Indice. Notazioni generali
|
|
|
- Lorenzo Colombo
- 9 anni fa
- Visualizzazioni
Transcript
1 Indice Notazioni generali XIII 1 Derivati e arbitraggi Opzioni Finalità Problemi Leggi di capitalizzazione Arbitraggi e formula di Put-Call Parity Prezzo neutrale al rischio e valutazione d'arbitraggio Prezzo neutrale al rischio Probabilità neutrale al rischio Prezzo d'arbitraggio Una generalizzazione della Put-Call Parity Un esempio di mercato incompleto 11 2 Elementi di probabilità ed equazione del calore Spazi di probabilità Variabili aleatorie e distribuzioni Valore atteso e varianza Alcuni esempi Disuguaglianza di Markov a-algebre e informazioni Indipendenza Misura prodotto e distribuzione congiunta Equazioni paraboliche a coefficienti costanti II caso ò = 0 e a = II caso generale Dato iniziale localmente sommabile Problema di Cauchy non omogeneo Operatore aggiunto Distribuzione multi-normale e funzione caratteristica 49
2 Vili Indice 2.5 Teorema di Radon-Nikodym Attesa condizionata Proprietà dell'attesa condizionata Attesa condizionata in L Attesa condizionata e cambio di misura di probabilità Processi stocastici discreti e martingale Tempi d'arresto Disuguaglianza di Doob 70 3 Modelli di mercato a tempo discreto Mercati discreti e arbitraggi Arbitraggi e strategie ammissibili Misura martingala Derivati e prezzo d'arbitraggio Prova dei teoremi fondamentali della valutazione Cambio di numeraire Modello binomiale Proprietà di Markov Misura martingala Completezza v Algoritmo binomiale Calibrazione Modello binomiale e formula di Black&Scholes Equazione differenziale di Black&Scholes Modello trinomiale Valutazione in un mercato incompleto Opzioni Americane Prezzo d'arbitraggio Relazioni con le opzioni Europee Algoritmo binomiale per opzioni Americane Problema a frontiera libera per opzioni Americane Put Americana e Put Europea nel modello binomiale Processi stocastici a tempo continuo Processi stocastici e moto Browniano reale Legge di un processo continuo Equivalenza di processi Processi adattati e progressivamente misurabili Proprietà di Markov Moto Browniano ed equazione del calore Distribuzioni finito-dimensionali del moto Browniano Integrale di Riemann-Stieltjes Funzioni a variazione limitata Integrazione di Riemann-Stieltjes e formula di Ito Regolarità delle traiettorie di un moto Browniano 168
3 Indice 4.4 Martingale Alcuni esempi Disuguaglianza di Doob Spazi di martingale: ^# 2 2 e ^# c Ipotesi usuali Tempi d'arresto e martingale Variazione quadratica e decomposizione di Doob-Meyer Martingale a variazione limitata 188 Integrale stocastico Integrale stocastico di funzioni deterministiche Integrale stocastico di processi semplici Integrale di processi in L Integrale di Ito e integrale di Riemann-Stieltjes Integrale di Ito e tempi d'arresto Processo variazione quadratica Integrale di processi in L 2 OC Martingale locali Localizzazione e variazione quadratica Processi di Ito Formula di Itò-Doeblin Formula di Ito per il moto Browniano Formulazione generale Martingale ed equazioni paraboliche Moto Browniano geometrico Processi e formula di Ito multi-dimensionale Formula di Ito multi-dimensionale Alcuni esempi Moto Browniano correlato e martingale Estensioni della formula di Ito Formula di Ito e derivate deboli Tempo locale e formula di Tanaka Formula di Tanaka per processi di Ito Tempo locale e formula di Black&Scholes 246 Equazioni paraboliche a coefficienti variabili: unicità Principio del massimo e problema di Cauchy-Dirichlet Principio del massimo e problema di Cauchy Soluzioni non-negative del problema di Cauchy 259 Modello di Black&Scholes Strategie autofinanzianti Strategie Markoviane ed equazione di Black&Scholes Valutazione Dividendi e parametri dipendenti dal tempo 272 IX
