I grafici derivati e la periodicità

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "I grafici derivati e la periodicità"

Transcript

1 A I grafici derivati e a periodicità A partire dai grafici dee funzioni goniometriche fondamentai possiamo costruire queo di atre funzioni appicando opportune isometrie. Di seguito vediamo acuni esempi. Primo esempio Rappresentiamo i grafico di y ¼ sin x þ. Questa funzione è a corrispondente di y ¼ sin x nea trasazione di vettore ~v ¼ ð0, Þ. Per ottenere i suo grafico basta "spostare" di unità verso ato queo dea funzione base y ¼ sin x. Secondo esempio Costruiamo i grafico dea funzione di equazione y ¼ cos x. I grafico di questa funzione si ottiene daa funzione base y ¼ cos x (in nero in figura) mediante una simmetria rispetto a asse x (grafico in rosso). Terzo esempio Rappresentiamo i grafico di y ¼ sin x 1. Dopo aver disegnato a funzione base y ¼ sin x (in nero nea figura), operiamo e seguenti trasformazioni: diatazione di fattore ungo asse dee ordinate per avere sin x; in pratica basta raddoppiare e ordinate de grafico base (grafico in bu) trasazione di vettore ~v ¼ ð0, 1Þ su grafico precedente per avere sin x 1 (grafico in rosso). Attenzione a ordine di appicazione dee trasformazioni (segui a figura): se sua curva base (grafico in nero) si esegue prima a trasazione di vettore ~v ¼ ð0, 1Þ (grafico in azzurro) quindi a diatazione ungo e ordinate di fattore (curva in rosso), si ottiene un grafico diverso che non corrisponde a queo richiesto ma a queo dea funzione y ¼ ðsin x 1Þ: Per individuare esatto ordine di appicazione dee diverse trasformazioni devi seguire ordine dee operazioni; ne caso dea nostra funzione: dato x, prima si cacoa sin x (funzione base), poi si cacoa sin x (diatazione di fattore ), poi si cacoa sin x 1 (trasazione di vettore ~v ¼ ð0, 1Þ). La periodicità dee funzioni goniometriche Si dice che una funzione f ðxþ è periodica di periodo S se S è i più piccoo numero per i quae si verifica che f ðx þ ksþ ¼ f ðxþ con k Z

2 fondamentai seno e coseno sono periodiche di periodo perché sappiamo che sin ðx þ kþ ¼ sin x e cos ðx þ kþ ¼ cos x, mentre a funzione tangente è periodica di periodo perché tan ðx þ kþ ¼ tan x. Appicando una diatazione di fattore h ungo asse x, anche i periodo dea funzione subisce a stessa diatazione; di conseguenza possiamo dire che: n e funzioni sin hx e cos hx sono periodiche di periodo h n a funzione tan hx è periodica di periodo h Esempio La funzione y ¼ sin x, essendo h ¼,èperiodica di periodo ¼ 8 La funzione y ¼ tan 5x, essendo h ¼ 5, è periodica di periodo 5 La funzione y ¼ cos x, essendo h ¼, èperiodica di periodo ¼. ESERCIZI 1 Per tracciare i grafico dea funzione y ¼ sin x þ 1 a partire da queo di sin x, devi operare ne ordine: a. una diatazione di fattore 1 ungo asse dee ascisse e poi una trasazione di vettore ~v ¼ 0, 1 ð Þ b. una diatazione di rapporto 1 ungo asse dee ascisse e poi una trasazione di vettore ~v ¼ ð 0, 1 Þ c. una diatazione di rapporto ungo asse dee ascisse e poi una trasazione di vettore ~v ¼ ð0, 1Þ d. una diatazione di rapporto ungo asse dee ordinate e poi una trasazione di vettore ~v ¼ ð0, 1Þ. Se aa funzione y ¼ cos x appichiamo una trasazione di vettore ~v ¼ð1, 0Þ otteniamo a funzione di equazione: a. y ¼ cos x þ 1 b. y ¼ cosðx þ 1Þ c. y ¼ cosðx 1Þ d. y ¼ cos x 1 Aa funzione y ¼ sin x vengono appicate una diatazione di fattore ungo asse x e una trasazione di vettore ~v ¼ð0, 1Þ; in questo modo si ottiene a funzione: a. y ¼ sin x 1 b. y ¼ sin x 1 c. y ¼ sin x þ 1 d. y ¼ sin x 1 Indica quai trasformazioni occorre appicare per costruire i grafico dee seguenti funzioni a partire dae funzioni goniometriche fondamentai: a. y ¼ sin x b. y ¼ cos x c. y ¼ cos x d. y ¼ sin x

3 N.B.: Puoi controare con GeoGebra di avere costruito correttamente i grafici richiesti. Mediante appicazione di opportune trasazioni, costruisci i grafici dee seguenti funzioni. 5 y ¼ sin x 1 y ¼ cos x þ 7 y ¼ sin x 8 y þ 1 ¼ cos x 9 y ¼ sin x þ La funzione y ¼ sin x þ (funzione trasformata) si ottiene daa y ¼ sin x (funzione di base) mediante una trasazione di vettore ~v ¼,0. I grafici dea funzione base (in nero) e di quea trasformata (in rosso) sono riportati in figura. 10 y ¼ cos x þ 11 y ¼ sin x 1 y ¼ tan x 1 1 y ¼ tan x þ 1 y ¼ sin x þ 15 y ¼ tan x þ 1 y ¼ cos x þ 1 17 y ¼ tan x þ 18 y ¼ þ sin x 19 y ¼ 1 þ cos x þ 0 I grafico in figura rappresenta a funzione: a. y ¼ sin x b. y ¼ cos x c. y ¼ sin x þ d. y ¼ cos x þ Mediante appicazione di opportune simmetrie, costruisci i grafici dee seguenti funzioni. 1 y ¼ sin x y ¼ tan x y ¼ sin ð xþ La funzione y ¼ sinð xþ (funzione trasformata) si ottiene daa y ¼ sin x (funzione di base) con e sostituzioni x! x. y! y Si tratta, pertanto, di una simmetria rispetto a asse y.

