Grafici di particolari funzioni lineari
|
|
|
- Filiberto Poggi
- 9 anni fa
- Visualizzazioni
Transcript
1 A Grafici di particoari funzioni ineari Vogiamo tracciare i grafico dea funzione y ˆ jxj. x quando x 0 Sappiamo che jxj significa x quando x < 0 Possiamo aora riscrivere 'equazione di questa funzione in questo modo y ˆ x se x 0 x se x < 0 e disegnare (figura 1) a retta di equazione y ˆ x ne semipiano dee ascisse positive o nue a retta y ˆ x ne semipiano dee ascisse negative. Osserviamo che i grafico trovato si puoá ottenere anche con questa procedura (figura 2) si disegna a retta y ˆ x per intero si esegue una simmetria rispetto a'asse x dea soa parte negativa de grafico (in pratica si esegue un ribatamento dea parte de grafico che si trova sotto 'asse x). Infatti considerare i moduo di una quasiasi espressione significa in pratica far diventare positivo cioá che eá negativo. Figura 2 Figura 1 Figura 3 Questa procedura puoá essere generaizzata a una quaunque funzione di equazione y ˆ f x n si disegna i grafico di f x n si ribatano e parti di grafico che si trovano ne semipiano dee ordinate negative. Costruiamo seguendo questa procedura i grafico di y ˆ j2x 1j (figura 3) disegniamo a retta y ˆ 2x 1 disegniamo a simmetrica rispetto a'asse x dea soa parte negativa. Acune funzioni ineari possono essere definite da espressioni diverse in intervai diversi si para di funzioni ineari a tratti. Consideriamo per esempio a funzione y ˆ x 2 s e x < 1 3 2x se x 1 I piano cartesiano e a retta
2 Essa ha come dominio 'insieme R, ma ha due espressioni distinte a seconda che x sia maggiore o minore di 1. I suo grafico eá quindi formato da (figura 4) queo dea retta y ˆ x 2 disegnata soo per vaori di x piuá piccoi di 1 (in pratica consideriamo soo a semiretta a sinistra de punto di ascissa di 1) queo dea retta y ˆ 3 2x disegnata soo per vaori di x maggiori o uguai a 1 (in pratica consideriamo soo a semiretta a destra de punto di ascissa di 1). Funzioni di questo tipo sono i modeo di moti probemi reai; per esempio i costi dee teefonate, dove si paga in funzione dei minuti di conversazione ed i costo a minuto eá diverso a seconda dea unghezza dea teefonata. Una possibie funzione dei costi in funzione de tempo t potrebbe essere a seguente >< y ˆ 0,5 1 2 t se0< t 5 > 3 t 5 se t > 5 Figura 4 Figura 5 che ha questo significato si paga un costo fisso di 0; 5 euro piuá mezzo euro a minuto per teefonate di a massimo 5 minuti si paga un costo fisso di 3 euro (corrispondente a costo di una teefonata di 5 minuti) piuá 1 euro a minuto per teefonate piuá unghe di 5 minuti. I grafico di questa funzione eá in figura 5 dove su'asse dee ascisse eá rappresentato i tempo t (in minuti). ESERCIZI Comprensione 1 Indica quae tra i seguenti eá i grafico dea funzione y ˆ j1 2xj a. b. c. d. 2 La funzione i cui grafico eá in figura ha equazione a. y ˆ x se x 2 x se x < 2 c. y ˆ x se x 2 2 x se x < 2 b. y ˆ x 1 s e x 2 x 2 s e x < 2 d. y ˆ x 2 s e x 2 x se x < 2 I piano cartesiano e a retta