4 X Indice Ammissibilità e assenza d'arbitraggi Analisi di Black&Scholes: approcci euristici Prezzo di mercato del rischio Copertura Le greche Robustezza del modello Gamma e vega hedging Opzioni Asiatiche Media aritmetica Media geometrica Equazioni paraboliche a coefficienti variabili: esistenza Soluzione fondamentale e problema di Cauchy Metodo della parametrice di Levi 30Ù Stime Gaussiane e operatore aggiunto Problema con ostacolo Soluzioni forti Metodo della penalizzazione Problema con ostacolo sulla striscia di R iv Equazioni differenziali stocastiche Soluzioni forti Unicità Esistenza Proprietà delle soluzioni Soluzioni deboli Esempio di Tanaka Esistenza: il problema delle martingale Unicità Stime massimali Stime massimali per martingale Stime massimali per diffusioni Formule di rappresentazione di Feynman-Kac Tempo di uscita da un dominio limitato Equazioni ellittico-paraboliche e problema di Dirichlet Equazioni di evoluzione e problema di Cauchy-Dirichlet Soluzione fondamentale e densità di transizione Problema con ostacolo e arresto ottimo Equazioni stocastiche lineari Condizione di Kalman Equazioni di Kolmogorov e condizione di Hormander Esempi 365
5 Indice XI 10 Modelli di mercato a tempo continuo Cambio di misura di probabilità Martingale esponenziali Teorema di Girsanov Rappresentazione delle martingale Browniane Valutazione Misure martingale e prezzi di mercato del rischio Esistenza di una misura martingala equivalente Strategie ammissibili e arbitraggi Valutazione d'arbitraggio Formule di parity Mercati completi Caso Markoviano Analisi della volatilità Volatilità locale e volatilità stocastica Opzioni Americane Valutazione e copertura nel modello di Black&Scholes Cali e put Americane nel modello di Black&Scholes Valutazione e copertura in un mercato completo Metodi numerici Metodo di Eulero per equazioni ordinarie Schemi di ordine superiore Metodo di Eulero per equazioni stocastiche Schema di Milstein Metodo delle differenze finite per equazioni paraboliche Localizzazione ^-schemi per il problema di Cauchy-Dirichlet Problema a frontiera libera Metodo Monte Carlo Simulazione Calcolo delle greche Analisi dell'errore Introduzione al calcolo di Malliavin Derivata stocastica Esempi Regola della catena Dualità Formula di Clark-Ocone Integrazione per parti e calcolo delle greche Altri esempi 465
6 XII Indice Appendice 469 A.l Teoremi di Dynkin 469 A.2 Topologie e «r-algebre 473 A.3 Generalizzazioni del concetto di derivata 475 A.3.1 Derivata debole in IR 476 A.3.2 Spazi di Sobolev e teoremi di immersione 479 A.3.3 Distribuzioni 480 A.3.4 Mollificatori 485 A.4 Trasformata di Fourier 487 A.5 Convergenza di variabili aleatorie 490 A.5.1 Funzione caratteristica e convergenza 491 A.5.2 Uniforme integrabilità 495 A.6 Separazione di convessi 497 Bibliografia 499 Indice analitico 511
BOZZA NON DEFINITIVA. Indice
Indice 1 Introduzione... 1 1.1 Unpo distoria:glialbori... 1 1.1.1 La probabilitàcomefrequenza... 2 1.1.2 La probabilitàclassica... 2 1.1.3 IlparadossodiBertrand... 5 1.2 La teoria della probabilità diventa
Prelazione. Lista delle Figure. Lista delle Tabelle
Indice Prelazione Indice Lista delle Figure Lista delle Tabelle VI IX XV XVI 1 Nozioni Introduttive 1 1.1 Inferenza Statistica 1 1.2 Campionamento 5 1.3 Statistica e Probabilità 7 1.4 Alcuni Problemi e
Riassunto 24 Parole chiave 24 Commenti e curiosità 25 Esercizi 27 Appendice
cap 0 Romane - def_layout 1 12/06/12 07.51 Pagina V Prefazione xiii Capitolo 1 Nozioni introduttive 1 1.1 Introduzione 1 1.2 Cenni storici sullo sviluppo della Statistica 2 1.3 La Statistica nelle scienze
Modelli Stocastici per la Finanza e le Assicurazioni
Modelli Stocastici per la Finanza e le Assicurazioni CORSO DI LAUREA SPECIALISTICA IN METODI QUANTITATIVI PER LA FINANZA A.A. 2007/2008 DOCENTE: Marco Minozzo CREDITI (CFU): 10 PROGRAMMA (definitivo) Spazi
Facoltà di Dipartimento di Ingegneria Elettrica e dell'informazione anno accademico 2014/15 Registro lezioni del docente SPORTELLI LUIGI
Facoltà di Dipartimento di Ingegneria Elettrica e dell'informazione anno accademico 2014/15 Registro lezioni del docente SPORTELLI LUIGI Attività didattica ANALISI MATEMATICA [2000] Periodo di svolgimento:
Modelli Stocastici per la Finanza
Modelli Stocastici per la Finanza A.A. 2011/2012 (primo semestre) CREDITI (CFU): 9 CORSO DI LAUREA MAGISTRALE IN BANCA E FINANZA DOCENTE: Marco Minozzo ORARIO DI RICEVIMENTO: martedì 12.00 13.00 TELEFONO:
Problemi al contorno per equazioni e sistemi di equazioni ellittiche, paraboliche ed iperboliche in domini a frontiera non regolare.