4 y ¼ cos ð xþ 5 y ¼ tan ð xþ y ¼ sin ð xþ 7 y ¼ cos ð xþ 8 y ¼ sin ð xþþ 1 9 y ¼ tan ð xþþ 1 0 I grafico in figura rappresenta a funzione a. y ¼ 1 cos x b. y ¼ 1 sin x c. y ¼ sin x þ 1 b. y ¼ 1 þ cos x Mediante appicazione di opportune diatazioni, costruisci i grafici dee seguenti funzioni. 1 y ¼ sin x y ¼ 1 sin x y ¼ cos x y ¼ tan x 5 y ¼ sin x y ¼ cos x 7 y ¼ 1 sin x Costruiamo per passaggi successivi i grafico richiesto; nea figura di pagina seguente abbiamo disegnato in successione: a funzione base y ¼ sin x (in nero) y ¼ sin x (in azzurro) con una diatazione di coefficiente dee ascisse (i periodo diventa ) 1 y ¼ sin x (in rosso) con una diatazione di coefficiente 1 dee ordinate. La curva che ne risuta è quea in rosso. 8 y ¼ cos x 9 y ¼ tan x 0 y ¼ sin x 1 y ¼ cos x

5 A quae funzione corrisponde i grafico nea figura a ato? a. y ¼ cos x b. y ¼ sin x c. y ¼ cos x d. y ¼ sin x La periodicità dee funzioni goniometriche y ¼ sin x La funzione data è a trasformata di y ¼ sin x (che ha periodo ) mediante una diatazione di fattore k ¼ 1 ungo asse x; i periodo subisce a stessa trasformazione: 1 ðþ ¼. y ¼ sin 1 x y ¼ cos x 8; 8 h 5 y ¼ sin x y ¼ tan x 1; y ¼ sin 1 x þ 1 y ¼ cos x þ ½; Š i Risutati di acuni esercizi. 1 b. c. b. a. ~v ¼ ð0, Þ; b. diatazione di fattore ungo asse y; c. diatazione di fattore ungo asse x; d. ~v ¼,0 0 d. 0 b. d.

I grafici derivati - Funzioni esponenziali

I grafici derivati - Funzioni esponenziali A I grafici derivati - Funzioni esponenziali A partire dal grafico della funzione y ¼ a possiamo costruire quello di altre funzioni esponenziali applicando opportune isometrie. Di seguito vediamo alcuni

Dettagli

1. MISURIAMO GLI ANGOLI CON GEOGEBRA

1. MISURIAMO GLI ANGOLI CON GEOGEBRA . MISURIAMO GLI ANGOLI CON GEOGEBRA Nascondiamo gi assi cartesiani in modo da usare a finestra grafica come piano eucideo. Disegniamo un punto C che rappresenti i centro di una circonferenza e creiamo

Dettagli

I grafici deducibili. funzione f ðxþ. y ¼jf ðxþj. Si esegue una simmetria rispetto all asse x dell intero grafico

I grafici deducibili. funzione f ðxþ. y ¼jf ðxþj. Si esegue una simmetria rispetto all asse x dell intero grafico A I grafici deducibili A partire dal grafico di una funzione f x e applicando opportune trasformazioni è possibile costruire il grafico delle seguenti funzioni: funzione f x y ¼ fx Si esegue una simmetria

Dettagli

Funzioni o applicazioni composte

Funzioni o applicazioni composte I LINGUAGGI DELLA MATEMATICA n Funzioni o applicazioni composte n Composizione di funzioni matematiche n Funzioni limitate. Funzioni periodiche n Funzioni lineari a tratti Funzioni o applicazioni composte

Dettagli

LE TRASFORMAZIONI GEOMETRICHE E I GRAFICI DELLE FUNZIONI

LE TRASFORMAZIONI GEOMETRICHE E I GRAFICI DELLE FUNZIONI LE TRASFORMAZIONI GEOMETRICHE E I GRAFICI DELLE FUNZIONI LE TRASFORMAZIONI GEOMETRICHE E I GRAFICI DELLE FUNZIONI 1. LE EQUAZIONI DI UNA TRASFORMAZIONE GEOMETRICA DEFINIZIONE Una trasformazione geometrica

Dettagli

ANGOLI MAGGIORI DELL ANGOLO RETTO

ANGOLI MAGGIORI DELL ANGOLO RETTO ANGOLI MAGGIORI DELL ANGOLO RETTO Le equazioni trigonometriche sin θ = a, cos θ = b e tan θ = c possono avere tante soluzioni. I tasti delle funzioni inverse nelle calcolatrici (sin 1, cos 1 e tan 1 ),

Dettagli

Le affinità. Una affinità è una corrispondenza biunivoca fra i punti di un piano che ha come invarianti l allineamento dei punti e il parallelismo.

Le affinità. Una affinità è una corrispondenza biunivoca fra i punti di un piano che ha come invarianti l allineamento dei punti e il parallelismo. A Le affinità Trasazioni, simmetrie assiai o centrai, omotetie e diatazioni, di cui abbiamo già fatto argo uso neo studio dea geometria anaitica, insieme ad atre trasformazioni quai e rotazioni, sono egate

Dettagli

Il piano cartesiano, la retta e le funzioni di proporzionalità

Il piano cartesiano, la retta e le funzioni di proporzionalità MATEMATICAperTUTTI I piano cartesiano, a retta e e funzioni di proporzionaità ESERCIZIO SVOLTO I piano cartesiano. Per fissare un sistema di riferimento ne piano si considerano due rette orientate fra

Dettagli

þ k Þy ¼ ð 1 3k Þx 2 þ 21 k

þ k Þy ¼ ð 1 3k Þx 2 þ 21 k A I fasci di paraboe Come equazione di un fascio di rette è a combinazione ineare di due particoari rette, e sue generatrici, anche un fascio di paraboe è a combinazione ineare di due particoari di esse.