3 Appicazione Traccia i grafico dee seguenti funzioni. 3 a. y ˆ j4xj b. y ˆ j 2xj c. y ˆ j3xj 4 a. y ˆ j 6xj b. y ˆ 3jxj c. y ˆ 1 3 jxj 5 Disegna i grafici dee seguenti funzioni con i modui. Vogiamo disegnare a curva di equazione y ˆjx 2j. Disegniamo dapprima a retta come se non ci fosse i moduo y ˆ x 2 (prima figura). Eseguiamo una simmetria rispetto a'asse x dea semiretta negativa (seconda figura). I grafico di y ˆjx 2j eá evidenziato in coore rosso. 6 y ˆj2x 3j 7 y ˆj1 xj y ˆj1 3xj 9 y ˆ j2x 5j 10 y ˆ 1 2 x 4 11 y ˆ 3 2 x 1 12 y ˆ 1 3 x y ˆ 6x y ˆ x Disegna i grafici dee seguenti funzioni ineari a tratti. 15 ( 3 x se x < 2 y ˆ 2x 3 2 se x 2 Dobbiamo disegnare a retta di equazione y ˆ 3 x soo ne semipiano a sinistra dea retta x ˆ 2 e a retta di equazione y ˆ 2x 3 2 ne semipiano a destra. 16 y ˆ x 1 s e x < 0 3x 2 s e x 0 1 y ˆ 5 s e x < 0 x 1 s e x 0 1 >< x se x < y ˆ > 1 3 x 2 s e x 1 3 x se0 x < y ˆ 2x 3 s e x y ˆ 2x 2 s e x 4 x 3 s e x > 4 < 2 21 y ˆ 3 x 1 s e x 1 x 2 s e x > 1 I piano cartesiano e a retta
4 < x se x < 0 22 y ˆ x 2 s e 0 x < 1 x se x 1 1 >< 2 x se x < 2 24 y ˆ 2x se 2 x < 2 > 3 4 x 1 s e x 2 < x se x < 0 23 y ˆ 2x se0 x < 3 x 1 s e x 3 1 >< 3 x 1 s e x < 3 25 y ˆ 2 3 x se 3 x < 0 > 6x se x 0 Disegna i grafici dee seguenti funzioni con i modui trasformandoe in funzioni ineari a tratti. 26 Disegnamo ora i grafico dea curva di equazione y ˆ 1 2 x 3. Per a presenza di un termine esterno a moduo, dobbiamo considerare i seguenti casi a. se 1 2 x 0, cioeá se x 0, a curva ha equazione y ˆ 1 2 x 3 b. se 1 2 x < 0, cioeá se x < 0, a curva ha equazione y ˆ 1 2 x 3 L'espressione anaitica dettagiata eá aora 1 >< 2 x 3 s e x 0 y ˆ > 1 2 x 3 s e x < 0 I suo grafico eá queo dea figura a fianco, in cui i ramo di coore verde eá queo dea retta y ˆ 1 2 x 3 vautato soo per x 0, mentre i ramo di coor rosso eá queo dea retta y ˆ 1 x 3 vautato soo per x < Disegna a curva di equazione y ˆjx 1j 2 Distingui i due casi a. se x 1 0, cioeá x 1 a curva ha equazione... b. se x 1 < 0, cioeá x < 1 a curva ha equazione... x 1 La sua espressione anaitica dettagiata eá dunque y ˆ x < 1 2 y ˆj3 2xj 3 29 y ˆ 3 2 x 1 I piano cartesiano e a retta
5 30 y ˆ 1 2 x y ˆ x 1 2 3x 1 32 y ˆjx 2j x 33 y ˆjxj jx 1j 34 y ˆj5 xj 4 35 y ˆjx 3j 2x I piano cartesiano e a retta
LE DISEQUAZIONI LINEARI
LE DISEQUAZIONI LINEARI Per ricordare H Una disequazione si rappresenta come una disuguaglianza fra due espressioni algebriche A e B ; essa assume dunque la forma A Per risolvere una disequazione
La scala logaritmica
La scaa ogaritmica Obiettivi utiizzare coordinate ogaritmiche e semiogaritmiche 1. COORDINATE LOGARITMICHE Se un numero k eá maggiore di 10, i suo ogaritmo in base 10 eá moto piuá piccoo de numero stesso:
1. LA PARABOLA CON GEOGEBRA
1. LA PARABOLA CON GEOGEBRA Dopo aver avviato i programma, chiudiamo a Vista Agebra, togiamo gi assi cartesiani e a grigia da quea grafica in modo da avorare iniziamente ne piano eucideo. Affrontiamo poi
Le Funzioni. Modulo Esponenziali Logaritmiche. Prof.ssa Maddalena Dominijanni
Le Funzioni Modulo Esponenziali Logaritmiche Definizione di modulo o valore assoluto Se x è un generico numero reale, il suo modulo o valore assoluto è: x = x se x 0 -x se x
LO STUDIO DI FUNZIONE ESERCIZI CON SOLUZIONI
Autore: Enrico Manfucci - 6/05/0 LO STUDIO DI FUNZIONE ESERCIZI CON SOLUZIONI PREMESSA Per Studio di funzione si intende disegnare il grafico di una funzione data la sua espressione analitica. Questo significa
I grafici derivati e la periodicità
A I grafici derivati e a periodicità A partire dai grafici dee funzioni goniometriche fondamentai possiamo costruire queo di atre funzioni appicando opportune isometrie. Di seguito vediamo acuni esempi.