Prof.ssa Diomeda Lorenza Maria Professore Ordinario Dipartimento di Scienze Economiche Area Matematica Facoltà di Economia, Via C.Rosalba 53- Bari Tel. 080-5049169 Fax 080-5049207 E-mail [email protected]
Indice Prefazione xiii 1 Probabilità
Prefazione xiii 1 Probabilità 1 1.1 Origini del Calcolo delle Probabilità e della Statistica 1 1.2 Eventi, stato di conoscenza, probabilità 4 1.3 Calcolo Combinatorio 11 1.3.1 Disposizioni di n elementi
Mattia Zanella [email protected] www.mattiazanella.eu
[email protected] www.mattiazanella.eu Department of Mathematics and Computer Science, University of Ferrara, Italy Ferrara, 1 Maggio 216 Programma della lezione Seminario II Equazioni differenziali
Indice Richiami di Matematica Finanziaria Fattore di Rischio e Principio di Arbitraggio
Indice 1 Richiami di Matematica Finanziaria 17 1.1 Introduzione............................ 18 1.2 Il valore del denaro nel tempo.................. 18 1.2.1 Obbligazioni........................ 20 1.3
On Lévy Processes for Option Pricing
Numerical Methods and Calibration to Index Options Relatore: Chiar.ma Prof.ssa Maria Cristina Recchioni Università Politecnica delle Marche - Facoltà di Economia Giorgio Fuà 18 Aprile 2008 Indice Introduzione
ANALISI non Lineare. Diego Averna
ANALISI non Lineare Ovvero: presentazione di Analisi non Lineare Diego Averna Dipartimento di Matematica e Informatica Facoltà di Scienze MM.FF.NN. Via Archirafi, 34-90123 Palermo (Italy) [email protected]
I modelli della fisica e la finanza, ovvero perchè i fisici lavorano nelle banche
I modelli della fisica e la finanza, ovvero perchè i fisici lavorano nelle banche Mediobanca (Milano, 11 luglio 2003) Indice 1. Perché i fisici in finanza? 2. Il problema 3. I modelli della fisica in finanza
PIANO DI LAVORO DEL PROFESSORE
ISTITUTO DI ISTRUZIONE SUPERIORE STATALE IRIS VERSARI - Cesano Maderno (MB) PIANO DI LAVORO DEL PROFESSORE Indirizzo: LICEO SCIENTIFICO MATERIA: MATEMATICA ANNO SCOLASTICO: 2014-2015 PROF: MASSIMO BANFI
Finanza matematica - Lezione 01
Finanza matematica - Lezione 01 Contratto d opzione Un opzione è un contratto finanziario stipulato al tempo, che permette di eseguire una certa transazione, d acquisto call o di vendita put, ad un tempo
Programmazione Matematica classe V A. Finalità
Finalità Acquisire una formazione culturale equilibrata in ambito scientifico; comprendere i nodi fondamentali dello sviluppo del pensiero scientifico, anche in una dimensione storica, e i nessi tra i
Calcolo delle Probabilità A.A. 2013/2014 Corso di Studi in Statistica per l Analisi dei dati Università degli Studi di Palermo