Dettagli

LE POTENZE DEI NUMERI

LE POTENZE DEI NUMERI ARITMETICA LE POTENZE DEI NUMERI PREREQUISITI conoscere e proprietaá dee quattro operazioni svogere cacoi a mente ed in coonna con e quattro operazioni risovere espressioni con e quattro operazioni distinguere

Dettagli

GRAFICI DI FUNZIONI E TRASFORMAZIONI DEL PIANO

GRAFICI DI FUNZIONI E TRASFORMAZIONI DEL PIANO Note su GRAFICI DI FUNZINI E TRASFRMAZINI DEL IAN Giulia Fidanza In queste note ci proponiamo di trovare l equazione di una funzione il cui grafico sia ottenuto dal grafico di una funzione nota attraverso

Dettagli

Le funzioni goniometriche

Le funzioni goniometriche CAPITOLO 1 MATEMATICA PER LA FISICA Le funzioni goniometriche Obiettivi definire e funzioni goniometriche fondamentai in riferimento ai triangoi rettangoi e aa circonferenza goniometrica risovere triangoi

Dettagli

Equilibrio del corpo rigido

Equilibrio del corpo rigido Equiibrio de corpo rigido Probema1 Due sbarrette omogenee AB e BC aventi a stessa unghezza e a stessa massa di 6 kg, vengono sadate ne punto B in modo da formare un angoo di 90. Le due sbarrette così unite

Dettagli

APPUNTI DA INTEGRARE ALLA LEZIONE DEL 19/11/10 (LA FUNZIONE SENO LA FUNZIONE COSENO LA FUNZIONE TANGENTE)

APPUNTI DA INTEGRARE ALLA LEZIONE DEL 19/11/10 (LA FUNZIONE SENO LA FUNZIONE COSENO LA FUNZIONE TANGENTE) CLASSE ^D D C f APPUNTI DA INTEGRARE ALLA LEZIONE DEL 19/11/10 (LA FUNZIONE SENO LA FUNZIONE COSENO LA FUNZIONE TANGENTE) F La funzione seno associa ad un angolo x, misurato in radianti, il suo seno, ovvero

Dettagli

Modelli di secondo grado

Modelli di secondo grado MATEMATICAperTUTTI ESERCIZIO SVOLTO Le equazioni di secondo grado incompete. Un equazione di secondo grado si può sempre scrivere nea sua forma normae ax þ bx þ c 0 dove a, b, c sono numeri reai con a

Dettagli

Grafici di particolari funzioni lineari

Grafici di particolari funzioni lineari A Grafici di particoari funzioni ineari Vogiamo tracciare i grafico dea funzione y ˆ jxj. x quando x 0 Sappiamo che jxj significa x quando x < 0 Possiamo aora riscrivere 'equazione di questa funzione in

Dettagli

PROBLEMA 1 RISOLUZIONE. Punto 1

PROBLEMA 1 RISOLUZIONE. Punto 1 PROBLEMA Data una circonerenza di centro O e raggio unitario, si prendano su di essa tre punti A, B, C, tai che AB = BC.. Si cacoi, in unzione de angoo AÔB =, a quantità: AB BC CA controando che risuti:

Dettagli

Esercitazione su grafici di funzioni elementari

Esercitazione su grafici di funzioni elementari Esercitazione su grafici di funzioni elementari Davide Boscaini Queste sono le note da cui ho tratto le esercitazioni del giorno 8 Novembre 0. Come tali sono ben lungi dall essere esenti da errori, invito

Dettagli

1. Determinare il trinomio invariante del seguente sistema di vettori applicati:

1. Determinare il trinomio invariante del seguente sistema di vettori applicati: Università di Pavia Facotà di Ingegneria Corso di Laurea in Ingegneria Edie/Architettura Correzione prova scritta Esame di Meccanica Razionae 13 febbraio 212 1. Determinare i trinomio invariante de seguente

Dettagli

La statistica descrittiva

La statistica descrittiva MATEMATICAperTUTTI Dee seguenti indagine statistiche individua a popoazione, i carattere oggetto di studio e e possibii modaità di tae carattere. 1 ESERCIZIO SVOLTO Indagine: utiizzo de tempo ibero da

Dettagli

4. determinare un sistema di vettori applicati, equivalente a quello proposto, formato da due vettori, di cui uno applicato in Q (1, 0, 1).

4. determinare un sistema di vettori applicati, equivalente a quello proposto, formato da due vettori, di cui uno applicato in Q (1, 0, 1). 1 Università di Pavia Facotà di Ingegneria Corso di Laurea in Ingegneria Industriae Correzione prova scritta Esame di Fisica Matematica 18 gennaio 212 1. Determinare, per i seguente sistema di vettori

Dettagli

1. LA PARABOLA CON GEOGEBRA

1. LA PARABOLA CON GEOGEBRA 1. LA PARABOLA CON GEOGEBRA Dopo aver avviato i programma, chiudiamo a Vista Agebra, togiamo gi assi cartesiani e a grigia da quea grafica in modo da avorare iniziamente ne piano eucideo. Affrontiamo poi

Dettagli

Scheda di lavoro 1. Isometrie: come ottenerle con GeoGebra

Scheda di lavoro 1. Isometrie: come ottenerle con GeoGebra Scheda di lavoro 1. Isometrie: come ottenerle con GeoGebra Esercizio 1. Traslazioni. Per traslare un oggetto di un vettore, bisogna prima definire l oggetto ed il vettore. Consideriamo la retta y = 2x

Dettagli

1) Scrivere le espressioni lagrangiane delle energie cinetica e potenziale e usarle per scrivere le equazioni di Lagrange per il sistema.

1) Scrivere le espressioni lagrangiane delle energie cinetica e potenziale e usarle per scrivere le equazioni di Lagrange per il sistema. 7 si può discutere come quea di un pendoo sempice con punto di equiibrio stabie ϕ e α quando δ < e come quea di un pendoo inverso cioè con a gravità verso ato invece che verso i basso e punto di equiibrio

Dettagli

La famiglia come fornitrice di risorse

La famiglia come fornitrice di risorse 5 La famiglia come fornitrice di risorse 5.1 a. Il vincolo di bilancio iniziale di Bianca è B 1. b. Se si ipotizza che uno zio molto ricco regali a Bianca 1000 euro l anno, il suo vincolo di bilancio diventa

Dettagli

Trasformazioni geometriche nel piano: dalle isometrie alle affinità

Trasformazioni geometriche nel piano: dalle isometrie alle affinità Trasformazioni geometriche nel piano: dalle isometrie alle affinità Le trasformazioni geometriche In generale una trasformazione geometrica è una corrispondenza biunivoca del piano in sé, ossia associa

