Insegnare la simmetria
|
|
|
- Aurelia Carletti
- 9 anni fa
- Visualizzazioni
Transcript
1 Insegnare la simmetria Renato Betti Politecnico di Milano Sunto: La simmetria delle figure piane viene usata per introdurre in modo significativo molte nozioni di interesse matematico. Parole chiave: simmetria, isometria, rotazione, traslazione, riflessione, glissoriflessione, strutture algebriche, gruppo. 1 La simmetria è legata alla bellezza delle figure 2
2 La vera bellezza e` una deliberata, parziale rottura di simmetria (proverbio Zen) Saqqara, 25 secolo a.c. 3 Variazioni sul tema del sole Periodo neolitico 4
3 I teoremi di Talete - Ogni diametro divide il cerchio in parti di uguale area - Gli angoli alla base di un triangolo isoscele sono uguali - Angoli opposti al vertice sono uguali - Angoli inscritti in una semicirconferenza sono uguali 5 I solidi platonici 6
4 Il problema matematico della simmetria Discutere: cercare un linguaggio che permetta di esprimere gli elementi fondamentali della simmetria e le loro relazioni...nononono... r r2mg 7 Riconoscere: essere in grado di confrontare due modelli
5 Classificare: determinare tutti i possibili modelli di simmetria e i criteri che permettono la loro organizzazione 9 Quanta simmetria ha una figura? {id, ρ π, σ 1, σ 2 } {id, ρ π/2, ρ π, ρ 3π/2 } 10
6 Per ottenere una misura della simmetria non è sufficiente contare il numero di isometrie che portano la figura in sé. Bisogna anche tener conto di come si compongono e della loro parità. I numeri misurano dimensioni, i gruppi misurano la simmetria. 11 Classificazione delle isometrie piane Teorema: le uniche isometrie piane sono traslazioni, rotazioni, riflessioni e glissoriflessioni. Le traslazioni e le rotazioni non alterano la orientazione delle figure (sono pari, o destrorse), le riflessioni e le glissoriflessioni sono isometrie dispari, o sinistrorse. 12
7 Identità: Traslazione:.. Rotazione: Riflessione: Glissoriflessione: Isometrie destrorse: Isometrie sinistrorse: 14
8 Il principio del caleidoscopio ogni gruppo di isometrie piane è il gruppo di simmetria di una figura 15 Definizione: un gruppo G di isometrie piane è detto discreto se per ogni punto A del piano esiste un cerchio di centro A e (raggio r A ) in cui non sono contenuti altri punti dell orbita di A: {g(a) g є A} 16
9 Teorema (del punto fisso): Un gruppo discreto di isometrie piane è finito se e solo se ha almeno un punto fisso. Se non è finito contiene almeno una traslazione. 17 I gruppi diedrali D n (gruppi di simmetria dei poligoni regolari). D 1 ={σ σ 2 =id }.. D 2 ={σ, ρ σ 2 =ρ 2 =id, ρσ=σρ} 18
10 D 3 ={σ, ρ σ 2 =ρ 3 =id, ρ 2 σ=σρ} D 4 ={σ, ρ σ 2 =ρ 4 =id, ρ 3 σ=σρ}... D n ={σ, ρ σ 2 =ρ n =id, ρ n-1 σ=σρ} 19 I gruppi ciclici C n C 1 ={id} C 2 ={ρ ρ 2 =id} C 3 ={ρ ρ 3 =id} C 4 ={ρ ρ 4 =id} 20
11 Teorema di Leonardo: Ogni gruppo di rosoni ha almeno un punto fisso ed è un gruppo diedrale oppure ciclico finito Bramante, pianta originale di S. Pietro 21 Rosoni Maya Egitto pre-dinastico Periodo ionico 22
12 Gruppi di rosoni C 1 C 2 C 3 C 4 C 5 D 1 D 2 D 3 D 4 D 5 23 I gruppi dei fregi r1 r2 r1m...papapapa......nononon......mamama... r2mm...hohoho... r2mg
13 r11g... E E E E... r11m...okokok Alcuni fregi del paleolitico 26
14 Classificazione dei fregi rotazioni? no si no no glissorifl.? no rifl. vert.? si rifl. orizz.? rifl. orizz.? r1m no si si si rifl. vert.? no si r11m r2 r2mg r2mm r1 r11g 27 I gruppi dei mosaici y x 28