Calcolo delle Probabilità A.A. 2013/2014 Corso di Studi in Statistica per l Analisi dei dati Università degli Studi di Palermo docente Giuseppe Sanfilippo http://www.unipa.it/sanfilippo [email protected]
REGISTRO LEZIONI A.A. 2013/2014 (INGEGNERIA GESTIONALE)
REGISTRO LEZIONI A.A. 2013/2014 (INGEGNERIA GESTIONALE) 30/09/2013 ore 3 I numeri naturali, relativi, razionali e loro proprieta'. Incompletezza del campo dei numeri razionali. I numeri reali come allineamenti
Il calore nella Finanza
Il calore nella Finanza Franco Moriconi Università di Perugia Facoltà di Economia Perugia, 12 Novembre 2008 Quotazioni FIAT Serie giornaliera dal 6/11/2007 al 6/11/2008 F. Moriconi, Il calore nella Finanza
PROGRAMMA DI MATEMATICA
PROGRAMMA DI MATEMATICA A.S. 2014-2015 CLASSE IV SEZ. B INDIRIZZO SIA PROF. Orlando Rocco Carmelo ODULO MODULO ORD. ARGOMENT O 1 SEZ 1 FUNZIONI E LIMITIDI FUNZIONI ARGOMENTO 1 TOMO E SEZ 1 FUNZIONI E LIMITIDI
Programma definitivo Analisi Matematica 2 - a.a. 2005-06 Corso di Laurea Triennale in Ingegneria Civile (ICI)
1 Programma definitivo Analisi Matematica 2 - a.a. 2005-06 Corso di Laurea Triennale in Ingegneria Civile (ICI) Approssimazioni di Taylor BPS, Capitolo 5, pagine 256 268 Approssimazione lineare, il simbolo
Diario del corso di Analisi Matematica 1 (a.a. 2015/16)
Diario del corso di Analisi Matematica (a.a. 205/6) 4 settembre 205 ( ora) Presentazione del corso. 6 settembre 205 (2 ore) Numeri naturali, interi, razionali, reali. 2 non è razionale. Introduzione alle
Modelli Stocastici per la Finanza
Modelli Stocastici per la Finanza A.A. 2013/2014 (primo semestre) CREDITI (CFU): 9 CORSO DI LAUREA MAGISTRALE IN BANCA E FINANZA (curriculum Finanza Quantitativa) DOCENTE: Marco Minozzo ORARIO DI RICEVIMENTO:
ASSE MATEMATICO. Competenze Abilità Conoscenze
Competenze di base a conclusione del I Biennio Confrontare ed analizzare figure geometriche del piano e dello spazio individuando invarianti e relazioni. Analizzare, correlare e rappresentare dati. Valutare
1 Le equazioni di Maxwell e le relazioni costitutive 1 1.1 Introduzione... 1 1.2 Richiami sugli operatori differenziali...... 4 1.2.1 Il gradiente di uno scalare... 4 1.2.2 La divergenza di un vettore...
UNIVERSITÀ DEGLI STUDI DI FERRARA
UNIVERSITÀ DEGLI STUDI DI FERRARA Anno Accademico 2012/2013 REGISTRO DELL ATTIVITÀ DIDATTICA Docente: ANDREOTTI MIRCO Titolo del corso: MATEMATICA ED ELEMENTI DI STATISTICA Corso: CORSO UFFICIALE Corso
Elenco moduli Argomenti Strumenti / Testi Letture. Tassi equivalenti. Rendite temporanee e perpetue. Rimborso di prestiti.