GEOMETRIA ANALITICA ESERCIZI CON SOLUZIONI
utore: Enrico Manfucci - 0/0/0 GEOMETRI NLITIC ESERCIZI CON SOLUZIONI. Posizionare nel piano cartesiano e calcolare la distanza delle seguenti coppie di punti: a. (, ) e (, ) I due punti hanno la stessa
Esercitazione su grafici di funzioni elementari
Esercitazione su grafici di funzioni elementari Davide Boscaini Queste sono le note da cui ho tratto le esercitazioni del giorno 8 Novembre 0. Come tali sono ben lungi dall essere esenti da errori, invito
Definizioni basilari di funzione.
Definizioni basilari di funzione. Una funzione per definizione e' una legge che ad ogni elemento di un insieme ( detto dominio ed indicato con D) associa un unico elemento di un secondo insieme (il codominio)
LICEO SCIENTIFICO PROBLEMA 1
www.matefilia.it LICEO SCIENTIFICO 2015 - PROBLEMA 1 Il piano tariffario proposto da un operatore telefonico prevede, per le telefonate all estero, un canone fisso di 10 euro al mese, più 10 centesimi
Le equazioni e le disequazioni lineari
MATEMATICAperTUTTI Le equazioni e e disequazioni ineari Le equazioni ineari ESERCIZIO SVOLTO Le equazioni. Chiamiamo equazione ad una incognita un uguagianza fra due espressioni agebriche di cui ameno
ESERCITAZIONE 9 : FUNZIONI QUADRATICHE
ESERCITAZIONE 9 : FUNZIONI QUADRATICHE e-mail: [email protected] web: www.dm.unipi.it/ tommei Ricevimento: Martedi 16-18 Dipartimento di Matematica, piano terra, studio 126 4 Dicembre 2012 L espressione
I primi elementi e i triangoli
MATEMATICAperTUTTI I triangoi 1 ESERCIZIO SVOLTO I primo criterio di congruenza. I confronto fra figure geometriche è un operazione che ricorre spesso in geometria, speciamente i confronto fra triangoi.
, per cui le due curve f( x)
DAL GRAFICO DI F(X) AL GRAFICO DI G(X) Pagina di 9 eas matematica http://spazioinwind.libero.it/adolscim DAL GRAFICO DI F(X) AL GRAFICO DI G(X) Dal grafico della funzione f( x ) al grafico della funzione
Esercitazione su grafici di funzioni elementari e domini di funzioni
Esercitazione su grafici di funzioni elementari e domini di funzioni Davide Boscaini Queste sono le note da cui ho tratto le esercitazioni del giorno 0 Ottobre 0. Come tali sono ben lungi dall essere esenti
Risoluzione del problema 2
Esame di Stato Liceo Scientifico Prova di Matematica corso sperimentale PNI - giugno 007 Soluzione del PROBLEMA a cura di Luigi Tomasi (luigitomasi@liberoit) Risoluzione del problema Punto ) Consideriamo
Una circonferenza e una parabola sono disegnate nel piano cartesiano. La circonferenza ha centro nel punto
La parabola Esercizi Esercizio 368.395 Una circonferenza e una parabola sono disegnate nel piano cartesiano. La circonferenza ha centro nel punto 0 ;5 e raggio, e la parabola ha il suo vertice in 0 ;0.