Dettagli

La scala logaritmica

La scala logaritmica La scaa ogaritmica Obiettivi utiizzare coordinate ogaritmiche e semiogaritmiche 1. COORDINATE LOGARITMICHE Se un numero k eá maggiore di 10, i suo ogaritmo in base 10 eá moto piuá piccoo de numero stesso:

Dettagli

Introduzione alla fisica. Grandezze fisiche Misura ed errori di misura. Unità di misura

Introduzione alla fisica. Grandezze fisiche Misura ed errori di misura. Unità di misura Introduzione aa fisica Grandezze fisiche Misura ed errori di misura. Unità di misura La fisica come scienza sperimentae Studio di un fenomeno OSSERVAZIONI SPERIMENTALI MISURA DI GRANDEZZE FISICHE IPOTESI

Dettagli

Trigonometria angoli e misure

Trigonometria angoli e misure Trigonometria angoli e misure ITIS Feltrinelli anno scolastico 27-28 R. Folgieri 27-28 1 Angoli e gradi Due semirette che condividono la stessa origine danno luogo ad un angolo. Le due semirette (che si

Dettagli

Esercitazione su grafici di funzioni elementari e domini di funzioni

Esercitazione su grafici di funzioni elementari e domini di funzioni Esercitazione su grafici di funzioni elementari e domini di funzioni Davide Boscaini Queste sono le note da cui ho tratto le esercitazioni del giorno 0 Ottobre 0. Come tali sono ben lungi dall essere esenti

Dettagli

TRIGONOMETRIA: DISEQUAZIONI TRIGONOMETRICHE

TRIGONOMETRIA: DISEQUAZIONI TRIGONOMETRICHE FACOLTÀ DI INGEGNERIA CORSI DI POTENZIAMENTO - MATEMATICA E LOGICA ANNO ACCADEMICO 008-009 ESERCIZI DI TRIGONOMETRIA: DISEQUAZIONI TRIGONOMETRICHE Esercizio : Risolvere la seguente disequazione >. Svolgimento:

Dettagli

LA PARABOLA E LA SUA EQUAZIONE

LA PARABOLA E LA SUA EQUAZIONE LA PARABOLA E LA SUA EQUAZIONE Prof. Giovanni Ianne CHE COS È LA PARABOLA DEFINIZIONE Parabola Scegliamo sul piano un punto F e una retta d. Possiamo tracciare sul piano i punti equidistanti da F e da

Dettagli

Nicola De Rosa, Liceo scientifico di ordinamento sessione straordinaria 2012, matematicamente.it

Nicola De Rosa, Liceo scientifico di ordinamento sessione straordinaria 2012, matematicamente.it Nicoa De Rosa, Liceo scientifico di ordinamento sessione straordinaria, matematicamente.it PROBLEMA I triangoo ABC, rettangoo in A, ha ipotenusa BC a ; sia P i punto medio di AC, Q a sua proiezione ortogonae

Dettagli

Luoghi di punti e funzioni non lineari

Luoghi di punti e funzioni non lineari CAPITOLO 3 Luoghi di punti e funzioni non ineari 1. LE FUNZIONI NON LINEARI CON DERIVE Per costruire i grafico di una paraboa o di un'iperboe si usa a stessa procedura usata per a retta: si scrive 'equazione

Dettagli

Triangolo rettangolo

Triangolo rettangolo Triangoo rettangoo Le paroe dea matematica Cateto minore C i ipotenusa C1 Cateto maggiore Verificiamo i teorema di Pitagora Enunciato: In un triangoo rettangoo area de quadrato costruito su ipotenusa è

Dettagli

Meccanica dei Manipolatori. Corso di Robotica Prof. Davide Brugali Università degli Studi di Bergamo

Meccanica dei Manipolatori. Corso di Robotica Prof. Davide Brugali Università degli Studi di Bergamo Meccanica dei Manipoatori Corso di Robotica Prof. Davide Brugai Università degi Studi di Bergamo Definizione di robot industriae Un robot industriae è un manipoatore mutifunzionae riprogrammabie, comandato

Dettagli

La composizione di isometrie

La composizione di isometrie La composizione di isometrie Quello che è più interessante in una trasformazione geometrica è studiare quali effetti ha sulle figure e soprattutto valutare quali proprietà delle figure di partenza si conservano

Dettagli

FUNZIONI GONIOMETRICHE

FUNZIONI GONIOMETRICHE FUNZIONI GONIOMETRICHE ANGOLI Col termine angolo indichiamo la parte di piano limitata da due semirette aventi la stessa origine, chiamata vertice. Possiamo definire anche l angolo come la parte di piano

Dettagli

L EQUAZIONE DIFFERENZIALE DELLA LINEA ELASTICA

L EQUAZIONE DIFFERENZIALE DELLA LINEA ELASTICA http://www.itimarconi.ct.it/sezioni/didatticaonine/edie/ostruzioni/linea%0eastic... Pagina di 06/0/006 L EQUAZIONE DIFFERENZIALE DELLA LINEA ELASTIA. BREVI RIHIAMI SULLA TEORIA DELLE TRAVI INFLESSE Si

Dettagli

TRASFORMAZIONI DEL PIANO E GRAFICI

TRASFORMAZIONI DEL PIANO E GRAFICI Trasformazioni del piano e grafici TRASFORMAZIONI DEL PIANO E GRAFICI RICHIAMI DI TEORIA Definizione: consideriamo il piano R munito di un sistema di riferimento cartesiano ortogonale. Una trasformazione

Dettagli

FUNZIONI E LORO PROPRIETÀ. V CLASSICO a. s. 2015-2016 prof. ssadelfino M. G.