Pagina 1 di 9 DISCIPLINA: MATEMATICA APPLICATA INDIRIZZO: SISTEMI INFORMATIVI AZIENDALI CLASSE: 4 SI DOCENTE : ENRICA GUIDETTI Elenco moduli Argomenti Strumenti / Testi Letture 1 Ripasso Retta e coniche;
Il modello binomiale ad un periodo
Opzioni Un opzione dà al suo possessore il diritto (ma non l obbligo) di fare qualcosa. Un opzione call (put) europea su un azione che non paga dividendi dà al possessore il diritto di comprare (vendere)
Quesiti di Analisi Matematica A
Quesiti di Analisi Matematica A Presentiamo una raccolta di quesiti per la preparazione alla prova orale del modulo di Analisi Matematica A. Per una buona preparazione é consigliabile rispondere ad alta
Prologo La fiducia come asset
Ringraziamenti Prefazione, di Fabio Cerchiai Introduzione Prologo La fiducia come asset 1 Il nuovo regime di solvibilità: obiettivi, linee guida, implicazioni strategiche 1.1 LÕevoluzione della disciplina
Valore equo di un derivato. Contingent claim
Contingent claim Ci occuperemo ora di determinare il prezzo equo di un prodotto derivato, come le opzioni, e di come coprire il rischio associato a questi contratti. Assumeremo come dinamica dei prezzi
VIII Indice 2.6 Esperimenti Dicotomici Ripetuti: Binomiale ed Ipergeometrica Processi Stocastici: Bernoul
1 Introduzione alla Teoria della Probabilità... 1 1.1 Introduzione........................................ 1 1.2 Spazio dei Campioni ed Eventi Aleatori................ 2 1.3 Misura di Probabilità... 5
PROBABILITA e STATISTICA
PROBABILITA e STATISTICA Perché scegliere corsi di probabilità o statistica? Formazione matematica Utilità pratica (ovvero, spendibilità nel mondo del lavoro) Una ulteriore ragione, che però vale per qualsiasi
Richiami su norma di un vettore e distanza, intorni sferici in R n, insiemi aperti, chiusi, limitati e illimitati.
PROGRAMMA di Fondamenti di Analisi Matematica 2 (DEFINITIVO) A.A. 2010-2011, Paola Mannucci, Canale 2 Ingegneria gestionale, meccanica e meccatronica, Vicenza Testo Consigliato: Analisi Matematica, M.
Metodi Monte Carlo in Finanza
Metodi Monte Carlo in Finanza Lucia Caramellino Indice 1 Metodi Monte Carlo: generalità Simulazione di un moto Browniano e di un moto Browniano geometrico 3 3 Metodi numerici Monte Carlo per la finanza
Indice. Nota degli autori. 1 Capitolo 1 Introduzione alla ricerca operativa
XI Nota degli autori 1 Capitolo 1 Introduzione alla ricerca operativa 1 1.1 Premessa 1 1.2 Problemi di ottimizzazione 6 1.3 Primi approcci ai modelli di ottimizzazione 13 1.4 Uso del risolutore della Microsoft
Docente: DI LISCIA F. CLASSE 1T MODULO 1: GLI INSIEMI NUMERICI
Docente: DI LISCIA F. Materia: MATEMATICA CLASSE 1T MODULO 1: GLI INSIEMI NUMERICI Insiemi numerici: numeri naturali, proprietà delle operazioni aritmetiche; Potenze e loro proprietà; Criteri di divisibilità;
Università degli Studi di Catania A.A. 2012-2013. Corso di laurea in Ingegneria Industriale
Università degli Studi di Catania A.A. 2012-2013 Corso di laurea in Ingegneria Industriale Corso di Analisi Matematica I (A-E) (Prof. A.Villani) Elenco delle dimostrazioni che possono essere richieste
CLASSI PRIME tecnico 4 ORE
PIANO ANNUALE a.s. 2012/2013 CLASSI PRIME tecnico 4 ORE Settembre Ottobre Novembre dicembre dicembre gennaio- 15 aprile 15 aprile 15 maggio Somministrazione di test di ingresso. Insiemi numerici Operazioni
Prefazione. Capitolo 1 Introduzione ai contratti derivati 1 1.1 I derivati 1
Prefazione XV Capitolo 1 Introduzione ai contratti derivati 1 1.1 I derivati 1 Capitolo 2 Il mercato delle opzioni azionarie 11 2.1 Le opzioni sui singoli titoli azionari 11 2.2 Il mercato telematico delle
Modelli matematici per la valutazione dei derivati: dalla formula CRR alla formula di Black-Scholes
Capitolo 4 Modelli matematici per la valutazione dei derivati: dalla formula CRR alla formula di Black-Scholes Quanto è ragionevole pagare per entrare in un contratto d opzione? Per affrontare questo problema
Prof. Gabriele Vezzosi... Settore Inquadramento MAT03...
UNIVERSITÀ DEGLI STUDI Registro dell insegnamento Anno Accademico 2014/2015 Facoltà Ingegneria....................................... Insegnamento Matematica................................ Settore Mat03............................................
Amministrazione, finanza e marketing - Turismo Ministero dell Istruzione, dell Università e della Ricerca PROGRAMMAZIONE DISCIPLINARE PER U. di A.