Coordinate Cartesiane
- - Coordinate Cartesiane Su di una retta r consideriamo un punto, detto origine, un verso positivo indicato con una freccia ed un segmento unitario U. In questo caso la retta r dicesi asse delle ascisse
Equilibrio del corpo rigido
Equiibrio de corpo rigido Probema1 Due sbarrette omogenee AB e BC aventi a stessa unghezza e a stessa massa di 6 kg, vengono sadate ne punto B in modo da formare un angoo di 90. Le due sbarrette così unite
ESPONENZIALI E LOGARITMI. chiameremo logaritmica (e si legge il logaritmo in base a di c è uguale a b ).
ESPONENZIALI E LOGARITMI Data una espressione del tipo a b = c, che chiameremo notazione esponenziale (e dove a>0), stabiliamo di scriverla anche in un modo diverso: log a c = b che chiameremo logaritmica
quindi, applicando la legge di annullamento del prodotto, si ottiene l insieme delle soluzioni: x x da cui:
) Risolvi le seguenti equazioni e scrivi le soluzioni reali in ordine crescente, indicando se sono multiple e quante sono le eventuali soluzioni non reali: ( ) ( ) per risolvere questa equazione si applica
FM210 - Fisica Matematica I
Corso di aurea in Matematica - Anno Accademico 203/4 FM20 - Fisica Matematica I Secondo appeo scritto [7-2-204]. (0 punti. Si consideri i sistema ineare { ẋ = 3x + ( + αy + ẏ = αx + 2y con α R.. Si discuta
Esempio di risoluzione di struttura iperstatica col metodo misto. Complemento alla lezione 47/50: Telai a nodi mobili
Esempio di risouzione di struttura iperstatica co metodo misto ompemento aa ezione 47/50: Teai a nodi mobii La struttura in figura è soggetta ad un cedimento verticae dea cerniera. Tutto i teaio ha sezione
Lezione 6 Richiami di Geometria Analitica
1 Piano cartesiano Lezione 6 Richiami di Geometria Analitica Consideriamo nel piano due rette perpendicolari che si intersecano in un punto O Consideriamo ciascuna di queste rette come retta orientata
8 Valore assoluto. 8.1 Definizione e proprietà
8 Valore assoluto 8. Definizione e proprietà Si dice valore assoluto o modulo di un numero reale, e si indica con, il numero stesso se questo è positivo o nullo, altrimenti il suo opposto -, in simboli:
PIANO CARTESIANO:EQUAZIONI
PIANO CARTESIANO:EQUAZIONI {(x,c) x R} = {(x,y) R 2 y=c} R 2 è una retta parallela all asse delle ascisse L asse delle ascisse è una retta di equazione y=0 Analogamente {(c,y) y R} = {(x,y) R 2 x=c} R
Le funzioni goniometriche
CAPITOLO 1 MATEMATICA PER LA FISICA Le funzioni goniometriche Obiettivi definire e funzioni goniometriche fondamentai in riferimento ai triangoi rettangoi e aa circonferenza goniometrica risovere triangoi
VERIFICA DI MATEMATICA Simulazione La funzione esponenziale e logaritmica - Soluzioni
Problema 1 a) c y f 1 : log 4 VERIFICA DI MATEMATICA Simulazione La funzione esponenziale e logaritmica - Soluzioni 1 log 1 4 0 4 1 Dominio: D ; 4 4 0 4 4 Intersezioni: 0 imp y 0 log 4 0 4 1 A ;0 Segno:
IL PENDOLO REVERSIBILE DI KATER
IL PENDOLO REVERSIBILE DI KATER I periodo dee osciazioni de pendoo sempice è dato daa formua: T 0 = π g Questa reazione è vaida per e piccoe osciazioni, quando, cioè, si può assimiare i seno de'angoo massimo
Funzioni: definizioni e tipi. Prof.ssa Maddalena Dominijanni
Funzioni: definizioni e tipi Definizione di funzione Dati due insiemi non vuoti A e B, si dice funzione o applicazione da A a B una relazione che associa ad ogni elemento dell insieme A uno ed un solo
Nome.Cognome. 12 Febbraio 2009 Classe 4D. VERIFICA di MATEMATICA
Nome.Cognome. Febbraio 009 Classe D VERIFIC di MTEMTIC Problemi ) Nel triangolo C si sa che ˆ 7 cos C =, tan C ˆ = e CM = a, essendo CM l altezza relativa ad. Determinare le misure dei lati del triangolo.