FUNZIONI E LORO PROPRIETÀ. V CLASSICO a. s. 2015-2016 prof. ssadelfino M. G. FUNZIONI E LORO PROPRIETÀ 1 V CLASSICO a. s. 2015-2016 prof. ssadelfino M. G. A1 DEFINIZIONE DI FUNZIONE 2 Diapositiva 2 A1 Autore; 08/09/2015 DEFINIZIONE DI FUNZIONE X Y E una funzione! g a b c d e f.1.2.3.4

Dettagli

Equazioni goniometriche elementari

Equazioni goniometriche elementari Equazioni goniometriche elementari In questa dispensa vengono esaminate le equazioni goniometriche elementari; ad esse si riconducono molti tipi di equazioni goniometriche. A partire da esempi, viene illustrato

Dettagli

Equazioni goniometriche elementari. Daniela Valenti, Treccani scuola

Equazioni goniometriche elementari. Daniela Valenti, Treccani scuola Equazioni goniometriche elementari 1 Questa presentazione è dedicata a risolvere equazioni trigonometriche elementari Sono dette elementari le equazioni del tipo sin(x)=m, cos(x) = m e tan(x) = m, con

Dettagli

Nicola De Rosa, Liceo scientifico sperimentale sessione straordinaria 2012, matematicamente.it

Nicola De Rosa, Liceo scientifico sperimentale sessione straordinaria 2012, matematicamente.it Nicoa De Rosa Liceo scientiico sperimentae sessione straordinaria matematicamente.it PROBLEMA La sezione trasversae di un canae di imgazione ha a orma di un trapezio isoscee con a base maggiore in ato.

Dettagli

FUNZIONI. y Y. Def. L insieme Y è detto codominio di f. Es. Siano X = R, Y = R e f : x y = 1 x associo il suo inverso). (ad un numero reale

FUNZIONI. y Y. Def. L insieme Y è detto codominio di f. Es. Siano X = R, Y = R e f : x y = 1 x associo il suo inverso). (ad un numero reale FUNZIONI Siano X e Y due insiemi. Def. Una funzione f definita in X a valori in Y è una corrispondenza (una legge) che associa ad ogni elemento X al più un elemento in Y. X Y Def. L insieme Y è detto codominio

Dettagli

SOLUZIONE DEL PROBLEMA 1 TEMA DI MATEMATICA ESAME DI STATO 2017

SOLUZIONE DEL PROBLEMA 1 TEMA DI MATEMATICA ESAME DI STATO 2017 SOLUZIONE DEL PROBLEMA TEMA DI MATEMATICA ESAME DI STATO 7. Studiamo la funzione f() per verificare che il suo grafico sia compatibile con il profilo della pedana. Dominio della funzione. R Eventuali simmetrie

Dettagli

ESERCIZI SULLE CURVE

ESERCIZI SULLE CURVE ESERCIZI SULLE CURVE VALENTINA CASARINO Esercizi per il corso di Fondamenti di Analisi Matematica, (Ingegneria Gestionale, dell Innovazione del Prodotto, Meccanica e Meccatronica, Università degli studi

Dettagli

LE FUNZIONI GONIOMETRICHE: SENO, COSENO E TANGENTE

LE FUNZIONI GONIOMETRICHE: SENO, COSENO E TANGENTE LE FUNZIONI GONIOMETRICHE: SENO, COSENO E TANGENTE 1. LE FUNZIONI SENO E COSENO LE FUNZIONI SENO, COSENO E TANGENTE DEFINIZIONE Seno e coseno Consideriamo la circonferenza goniometrica e un angolo orientato

Dettagli

Funzioni elementari: funzioni trigonometriche 1 / 17

Funzioni elementari: funzioni trigonometriche 1 / 17 Funzioni elementari: funzioni trigonometriche 1 / 17 La circonferenza di equazione x 2 + y 2 = 1 é detta circonferenza goniometrica. La circonferenza goniometrica 1 P 1 α 0 A 1 2 / 17 La circonferenza

Dettagli

FUNZIONI. y Y. Def. L insieme Y è detto codominio di f. Es. Siano X = R, Y = R e f : x y = 1 x associo il suo inverso). (ad un numero reale

FUNZIONI. y Y. Def. L insieme Y è detto codominio di f. Es. Siano X = R, Y = R e f : x y = 1 x associo il suo inverso). (ad un numero reale FUNZIONI Siano X e Y due insiemi. Def. Una funzione f definita in X a valori in Y è una corrispondenza (una legge) che associa ad ogni elemento X al piú un elemento in Y. X Y Def. L insieme Y è detto codominio

Dettagli

SECONDA PROVA SCRITTA ESEMPIO MINISTERIALE DICEMBRE Tema di MATEMATICA FISICA QUESTIONARIO Q 1

SECONDA PROVA SCRITTA ESEMPIO MINISTERIALE DICEMBRE Tema di MATEMATICA FISICA QUESTIONARIO Q 1 www.matefiia.it SECONDA PROVA SCRITTA ESEMPIO MINISTERIALE DICEMBRE 018 Tema di MATEMATICA FISICA QUESTIONARIO Q 1 Indichiamo con y a distanza da origine dea barretta e con dy o spazio percorso daa barretta

Dettagli

trasformazione grafico Cosa si deve fare Esempio goniometrico

trasformazione grafico Cosa si deve fare Esempio goniometrico trasformazione grafico Cosa si deve fare Esempio goniometrico = cos + b>0 Traslazione verticale b 0 si sposta il grafico verso l alto, oppure l asse orizzontale verso il

Dettagli

1 Funzioni trigonometriche

1 Funzioni trigonometriche 1 Funzioni trigonometriche 1 1 Funzioni trigonometriche Definizione 1.1. Si definisce circonferenza goniometrica la circonferenza centrata nell origine di un piano cartesiano e raggio unitario. L equazione

Dettagli

IL PENDOLO REVERSIBILE DI KATER

IL PENDOLO REVERSIBILE DI KATER IL PENDOLO REVERSIBILE DI KATER I periodo dee osciazioni de pendoo sempice è dato daa formua: T 0 = π g Questa reazione è vaida per e piccoe osciazioni, quando, cioè, si può assimiare i seno de'angoo massimo

Dettagli

RISOLUZIONE DI UN TELAIO CON IL METODO MATRICIALE

RISOLUZIONE DI UN TELAIO CON IL METODO MATRICIALE Università degi Studi di Paermo Facotà di Ingegneria Dipartimento di Ingegneria Strutturae e Geotecnica a.a. 5-6 RISOLUZIOE DI U TELAIO CO IL METODO MATRICIALE Si ringrazia Ing. Faio Di Trapani per a coaorazione