CLASSE quinta INDIRIZZO AFM-SIA-RIM-TUR UdA n. 1 Titolo: LE FUNZIONI DI DUE VARIABILI E L ECONOMIA Utilizzare le strategie del pensiero razionale negli aspetti dialettici e algoritmici per affrontare situazioni
Modelli finanziari per i tassi di interesse
MEBS Lecture 3 Modelli finanziari per i tassi di interesse MEBS, lezioni Roberto Renò Università di Siena 3.1 Modelli per la struttura La ricerca di un modello finanziario che descriva l evoluzione della
Indice Elementi di analisi delle matrici I fondamenti della matematica numerica
Indice 1. Elementi di analisi delle matrici 1 1.1 Spazivettoriali... 1 1.2 Matrici... 3 1.3 Operazionisumatrici... 4 1.3.1 Inversadiunamatrice... 6 1.3.2 Matricietrasformazionilineari... 7 1.4 Tracciaedeterminante...
PREFAZIONE pag. 15 Capitolo 1 I NUMERI E LE FUNZIONI REALI 1. Premessa Gli assiomi dei numeri reali Alcune conseguenze degli assiomi dei
PREFAZIONE pag. 15 Capitolo 1 I NUMERI E LE FUNZIONI REALI 1. Premessa 23 2. Gli assiomi dei numeri reali 24 3. Alcune conseguenze degli assiomi dei numeri reali 25 4. Cenni di teoria degli insiemi 30
MATEMATICA TRIENNIO CORSO TURISTICO, AMMINISTRAZIONE FINANZA MARKETING, SISTEMI INFORMATIVI AZIENDALI
MATEMATICA TRIENNIO CORSO TURISTICO, AMMINISTRAZIONE FINANZA MARKETING, SISTEMI INFORMATIVI AZIENDALI Obiettivi del triennio: ; elaborando opportune soluzioni; 3) utilizzare le reti e gli strumenti informatici
Classe: 1 a A AFM...2 Classe: 1 a B AFM...3 Classe: 2 a A AFM...4 Classe: 3 a A AFM...5 Classe: 4 a A IGEA...6
Classe: 1 a A AFM...2 Classe: 1 a B AFM...3 Classe: 2 a A AFM...4 Classe: 3 a A AFM...5 Classe: 4 a A IGEA...6 Classe: 1 a A AFM GLI INSIEMI NUMERICI E LE OPERAZIONI Ripasso del calcolo numerico: espressioni
Indice Equazioni fondamentali Dissipazioni di energia nelle correnti idriche
Indice 1 Equazioni fondamentali... 1 1.1 Introduzione... 1 1.2 Equazionedicontinuità... 2 1.3 Principio di conservazione della quantità di moto.... 5 1.4 Principiodiconservazionedellaenergia... 8 1.5 Considerazioniconclusive...
I Metodi statistici utili nel miglioramento della qualità 27
Prefazione xiii 1 Il miglioramento della qualità nel moderno ambiente produttivo 1 1.1 Significato dei termini qualità e miglioramento della qualità 1 1.1.1 Le componenti della qualità 2 1.1.2 Terminologia
Appendici Definizioni e formule notevoli Indice analitico
Indice 1 Serie numeriche... 1 1.1 Richiami sulle successioni................................. 1 1.2 Serie numeriche........................................ 4 1.3 Serie a termini positivi...................................