Mutue posizioni della parabola con gli assi cartesiani
Mutue posizioni della parabola con gli assi cartesiani L equazione di una parabola generica è data da: Consideriamo l equazione che definisce i punti di intersezione della parabola con l asse delle ascisse
Luoghi di punti e funzioni non lineari
CAPITOLO 3 Luoghi di punti e funzioni non ineari 1. LE FUNZIONI NON LINEARI CON DERIVE Per costruire i grafico di una paraboa o di un'iperboe si usa a stessa procedura usata per a retta: si scrive 'equazione
TRASFORMAZIONI DEL PIANO E GRAFICI
Trasformazioni del piano e grafici TRASFORMAZIONI DEL PIANO E GRAFICI RICHIAMI DI TEORIA Definizione: consideriamo il piano R munito di un sistema di riferimento cartesiano ortogonale. Una trasformazione
Appunti ed esercizi sulle coniche
1 LA CIRCONFERENZA 1 Appunti ed esercizi sulle coniche Versione del 1 Marzo 011 1 La circonferenza Nel piano R, fissati un punto O = (a, b) e un numero r > 0, la circonferenza (o cerchio) C di centro O
Scheda 1. Concavo e convesso
Scheda 1 Concavo e convesso Scheda 2 Concavità Fig.1 Concavità rivolta verso l alto Concavità rivolta verso il basso Fig.3 Concavità rivolta verso l alto Fig.2 Concavità rivolta verso il basso Fig.4 Scheda
Richiami sullo studio di funzione
Richiami sullo studio di funzione Per studiare una funzione y = f() e disegnarne un grafico approssimativo, possiamo procedere in ordine secondo i seguenti passi:. determinare il campo di esistenza (o
Funzioni reali di variabile reale
Funzioni reali di variabile reale Lezione per Studenti di Agraria Università di Bologna (Università di Bologna) Funzioni reali di variabile reale 1 / 50 Funzioni Definizione Sia A un sottoinsieme di R.
Il sistema di riferimento cartesiano
1 Il sistema di riferimento cartesiano Un sistema di riferimento cartesiano si compone di due semirette orientate, tra loro perpendicolari, dette assi cartesiani. L asse delle ascisse (o delle x), è quello
Problemi di scelta. y ˆ 5x 800 y ˆ 1500
A Probemi di sceta CioÁ che abbiamo studiato a proposito dea retta ci puoá essere di aiuto per risovere probemi in cui si deve fare una sceta tra diverse possibiitaá. Per esempio quando si acquista un'auto
Lezione 2 Equazioni famose
Moduo 7 U.D. Lez. Laura Citrini - Matematica de continuo Lezione Equazioni amose Matematica de continuo Moduo 7 - Funzioni di più variabii Unità didattica 4 Equazioni dierenziai Laura Citrini Università
valore di a: verso l alto (ordinate crescenti) se a>0, verso il basso (ordinate decrescenti) se a<0;
La parabola è una particolare conica definita come è una curva aperta, nel senso che non può essere contenuta in alcuna superficie finita del piano; è simmetrica rispetto ad una retta, detta ASSE della
M557- Esame di Stato di Istruzione Secondaria Superiore
Problema Ministero dell Istruzione, dell Università e della Ricerca M557- Esame di Stato di Istruzione Secondaria Superiore Indirizzi: LI, EA SCIENTIFICO LI3, EA9 SCIENTIFICO Opzione Scienze Applicate
l B 1. la velocità angolare dell asta un istante prima dell urto; 2. la velocità v 0 ; 3. l energia cinetica dissipata nell urto;
1 Esercizio (tratto da Probema 8.29 de Mazzodi 2) Un asta di unghezza 1.2 m e massa M 0.5 Kg è incernierata ne suo estremo A ad un perno fisso e può osciare senza attrito in un piano verticae. A istante
EQUAZIONI, DISEQUAZIONI E SISTEMI
EQUAZIONI, DISEQUAZIONI E SISTEMI RICHIAMI DI TEORIA Definizione: sia f una funzione reale di variabile reale. Gli elementi del dominio di f su cui la funzione assume valore nullo costituiscono l' insieme
1 Prodotto cartesiano di due insiemi 1. 5 Soluzioni degli esercizi 6
1 PRODOTTO CARTESIANO DI DUE INSIEMI 1 I-4 R 2 ed R 3 Piano e spazio cartesiani Indice 1 Prodotto cartesiano di due insiemi 1 2 Rappresentazione di R 2 sul piano cartesiano 2 3 Sottoinsiemi di R 2 e regioni
a) Determinare il dominio, i limiti agli estremi del dominio e gli eventuali asintoti di f. Determinare inoltre gli zeri di f e studiarne il segno.