15 Restrizione cristallografica : le rotazioni dei mosaici possono avere ordine 1, 2, 3, 4 oppure 6 (ma non 5) 29 I gruppi cristallografici piani P1 Pg Rotaz. π/6? Rifles.? no no si Rotaz. π/2? P6 P6m no si no no no no Glissorifl.? Rifles.? Rotaz. π? Rotaz. 2π/3? Rifles.? si si si Glissorifl.? Rifles.? si si no Assi per Rifles.? P4 centri? no si no no si no si Assi per Pm Cm Glissorifl.? centri? P3 Centri di P4g P4m rotaz.? no si no Centri di P2 Pg4 Pmg rotaz.? no no si Cmm Pmm P31m P3m1 30
16 I gruppi cristallografici piani o gruppi dei mosaici o gruppi di carte da parati o arabeschi Egitto Egitto Egitto Cnosso 31 32
17 La simmetria nel modello di geometria iperbolica (secondo Escher) 33 Bibliografia Weil H. (1962) La simmetria, Feltrinelli, Milano Caglioti G. (1983) Simmetrie infrante, nella scienza e nell arte, Clup, Milano Dedò M. (1999) Forme. Simmetria e topologia, Zanichelli, Bologna Jablan S.V. (1995) Theory of Symmetry and Ornaments, Mat. Institut, Beograd Martin G.E. (1982) Transformation geometry. An introduction to symmetry, Springer, Berlin-Heidelberg- New York Armstrong M.A. (1988) Groups and symmetry, Springer, Berlin-Heidelberg-New York Lockwood E.H., Macmillan R.H. (1978) Geometric symmetry, Cambridge Un. Press, Cambridge 34
Un approccio costruttivo alle trasformazioni geometriche del piano
Un approccio costruttivo alle trasformazioni geometriche del piano Le cosiddette trasformazioni geometriche elementari del piano sono corrispondenze bigettive, del piano su se stesso, caratterizzate dalla
Didattica della Matematica 1 e Didattica della Matematica e della Fisica - classi A047 e A049 Trasformazioni geometriche
Didattica della Matematica 1 e Didattica della Matematica e della Fisica - classi A047 e A049 Trasformazioni geometriche anno acc. 2013/2014 Univ. degli Studi di Milano Cristina Turrini (Univ. degli Studi
Gruppo di simmetria di una figura
Avviso Istituzioni di matematiche 2 Diego Noja ([email protected]) 12 maggio 2009 La seconda prova intermedia si svolgerà martedì 26 maggio 2009, dalle 16.30 alle 18.30 Cognomi dalla A alla L: aula
CLASSE II A LICEO LINGUISTICO A.S. 2015/2016. Prof.ssa ANNA CARLONI
CLASSE II A LICEO LINGUISTICO A.S. 2015/2016 Prof.ssa ANNA CARLONI OBIETTIVI la scomposizione dei polinomi le frazioni algebriche X X X scomposizione in fattori dei Scomporre a fattor comune polinomi Calcolare
Liceo Scientifico G. Salvemini Corso di preparazione per la gara provinciale delle OLIMPIADI DELLA MATEMATICA INTRO GEOMETRIA
Liceo Scientifico G. Salvemini Corso di preparazione per la gara provinciale delle OLIMPIADI DELLA MATEMATICA INTRO GEOMETRIA TRIANGOLI Criteri di congruenza Due triangoli sono congruenti se hanno congruenti:
Corso di Matematica - Geometria. Geometria - 0. Ing. L. Balogh
Geometria - 0 Triangoli qualunque somma degli angoli interni, calcolo del perimetro e dell area Oggetti Vertici Lati Angoli Altezza Raggio Simbolo A, B, C a, b, c,, h S, r Perimetro = + + Somma angoli
A T T E N Z I O N E. Ministero dell Istruzione, dell Università e della Ricerca
Pag. 1/5 Sessione suppletiva 01 $$$$$..1/1 Seconda prova scritta *$$$$$1115* *$$$$$1115* *$$$$$1115* *$$$$$1115* A T T E N Z I O N E Il plico relativo a questa prova contiene due temi: il primo destinato
Gli enti geometrici fondamentali
capitolo 1 Gli enti geometrici fondamentali 1. Introduzione 1 2. La geometria euclidea come sistema ipotetico-deduttivo 2 Teoremi e dimostrazioni, 3 3. Postulati di appartenenza 4 4. Postulati di ordinamento
Matematica creativa e packaging
Matematica creativa e packaging Elena Marchetti - Luisa Rossi Costa Dipartimento di Matematica F. Brioschi Politecnico di Milano Piazza Leonardo da Vinci, 32-20133 Milano POLIGONI E TASSELLAZIONI DEL PIANO