Prefazione all edizione originale. Prefazione all edizione italiana
Indice Prefazione all edizione originale Prefazione all edizione italiana xiii xv 1 Il miglioramento della qualità nel moderno ambiente produttivo 1 1.1 Significato dei termini qualità e miglioramento
Università degli Studi di Trento Facoltà di Scienze Cognitive. Corso di Laurea in Scienze e Tecniche di Psicologia Cognitiva Applicata
Università degli Studi di Trento Facoltà di Scienze Cognitive Corso di Laurea in Scienze e Tecniche di Psicologia Cognitiva Applicata Commenti alle lezioni del CORSO DI ANALISI MATEMATICA a.a. 2005/2006
MATEMATICA FINANZIARIA P-Z (CFU 6) (1 semestre) Prof. Cristina GOSIO
MATEMATICA FINANZIARIA P-Z (CFU 6) (1 semestre) Il corso si propone di fornire la formalizzazione e la modellazione matematica di operazioni finanziarie, cioè di operazioni di scambio aventi per oggetto
call europea viene esercitata, consentendo un guadagno pari a
INTRODUZIONE Un opzione è un contratto derivato che conferisce al proprio detentore il diritto di disporre del titolo sottostante ad esso. Più precisamente, l acquisto di un opzione call (put) conferisce
UNIVERSITÀ DEGLI STUDI DI MILANO-BICOCCA A. A. 2008-2009 FACOLTÀ DI ECONOMIA. Programma del modulo di STATISTICA I (6 crediti)
UNIVERSITÀ DEGLI STUDI DI MILANO-BICOCCA A. A. 2008-2009 FACOLTÀ DI ECONOMIA Programma del modulo di STATISTICA I (6 crediti) ECOCOM (lettere A-Lh): ECOCOM (lettere Li-Z): ECOBAN: ECOAMM (Lettere A-Lh):
MATEMATICA. PRIMO ANNO (Liceo Classico e Liceo delle Scienze Umane)
1/7 PRIMO ANNO Testo consigliato: BERGAMINI TRIFONE BAROZZI, Matematica.azzurro, vol. 1, Zanichelli Obiettivi minimi. Acquisire il linguaggio specifico della disciplina; sviluppare espressioni algebriche
Capitolo 1. Profilo finanziario degli investimenti 1
Indice Prefazione Introduzione XIII XV Capitolo 1. Profilo finanziario degli investimenti 1 1.1 Definizione e tipologie di investimento 1 1.1.1 Caratteristiche degli investimenti produttivi 3 1.1.2 Caratteristiche
Istituto Istruzione Superiore Liceo Scientifico Ghilarza Anno Scolastico 2013/2014 PROGRAMMA DI MATEMATICA E FISICA
PROGRAMMA DI MATEMATICA E FISICA Classe VA scientifico MATEMATICA MODULO 1 ESPONENZIALI E LOGARITMI 1. Potenze con esponente reale; 2. La funzione esponenziale: proprietà e grafico; 3. Definizione di logaritmo;
I.T.C. Abba Ballini BS a.s. 2014 2015 cl 4^
MODULO 1: LE FUNZIONI- GRAFICI APPROSSIMATI UD 1.1 Saper analizzare le proprietà caratteristiche di una funzione razionale in una variabile Saper ipotizzare il grafico di una funzione razionale Dominio,
LEZIONI DI STATISTICA
ez10 l GIOVANNI GIRONE Ordinario nell'università di Bari TOMMASO SALVEMINI Ordinario nel!' Università di Roma LEZIONI DI STATISTICA Volume Secondo CACUCCI EDITORE - BARI - 1992 CENTRO " G. ASTENGO» INVENTARIO
Programma di Analisi Matematica 2
Programma di Analisi Matematica 2 Corso di Laurea in Matematica A.A. 2015/16 1. Integrali impropri del primo tipo 2. Integrali impropri del secondo tipo 3. Teorema del confronto per gli integrali impropri
Opzioni con Barriera
Facoltà di Scienze Matematiche, Fisiche e Naturali Corso di Laurea Specialistica in Matematica Tesi di Laurea Specialistica Opzioni con Barriera Candidato: Lorenzo Balducci Relatore: Prof. Maurizio Pratelli
EQUAZIONI DIFFERENZIALI. 1. Trovare tutte le soluzioni delle equazioni differenziali: (a) x = x 2 log t (d) x = e t x log x (e) y = y2 5y+6
EQUAZIONI DIFFERENZIALI.. Trovare tutte le soluzioni delle equazioni differenziali: (a) x = x log t (d) x = e t x log x (e) y = y 5y+6 (f) y = ty +t t +y (g) y = y (h) xy = y (i) y y y = 0 (j) x = x (k)
DISTRIBUZIONI DI PROBABILITÀ