Dettagli

Disequazioni goniometriche

Disequazioni goniometriche Disequazioni goniometriche Si definiscono disequazioni goniometriche le disequazioni nelle quali l angolo incognito è espresso mediante funzioni goniometriche (seno, coseno, tangente etc.). Per le disequazioni

Dettagli

Esercitazione 7 del corso di Statistica 2

Esercitazione 7 del corso di Statistica 2 Esercitazione 7 de corso di Statistica Prof. Domenico Vistocco Dott.ssa Paoa Costantini 9 Giugno 008 Esercizio La distribuzione dei pesi dei pesi pacchetti per confezionare per confezionare e caramee,

Dettagli

x dove fx ( ) assume tali valori si dice punto di massimo o di

x dove fx ( ) assume tali valori si dice punto di massimo o di 7. Funzioni limitate ed illimitate, funzioni inverse Definizione: Una funzione f: A Bsi dice limitata superiormente od inferiormente se il suo condominio è un insieme limitato superiormente od inferiormente.

Dettagli

PALESTRA PER IL RECUPERO

PALESTRA PER IL RECUPERO PARABOLA. PALESTRA PER IL RECUPERO ESERCIZI SVOLTI ESERCIZI Raresentare graficamente la arabola di equazione assegnata. 1 y x þ x Determiniamo la coordinate del vertice b " x V b a 1 ð 1Þ 1 # a y V c b

Dettagli

COMPITI PER IL RECUPERO DELLA CARENZA FORMATIVA (E RIPASSO) MATEMATICA III - VE

COMPITI PER IL RECUPERO DELLA CARENZA FORMATIVA (E RIPASSO) MATEMATICA III - VE 1 COMPITI PER IL RECUPERO DELLA CARENZA FORMATIVA (E RIPASSO) MATEMATICA III - VE Scheda 1: Fondamenti di geometria analitica 1. Determina il punto P dell asse y che forma con A(; ) e B(; ) un triangolo

Dettagli

y (b) f(x, y) = y log x sin x (c) f(x, y) = tan y (d) f(x, y) = e x y (f) f(x, y) = cos(x 2 + y 2 )

y (b) f(x, y) = y log x sin x (c) f(x, y) = tan y (d) f(x, y) = e x y (f) f(x, y) = cos(x 2 + y 2 ) FUNZIONI DI PIÙ VARIABILI. Siano date le seguenti funzioni: (a) f(x, y) = 3x + y (c) h(x, y) = x y (b) g(x, y) = xy (d) k(x, y) = x + y Determinare e disegnare nel piano cartesiano il dominio delle funzioni

Dettagli

Matematica ed statistica Corso di Laurea in Biotecnologie - anno acc. 2014/2015

Matematica ed statistica Corso di Laurea in Biotecnologie - anno acc. 2014/2015 Matematica ed statistica Corso di Laurea in Biotecnologie - anno acc. 014/015 Esercizi sulle funzioni Esercizio 1. Determinare il dominio delle seguenti funzioni: + ; : + ; : + 1 ; : 1 ; : [, + [ 1 ; :

Dettagli

CONOSCENZE 1. il concetto di parallelismo e. e perpendicolari. 2. la proiezione di un segmento

CONOSCENZE 1. il concetto di parallelismo e. e perpendicolari. 2. la proiezione di un segmento GEOMETRIA PREREQUISITI conoscere e caratteristiche de sistema decimae conoscere e proprietaá dee quattro operazioni e operare con esse operare con e misure angoari conoscere gi enti dea geometria e e oro

Dettagli

Gli angoli e le funzioni goniometriche

Gli angoli e le funzioni goniometriche Gli angoli e le funzioni goniometriche A a. Poiché sin sin cos e cos Ö á Ücos l equazione diventa: cos cos cos b. Il grafico della funzione cos si ottiene dal grafico della funzione cos alicando rima una

Dettagli

Le equazioni e le disequazioni lineari

Le equazioni e le disequazioni lineari MATEMATICAperTUTTI Le equazioni e e disequazioni ineari Le equazioni ineari ESERCIZIO SVOLTO Le equazioni. Chiamiamo equazione ad una incognita un uguagianza fra due espressioni agebriche di cui ameno

Dettagli

( 1 ) AB:A B =BC:B C =CA:C A

( 1 ) AB:A B =BC:B C =CA:C A Goniometria II parte Funzioni goniometriche: seno, coseno tangente Ricordiamo che: Due triangoli si dicono simili se hanno gli angoli ordinatamente uguali e i lati omologhi (nel caso dei triangoli i lati

Dettagli

Funzioni e grafici. prof. Andres Manzini

Funzioni e grafici. prof. Andres Manzini Università degli studi di Modena e Reggio Emilia Dipartimento di Scienze e Metodi dell Ingegneria Corso MOOC Iscriversi a Ingegneria Reggio Emilia Introduzione Definizione Si dice funzione (o applicazione)

Dettagli

Funzioni elementari. Tutorial di Barberis Paola - agg grafici con GEOGebra - software open source

Funzioni elementari. Tutorial di Barberis Paola - agg grafici con GEOGebra - software open source Funzioni elementari Proporzionalità diretta e inversa Retta, funzione identità e funzione costante Parabola, funzione quadratica e cubica Funzione omografica Funzione esponenziale e logaritmica Funzioni

Dettagli

Nome..Cognome 18 Ottobre Verifica di matematica: Goniometria

Nome..Cognome 18 Ottobre Verifica di matematica: Goniometria Nome..Cognome 8 Ottobre 008 Classe G Verifica di matematica: Goniometria A) Traccia i grafici delle seguenti funzioni: ) y = arccos x ) y = arctan( x) ) y = sin x ) y = cos x ) y = tan x ) y = arcsin(

Dettagli

Capitolo 3. Le funzioni elementari

Capitolo 3. Le funzioni elementari Capitolo 3 Le funzioni elementari Uno degli scopi di questo capitolo è lo studio delle funzioni reali di variabile reale, ossia funzioni che hanno come dominio un sottoinsieme di R e codominio R. Lo studio

Dettagli

I primi elementi e i triangoli

I primi elementi e i triangoli MATEMATICAperTUTTI I triangoi 1 ESERCIZIO SVOLTO I primo criterio di congruenza. I confronto fra figure geometriche è un operazione che ricorre spesso in geometria, speciamente i confronto fra triangoi.