Poligoni con riga e compasso
Poligoni con riga e compasso Affrontiamo alcuni problemi di costruzione con riga e compasso, che ci aiuteranno a ricordare le principali relazioni tra le circonferenze e le rette, gli angoli inscritti,
Scuola Secondaria di 1 Grado Via MAFFUCCI-PAVONI Via Maffucci 60 Milano PROGETTO STRANIERI GEOMETRIA 2 CERCHIO SIMMETRIA GEOMETRIA SOLIDA
Scuola Secondaria di 1 Grado Via MAFFUCCI-PAVONI Via Maffucci 60 Milano PROGETTO STRANIERI GEOMETRIA CERCHIO SIMMETRIA GEOMETRIA SOLIDA A cura di Maurizio Cesca PROGETTO STRANIERI SMS Maffucci-Pavoni -
LICEO CLASSICO - SCIENTIFICO STATALE "EUCLIDE" CAGLIARI
LICEO CLASSICO - SCIENTIFICO STATALE "EUCLIDE" CAGLIARI Programma di Matematica classe 1 a D anno scolastico 2010/2011 Nozioni sugli insiemi Nozione di insieme, elemento, appartenenza. insiemi finiti ed
Tassellazioni del Piano
UNIVERSITÀ DEGLI STUDI ROMA TRE FACOLTÀ DI SCIENZE M.F.N. Sintesi della Tesi di Laurea in Matematica di Francesca Zabatta Tassellazioni del Piano Relatore Prof. Andrea Bruno Il Candidato Il Relatore ANNO
LA CIRCONFERENZA e IL CERCHIO
LA CIRCONFERENZA e IL CERCHIO La circonferenza è un poligono regolare con un numero infinito di lati Bisogna fare innanzitutto una distinzione: la circonferenza è la misura del perimetro; C (se sono più
PROGRAMMAZIONE DI MATEMATICA 2016/2017
PROGRAMMAZIONE DI MATEMATICA 2016/2017 PRIMA CLASSE ARITMETICA Il sistema di numerazione decimale Leggere e scrivere i numeri interi e decimali Riconoscere il valore posizionale delle cifre in un numero
CURRICOLO DI MATEMATICA CLASSE PRIMA
CURRICOLO DI MATEMATICA CLASSE PRIMA INDICATORI OBIETTIVI SPECIFICI CONTENUTI NUMERI Eseguire le quattro operazioni con i numeri interi. Elevare a potenza numeri naturali e interi. Comprendere il significato
Geometria euclidea. Alessio del Vigna. Lunedì 15 settembre
Geometria euclidea Alessio del Vigna Lunedì 15 settembre La geometria euclidea è una teoria fondata su quattro enti primitivi e sulle relazioni che tra essi intercorrono. I quattro enti primitivi in questione
GEOMETRIA. Studio dei luoghi /relazioni tra due variabili. Studio delle figure (nel piano/spazio) Problemi algebrici sulle figure geometriche
GEOMETRIA ANALITICA EUCLIDEA Studio dei luoghi /relazioni tra due variabili Studio delle figure (nel piano/spazio) Funzioni elementari Problemi algebrici sulle figure geometriche Grafici al servizio dell
DISCIPLINA: MATEMATICA. COMPETENZA n 1 TITOLO: IL NUMERO SCUOLA INFANZIA SCUOLA PRIMARIA CONOSCERE E OPERARE CON I NUMERI NATURALI E NON
Titolo: Competenze disciplinari dal Dipartimento di matematica Classi:infanzia, primaria triennio e secondo biennio e secondaria di I grado Docenti implicati: Matematica COMPETENZA n 1 TITOLO: IL NUMERO
1 I solidi a superficie curva
1 I solidi a superficie curva PROPRIETÀ. Un punto che ruota attorno ad un asse determina una circonferenza. PROPRIETÀ. Una linea, un segmento o una retta che ruotano attorno ad un asse determinano una
Area geometrica: lo spazio e le figure
Area geometrica: lo spazio e le figure Traguardi di competenza: Conosce i principali elementi geometrici, li confronta e li analizza; Individua le strategie appropriate per risolvere problemi; Possiede
LA GEOMETRIA EUCLIDEA. Seminario Cidi, Roma 13/05/ prof.ssa Dario Liliana 1
LA GEOMETRIA EUCLIDEA Seminario Cidi, Roma 13/05/2013 - prof.ssa Dario Liliana 1 Le difficoltà degli studenti nell apprendere la geometria nel 1 anno della scuola secondaria Gli argomenti della geometria
Due rette si dicono INCIDENTI se hanno esattamente un punto in comune, altrimenti si dicono PARALLELE.
