Per semplificare i calcoli, evitando altresì di introdurre immediatamente grandezze numeriche, è utile adottare una notazione semplificatrice, per cui poniamo:, 0 0,,0 0,60

Dettagli

CONVENZIONE SUI SEGNI

CONVENZIONE SUI SEGNI CONVENZIONE SUI SEGNI Si stabilisce una convenzione sui segni sia per gli scambi di calore che per il lavoro che il sistema compie o subisce L>0: LAVORO COMPIUTO DAL SISTEMA Q>0: CALORE ASSORBITO SISTEMA

Dettagli

Bagatti, Corradi, Desco, Ropa. Chimica. seconda edizione

Bagatti, Corradi, Desco, Ropa. Chimica. seconda edizione Bagatti, Corradi, Desco, Ropa Chimica seconda edizione Bagatti, Corradi, Desco, Ropa, Chimica seconda edizione Capitolo 2. La carta d identità delle sostanze SEGUI LA MAPPA descrivere atomica 1 descrivere

Dettagli

Termodinamica: introduzione

Termodinamica: introduzione Termodinamica: introduzione La Termodinamica studia i fenomeni che avvengono nei sistemi in seguito a scambi di calore (energia termica) ed energia meccanica, a livello macroscopico. Qualche concetto rilevante

Dettagli

Cenni sulla struttura della materia

Cenni sulla struttura della materia Cenni sulla struttura della materia Tutta la materia è costituita da uno o più costituenti fondamentali detti elementi Esistono 102 elementi, di cui 92 si trovano in natura (i rimanenti sono creati in

Dettagli

Il trasporto di energia termica: introduzione e trasporto conduttivo. Principi di Ingegneria Chimica Ambientale

Il trasporto di energia termica: introduzione e trasporto conduttivo. Principi di Ingegneria Chimica Ambientale Il trasporto di energia termica: introduzione e trasporto conduttivo Principi di Ingegneria Chimica Ambientale 1 Meccanismi di trasmissione del calore La Trasmissione del Calore può avvenire con meccanismi

Dettagli

CLASSIFICAZIONE DEI MATERIALI

CLASSIFICAZIONE DEI MATERIALI CLASSIFICAZIONE DEI MATERIALI MATERIALI METALLICI Sono sostanze inorganiche composte da uno o più elementi metallici (Fe, Al, Ti etc.), che possono però contenere anche alcuni elementi non metallici (C,

Dettagli

Elementi di fisica dello stato solido

Elementi di fisica dello stato solido Elementi di fisica dello stato solido Perché alcuni materiali sono buoni conduttori di elettroni ed altri no? Quali sono i meccanismi con cui la corrente fluisce nei solidi? Perché nei semiconduttori la

Dettagli

Scienza e Tecnologia dei Materiali - Esercizio 4.1

Scienza e Tecnologia dei Materiali - Esercizio 4.1 Scienza e Tecnologia dei Materiali - Esercizio 4.1 Indicare o calcolare per le celle elementare cubico semplice (CS), cubico a corpo centrato (CCC), cubico a facce centrate (CFC) e esagonale compatto (EC)

Dettagli

Modulo di Tecnologia dei Materiali. Docente: Dr. Giorgio Pia

Modulo di Tecnologia dei Materiali. Docente: Dr. Giorgio Pia Modulo di Tecnologia dei Materiali Docente: Dr. Giorgio Pia Modulo di Tecnologia dei Materiali La Diffusione Diffusione atomica nei solidi Diffusione per meccanismo interstiziale Gli atomi si muovono da

Dettagli

Facoltà di Anno Accademico 2018/19 Registro lezioni del docente COLOMBO LUCIANO

Facoltà di Anno Accademico 2018/19 Registro lezioni del docente COLOMBO LUCIANO Attività didattica Facoltà di Anno Accademico 2018/19 Registro lezioni del docente COLOMBO LUCIANO FISICA DEI SEMICONDUTTORI [IN/0027] Partizionamento: Periodo di svolgimento: Docente titolare del corso:

Dettagli

Lezione 2.2: trasmissione del calore!

Lezione 2.2: trasmissione del calore! Elementi di Fisica degli Edifici Laboratorio di costruzione dell architettura I A.A. 2010-2011 prof. Fabio Morea Lezione 2.2: trasmissione del calore! 2.1 capacità termica 2.2 conduzione 2.3 convezione

Dettagli

Passaggi di stato. P = costante

Passaggi di stato. P = costante Passaggi di stato P costante Diagramma isobaro di riscaldamento, relativo ai passaggi di stato Solido Liquido vapore. Si noti che la diversa lunghezza dei tratti FG e EV vuol mettere in evidenza, qualitativamente,

Dettagli

T08: Dispositivi elettronici (3.3.1)

T08: Dispositivi elettronici (3.3.1) T08: Dispositivi elettronici (3.3.1) Sommario Richiami sui semiconduttori conduttori, isolanti e semiconduttori bande di energia droganti nei semiconduttori corrente di deriva e diffusione Funzionamento

Dettagli

PROPRIETÀ MECCANICHE DEI POLIMERI. Proprietà meccaniche

PROPRIETÀ MECCANICHE DEI POLIMERI. Proprietà meccaniche PROPRIETÀ MECCANICHE DEI POLIMERI Informazioni necessarie per la progettazione di componenti in materiale polimerico: MODULO DI YOUNG (RIGIDEZZA) RESISTENZA ULTIMA DUTTILITÀ / FRAGILITÀ Ricavate da curve

Dettagli