Dettagli

LE FUNZIONI TRIGONOMETRICHE. Prof.ssa CaterinaVespia

LE FUNZIONI TRIGONOMETRICHE. Prof.ssa CaterinaVespia LE FUNZIONI TRIGONOMETRICHE 1 LE FUNZIONI SENO E COSENO Detto P il punto sulla circonferenza che è associato all angolo α, e H il punto della proiezione di P sull asse delle x, si definisce: coseno seno

Dettagli

Circonferenza. Domande, problemi, esercizi. 1) Scrivi un equazione per la circonferenza del disegno

Circonferenza. Domande, problemi, esercizi. 1) Scrivi un equazione per la circonferenza del disegno Circonferenza Domande, problemi, esercizi 1) Scrivi un equazione per la circonferenza del disegno 2) Scrivi un equazione per la circonferenza del disegno Circonferenza: esercizi e domande pagina 1 3) Scrivi

Dettagli

LE FUNZIONI SENO, COSENO E TANGENTE

LE FUNZIONI SENO, COSENO E TANGENTE LE FUNZIONI SENO, COSENO E TANGENTE 1. LE FUNZIONI LE FUNZIONI SENO, E COSENO COSENO E TANGENTE 2 /15 DEFINIZIONE Seno e coseno Consideriamo la circonferenza goniometrica e un angolo orientato, e sia B

Dettagli

Corso di Meccanica, Macchine e Impianti Termici CAPITOLO 3 DIAGRAMMA DELLE SOLLECITAZIONI INTERNE

Corso di Meccanica, Macchine e Impianti Termici CAPITOLO 3 DIAGRAMMA DELLE SOLLECITAZIONI INTERNE Istituto Professionae Statae per 'Industria e 'rtigianato "L.. berti" Rimini nno Scoastico 009/010 orso di Meccanica, Macchine e Impianti Termici PITOLO 3 DIGRMM DELLE SOLLEITZIONI INTERNE Prof. Matteo

Dettagli

Analisi Matematica II Corso di Ingegneria Biomedica Compito del

Analisi Matematica II Corso di Ingegneria Biomedica Compito del Analisi Matematica II Corso di Ingegneria Biomedica Compito del 7-- Esercizio. punti Data la funzione fx, y = log x + y x + y + x y i trovare tutti i punti critici; ii trovare massimo e minimo assoluti

Dettagli

FUNZIONI GONIOMETRICHE

FUNZIONI GONIOMETRICHE FUNZIONI GONIOMETRICHE Misura degli angoli Seno, coseno e tangente di un angolo Relazioni fondamentali tra le funzioni goniometriche Angoli notevoli Grafici delle funzioni goniometriche GONIOMETRIA : scienza

Dettagli

CORSO ZERO DI MATEMATICA

CORSO ZERO DI MATEMATICA UNIVERSITÀ DEGLI STUDI DI PALERMO FACOLTÀ DI ARCHITETTURA CORSO ZERO DI MATEMATICA GONIOMETRIA E TRIGONOMETRIA Dr. Erasmo Modica erasmo@galois.it RADIANTI E CIRCONFERENZA GONIOMETRICA Definizione: Si dice

Dettagli

LE FUNZIONI GONIOMETRICHE. e le trasformazioni geometriche

LE FUNZIONI GONIOMETRICHE. e le trasformazioni geometriche LE FUNZIONI GONIOMETRICHE e le trasformazioni geometriche La sinusoide è la curva che rappresenta la funzione y =sin(x) nel piano cartesiano. Si chiamano funzioni sinusoidali, invece, quelle funzioni che

Dettagli

tg α = sostituendo: cos α 9 = 1 Esercizi Trigonometria Es. n. 246 pag 742.

tg α = sostituendo: cos α 9 = 1 Esercizi Trigonometria Es. n. 246 pag 742. Esercizi Trigonometria Es. n. pag 7. Sviluppa con le formule di duplicazione e semplifica le seguenti espressioni: cos α + sen α + sen α Applichiamo le formule di duplicazione a cos α e sen α cos α sen

Dettagli

Piano cartesiano e Retta

Piano cartesiano e Retta Piano cartesiano e Retta 1 Piano cartesiano e Retta 1. Richiami sul piano cartesiano 2. Richiami sulla distanza tra due punti 3. Richiami punto medio di un segmento 4. La Retta (funzione lineare) 5. L

Dettagli

COMPITI PER IL RECUPERO DELLA CARENZA FORMATIVA (E RIPASSO) MATEMATICA III - A PT

COMPITI PER IL RECUPERO DELLA CARENZA FORMATIVA (E RIPASSO) MATEMATICA III - A PT 1 COMPITI PER IL RECUPERO DELLA CARENZA FORMATIVA (E RIPASSO) MATEMATICA III - A PT Scheda 1: Fondamenti di geometria analitica 1. Determina il punto P dell asse y che forma con A(; ) e B(; ) un triangolo

Dettagli

SCHEDA ATTIVITA DIDATTICA SVOLTA A. S. 2017/18

SCHEDA ATTIVITA DIDATTICA SVOLTA A. S. 2017/18 Nome e cognome del docente: Disciplina insegnata: Libro/i di testo in uso: Tiziana Paoli Matematica M. Bergamini, G. Barozzi, A. Trifone, Manuale blu 2.0 di matematica, Seconda edizione, vol. 3A e vol.

Dettagli

Legge dello sdoppiamento e derivata di una funzione

Legge dello sdoppiamento e derivata di una funzione Legge dello sdoppiamento e derivata di una funzione Emilio Polverino docente di Matematica e Fisica Liceo Scientifico G. Da Procida - Salerno Il problema delle rette tangenti è già affrontato nello studio

Dettagli

Bianchi S.R.L. POZZETTO PORTAPALO TIPO MEDIO

Bianchi S.R.L. POZZETTO PORTAPALO TIPO MEDIO Bianchi S.R.L. POZZETTO PORTAPALO TIPO MEDIO Bianchi s.r.. - sede e stabiimento: Via Farense Km 3,500-Passo Corese (RI) Contatti: 0765.48.63.52 fax 0765.47.02.98-info@bianchiprefabbricati.it C.F. e P.