Metodi statistici e probabilistici per l ingegneria Corso di Laurea in Ingegneria Civile A.A. 2009-10 Facoltà di Ingegneria, Università di Padova Docente: Dott. L. Corain 1 LE PRINCIPALI DISTRIBUZIONI
Presentazione. Risorse Web. Metodi Statistici 1
I-XVI Romane_ 27-10-2004 14:25 Pagina VII Prefazione Risorse Web XI XIII XVII Metodi Statistici 1 Capitolo 1 Tecniche Statistiche 3 1.1 Probabilità, Variabili Casuali e Statistica 3 1.1.1 Introduzione
Programmazione Disciplinare: Calcolo Classe: Quarte - Quinte
Istituto Tecnico Tecnologico Basilio Focaccia Salerno Programmazione Disciplinare: Calcolo Classe: Quarte - Quinte Anno scolastico 01-01 I Docenti della Disciplina Salerno, settembre 01 Anno scolastico
Analisi matematica I (10 CFU, 100 ore) Corso17(gruppoSOV-UCCZ) )
Analisi matematica I (10 CFU, 100 ore) Corso17(gruppoSOV-UCCZ) ) Periodo didattico: 30/09/2013-17/01/2014 (14 settimane) Docente: Sergio Rolando E-mail: [email protected] Ricevimento:??, aula consulenze,
QUARTA E QUINTA ISTITUTO TECNICO INDUSTRIALE
QUARTA E QUINTA ISTITUTO TECNICO INDUSTRIALE - Matematica - Griglie di valutazione Materia: Matematica Obiettivi disciplinari Gli obiettivi indicati si riferiscono all intero percorso della classe quarta
MODELLI e METODI MATEMATICI della FISICA. Programma dettagliato del corso - A.A
MODELLI e METODI MATEMATICI della FISICA Programma dettagliato del corso - A.A. 2017-18 Lezione 1, 28 febbraio 2018: Introduzione ai numeri complessi. Rappresentazione cartesiana e polare. Radice n-esima
CAPITOLO 16 SUCCESSIONI E SERIE DI FUNZIONI
CAPITOLO 16 SUCCESSIONI E SERIE DI FUNZIONI Abbiamo studiato successioni e serie numeriche, ora vogliamo studiare successioni e serie di funzioni. Dato un insieme A R, chiamiamo successione di funzioni
ISTITUTO D'ISTRUZIONE SUPERIORE A. MOTTI PROGRAMMAZIONE ANNUALE ANNO SCOLASTICO 2014 /2015
ISTITUTO D'ISTRUZIONE SUPERIORE A. MOTTI PROGRAMMAZIONE ANNUALE ANNO SCOLASTICO 2014 /2015 A047 MATEMATICA CLASSE PRIMA PROFESSIONALE DOCENTI : CARAFFI ALESSANDRA, CORREGGI MARIA GRAZIA, FAZIO ANGELA,
modulo A1.1 modulo A1.2 livello A1 modulo A2.1 modulo A2.2 matematica livello A2 livello A3
livello A1 modulo A1.1 modulo A1.2 matematica livello A2 modulo A2.1 modulo A2.2 livello A insiemi e appartenenza interpretazione grafica nel piano traslazioni proprietà commutatività associatività elemento
LA TRASFORMATA DI LAPLACE: UN METODO RAPIDO ED EFFICIENTE PER IL PRICING DI OPZIONI
POLITECNICO DI MILANO SCUOLA DI INGEGNERIA INDUSTRIALE E DELL INFORMAZIONE CORSO DI LAUREA MAGISTRALE IN INGEGNERIA MATEMATICA LA TRASFORMATA DI LAPLACE: UN METODO RAPIDO ED EFFICIENTE PER IL PRICING DI
Il Processo Stocastico Martingala e sue Applicazioni in Finanza
Il Processo Stocastico Martingala e sue Applicazioni in Finanza Rosa Maria Mininni a.a. 2014-2015 1 Introduzione Scopo principale della presente dispensa é quello di illustrare i concetti matematici fondamentali
Un seminario sull analisi statistica di formiche virtuali
Un seminario sull analisi statistica di formiche virtuali Dr. Andrea Fontana Universita di Pavia http://www.pv.infn.it/~fontana/formiche Numeri casuali Tests di casualita Distribuzione uniforme in C e
T I P S T R A P S. La prezzatura di Opzioni Call e Put Europea con il metodo Montecarlo
La prezzatura di Opzioni Call e Put Europea con il metodo Montecarlo In un mercato finanziario le opzioni a comprare (Call) o a vendere (Put) un titolo costituiscono il diritto, in un determinato periodo
MODELLI DISCRETI PER OPZIONI AMERICANE
Alma Mater Studiorum Università di Bologna FACOLTÀ DI SCIENZE MATEMATICHE, FISICHE E NATURALI Corso di Laurea Triennale in Matematica MODELLI DISCRETI PER OPZIONI AMERICANE Tesi di Laurea in Matematica