1 ESERCIZI CON SOLUZIONE DETTAGLIATA Esercizio 1. Si consideri la funzione f(x) = e x 3e x +. a) Determinare il dominio, i limiti agli estremi del dominio e gli eventuali asintoti di f. Determinare inoltre
APPUNTI DA INTEGRARE ALLA LEZIONE DEL 19/11/10 (LA FUNZIONE SENO LA FUNZIONE COSENO LA FUNZIONE TANGENTE)
CLASSE ^D D C f APPUNTI DA INTEGRARE ALLA LEZIONE DEL 19/11/10 (LA FUNZIONE SENO LA FUNZIONE COSENO LA FUNZIONE TANGENTE) F La funzione seno associa ad un angolo x, misurato in radianti, il suo seno, ovvero
Piano cartesiano e Retta
Piano cartesiano e Retta 1 Piano cartesiano e Retta 1. Richiami sul piano cartesiano 2. Richiami sulla distanza tra due punti 3. Richiami punto medio di un segmento 4. La Retta (funzione lineare) 5. L
Ricordiamo. 1. Disegna una retta orientata, prendi un unità di misura e posiziona i seguenti punti: 1
Geometria Analitica Piano Cartesiano Sistema di coordinate su una retta Presa una retta r orientata, su cui sono stati fissati un origine O e un unità di misura, definiamo sistema di coordinate su una
c) Determina per quali valori di k il segmento BC ha misura 2. 3) Ricava l equazione della spezzata rappresentata in figura
VERIFICHE TERZA C a.s. 2010 2011 1) Sono assegnati i punti A(0; 10) B(8; - 6) C(0; 0). Rappresentali. a) Verifica che il triangolo ABC è isoscele e calcola la sua area b) Tra i punti P che hanno ordinata
LE DISEQUAZIONI IRRAZIONALI RISOLTE CON LA GEOMETRIA ANALITICA. con il conseguente iter risolutivo.