Dettagli

Esame di Stato - Liceo Scientifico Prova scritta di Matematica - 22 giugno Problema 1 Soluzione a cura di L. Tomasi

Esame di Stato - Liceo Scientifico Prova scritta di Matematica - 22 giugno Problema 1 Soluzione a cura di L. Tomasi Esame di Stato - Liceo Scientifico Prova scritta di Matematica - giugno 017 Problema 1 Soluzione a cura di L. Tomasi 1 Soluzione Punto 1 La funzione assegnata può essere scritta (usando la funzione coseno

Dettagli

Esercitazioni di Matematica Generale A.A. 2016/2017 Pietro Pastore Lezione del 12 Dicembre Calcolo di Derivate

Esercitazioni di Matematica Generale A.A. 2016/2017 Pietro Pastore Lezione del 12 Dicembre Calcolo di Derivate Esercitazioni di Matematica Generale A.A. 206/207 Pietro Pastore Lezione del 2 Dicembre 206 Calcolo di Derivate Nella seguente tabella elenchiamo le derivate delle funzioni elementari f() f () k 0 n e

Dettagli

Simulazione di prova scritta di MATEMATICA-FISICA - MIUR Assegnato un numero reale positivo, considerare le funzioni e così definite:

Simulazione di prova scritta di MATEMATICA-FISICA - MIUR Assegnato un numero reale positivo, considerare le funzioni e così definite: Simulazione di prova scritta di MATEMATICA-FISICA - MIUR - 2.4.2019 PROBLEMA 2 (soluzione a cura di L. Rossi) Assegnato un numero reale positivo, considerare le funzioni e così definite: = =. 1. Provare

Dettagli

log log, inversa: log.

log log, inversa: log. Università degli Studi di Siena Correzione Prova scritta di Matematica Generale (A.A. 14-15) 20 gennaio 2015 Compito ) : ; :, è multiplo di ed è pari; : a volte a volte, ad esempio la coppia ha prodotto

Dettagli

RADIANTI E CIRCONFERENZA GONIOMETRICA

RADIANTI E CIRCONFERENZA GONIOMETRICA CORSO ZERO DI MATEMATICA per Ing. Chimica e Ing. delle Telecomunicazioni GONIOMETRIA E TRIGONOMETRIA Prof. Erasmo Modica erasmo@galois.it RADIANTI E CIRCONFERENZA GONIOMETRICA Definizione: Si dice angolo

Dettagli

LICEO SCIENTIFICO PROBLEMA 2

LICEO SCIENTIFICO PROBLEMA 2 www.matefilia.it LICEO SCIENTIFICO 2018 - PROBLEMA 2 Consideriamo f k (x): R R così definita: f k (x) = x + kx + 9, con k Z 1) Detto Γ k il grafico della funzione, verifica che per qualsiasi valore del

Dettagli

Trasformazioni geometriche nel piano

Trasformazioni geometriche nel piano Trasformazioni geometriche nel piano Le trasformazioni geometriche In generale una trasformazione geometrica è una corrispondenza biunivoca del piano in sé, ossia associa ad un punto del piano uno ed un

Dettagli

Esame di Stato - Liceo Scientifico Prova scritta di Matematica - 22 giugno 2017

Esame di Stato - Liceo Scientifico Prova scritta di Matematica - 22 giugno 2017 Esame di Stato - Liceo Scientifico Prova scritta di Matematica - giugno 017 Punto 1 Problema 1 Risoluzione con calcolatrice grafica La funzione assegnata può essere scritta (usando la funzione coseno iperbolico

Dettagli

Calcoliamo le componenti lungo gli assi del campo dovuto ad A: 2 C 2 C

Calcoliamo le componenti lungo gli assi del campo dovuto ad A: 2 C 2 C SRIZI. Due cariche e sono poste rispettivamente nei punti (-;0) e (;0). alcolare intensità, componenti e, direzione e verso del campo elettrico nel punto (0;). Dalle coordinate dei punti si ha che, e sono

Dettagli

LE EQUAZIONI DIFFERENZIALI. che, insieme alle loro derivate, soddisfano un equazione differenziale.

LE EQUAZIONI DIFFERENZIALI. che, insieme alle loro derivate, soddisfano un equazione differenziale. LE EQUAZIONI DIFFERENZIALI I problemi incontrati fin ora nel corso di studi di matematica erano tutti di tipo numerico, cioè la loro risoluzione ha sempre portato alla determinazione di uno o più numeri

Dettagli

Esercizi con soluzioni dell esercitazione del 31/10/17

Esercizi con soluzioni dell esercitazione del 31/10/17 Esercizi con soluzioni dell esercitazione del 3/0/7 Esercizi. Risolvere graficamente la disequazione 2 x 2 2 cos(πx). 2. Determinare l insieme di definizione della funzione arcsin(exp( x 2 )). 3. Trovare

Dettagli

Soluzioni verifica di Matematica 5 a E Liceo Scientifico - 17/10/2013

Soluzioni verifica di Matematica 5 a E Liceo Scientifico - 17/10/2013 Istituto Superiore XXV aprile Pontedera - Prof Francesco Daddi Soluzioni verifica di Matematica 5 a E Liceo Scientifico - 7/0/03 Esercizio Si consideri la funzione e x+ se x < f(x) = 0 se x = x x x se

Dettagli

4^C - FISICA compito n b. Determina modulo, direzione e verso del campo elettrico nel centro del quadrato.

4^C - FISICA compito n b. Determina modulo, direzione e verso del campo elettrico nel centro del quadrato. 4^C - FISICA compito n 1-2017-18 1. Ai vertici di un quadrato di ato sono disposte quattro cariche, come +q - q 4 3 indicato in figura. a. Determina moduo, direzione e verso dea forza agente sua carica

Dettagli

VI. POLINOMI ORTOGONALI

VI. POLINOMI ORTOGONALI V. POLNOM ORTOGONAL 1 Definizioni e Risutati Generai Sia un intervao dea retta reae, sia imitato sia non imitato. Sia ρ(x) una funzione non negativa e misurabie su tae che ρ(x) < + e ρ(x) > 0 quasi ovunque.

Dettagli