LE DISEQUAZIONI IRRAZIONALI RISOLTE CON LA GEOMETRIA ANALITICA Le disequazioni irrazionali possono essere risolte anche con l ausilio della geometria analitica. Non è necessario, in questo caso, saperle
Le disequazioni CAPITOLO 2 1. LE DISEQUAZIONI CON DERIVE
CAPITOLO Le disequazioni 1. LE DISEQUAZIONI CON DERIVE Le disequazioni si risovono con o stesso comando che abbiamo imparato ad usare per risovere e equazioni, sia che si tratti di disequazioni intere
Geometria analitica di base. Equazioni di primo grado nel piano cartesiano Funzioni quadratiche Funzioni a tratti Funzioni di proporzionalità inversa
Equazioni di primo grado nel piano cartesiano Funzioni quadratiche Funzioni a tratti Funzioni di proporzionalità inversa Equazioni di primo grado nel piano cartesiano Risoluzione grafica di un equazione
trasformazione grafico Cosa si deve fare Esempio goniometrico
trasformazione grafico Cosa si deve fare Esempio goniometrico = cos + b>0 Traslazione verticale b 0 si sposta il grafico verso l alto, oppure l asse orizzontale verso il
Risoluzione di un telaio iperstatico col metodo degli spostamenti. Complemento alla lezione 48/50: Il metodo degli spostamenti
Risouzione di un teaio iperstatico co metodo degi spostamenti ompemento aa ezione 48/50: I metodo degi spostamenti La struttura in figura è soggetta ad una forza concentrata F a metà de traverso. I teaio
FUNZIONI QUADRATICHE
f: R R si dice funzione quadratica se è del tipo f(x) =ax 2 +bx+c, dove a,b,c sono costanti Il grafico di una funzione quadratica è una curva detta parabola Abbiamo incontrato funzioni di questo tipo quando
GEOMETRIA ANALITICA 1 IL PIANO CARTESIANO
GEOMETRI NLITIC 1 IL PINO CRTESINO Il piano cartesiano è costituito da due rette orientate e tra loro perpendicolari chiamate assi cartesiani, generalmente una orizzontale e l altra verticale, sulle quali
La retta nel piano cartesiano
La retta nel piano cartesiano Cominciamo con qualche esempio. I) Rette parallele agli assi cartesiani Consideriamo la retta r in figura: i punti della retta hanno sempre ordinata uguale a 3. P ( ;3) Q
Le equazioni di alcune superfici dello spazio
A Le equazioni di acune suerfici deo sazio L equazione di una suerficie ciindrica In geometria anaitica si dice suerficie ciindrica una quaunque suerficie ce a come direttrice una curva aartenente ad un
Disequazioni di 1 grado
Disequazioni di grado Disuguaglianze numeriche Esempio: < è una disuguaglianza numerica e si legge minore di Nota: posso anche scrivere ( maggiore di ) Esempio: (oppure < ) Proprietà delle disuguaglianze
Appunti di Matematica 5 - Derivate - Derivate. Considero una funzione e sia e definita in un intorno completo di.
Derivate Definizione di derivata di f(x) in x D o f Considero una funzione e sia e definita in un intorno completo di. Consideriamo il rapporto (detto rapporto incrementale ) È evidente che il rapporto
1. Determinare il trinomio invariante del seguente sistema di vettori applicati:
Università di Pavia Facotà di Ingegneria Corso di Laurea in Ingegneria Edie/Architettura Correzione prova scritta Esame di Meccanica Razionae 13 febbraio 212 1. Determinare i trinomio invariante de seguente
Studio del segno di un prodotto
Studio del segno di un prodotto Consideriamo una disequazione costituita dal prodotto di più binomi, ad esempio: ( x 1 )( 4 x)( x + 3) > 0 Per risolverla possiamo studiare il segno del prodotto al variare
LA PARABOLA. Parabola con asse di simmetria coincidente con l asse y e passante per l origine. Equazione canonica Vertice V ( 0,0) Fuoco
LA PARABOLA La parabola è il luogo geometrico dei punti del piano equidistanti da un punto fisso F detto fuoco e da una retta fissa detta direttrice. Parabola con asse di simmetria coincidente con l asse
Parallelogrammi, trapezi e poligoni regolari
CAPITOLO 5 Paraeogrammi, trapezi e poigoni regoari 1. I PARALLELOGRAMMI CON GEOGEBRA Esercitazione 1. Costruire un paraeogramma dati tre vertici consecutivi Per risovere questo probema usiamo a definizione
Nel caso particolare in cui il vertice si trovi nell'origine, la parabola assume la forma: y ˆ ax 2.
LA PARABOLA Rivedi la teoria La parabola e la sua equazione La parabola eá il luogo dei punti del piano che hanno la stessa distanza da un punto fisso chiamato fuoco e da una retta fissa chiamata direttrice.
Grafico della funzione y = sen x
G Grafico della funzione y = sen x Utilizzare GeoGebra per costruire il grafico della funzione y ¼ sen x a partire dalla sua definizione mediante la circonferenza goniometrica. Come sai, il valore della