Riepilogo di Geometria: Assioma A1 Per tutte le coppie di punti P,Q dell insieme S è assegnato un numero reale (=)> 0, che si dice distanza di P da Q e si indica don d(p,q) 1- Se i punti P,Q sono distinti
COMPETENZE U.D.A. ABILITA CONTENUTI _ Saper operare con il sistema di numerazione decimale.
SCUOLA SECONDARIA DI 1 GRADO TOVINI CURRICOLO DI SCIENZE MATEMATICHE PER LA CLASSE PRIMA COMPETENZE U.D.A. ABILITA CONTENUTI _ Saper operare con il sistema di numerazione decimale. _Il concetto di insieme.
La sezione aurea nelle sue molteplici
La sezione aurea nelle sue molteplici applicazioni Nella geometria piana il rapporto aureo trova molteplici applicazioni. Se prendiamo un segmento AB =, la sua parte aurea AD vale circa 0,68 (Figura ).
Anno Scolastico 2015/16 PROGRAMMAZIONE ANNUALE CLASSE SECONDA LICEO LINGUISTICO LICEO DELLE SCIENZE UMANE LICEO ECONOMICO-SOCIALE LICEO MUSICALE
LICEO LAURA BASSI - BOLOGNA Anno Scolastico 2015/16 PROGRAMMAZIONE ANNUALE CLASSE SECONDA LICEO LINGUISTICO LICEO DELLE SCIENZE UMANE LICEO ECONOMICO-SOCIALE LICEO MUSICALE MATEMATICA ARGOMENTI: EQUAZIONI
I TRIANGOLI AB < AC + BC
I TRIANGOLI Il triangolo è un poligono formato da tre angoli e da tre lati: rappresenta la figura più semplice in assoluto, in quanto 3 è il numero minimo di segmenti necessari per delimitare una superficie
CURRICOLO VERTICALE PER COMPETENZE DISCIPLINARI. Scuola Secondaria di Primo Grado Matematica -
CURRICOLO VERTICALE PER COMPETENZE DISCIPLINARI Scuola Secondaria di Primo Grado Matematica - Classe Prima COMPETENZA CHIAVE EUROPEA: COMPETENZA MATEMATICA Profilo dello studente al termine del Primo ciclo
POLIGONI INSCRITTI E CIRCOSCRITTI A UNA CIRCONFERENZA
POLIGONI INSCRITTI E CIRCOSCRITTI A UNA CIRCONFERENZA Poligoni Inscritti ad una circonferenza: Un poligono è inscritto in una circonferenza se tutti i suoi vertici appartengono alla circonferenza e gli
TRIANGOLI. Proprietà: in ogni triangolo la somma di due lati è maggiore del terzo lato. CLASSIFICAZIONE DEI TRIANGOLI
TRIANGOLI Si dice triangolo un poligono che ha 3 lati e 3 angoli. Proprietà: in ogni triangolo la somma di due lati è maggiore del terzo lato. a) RISPETTO AI LATI CLASSIFICAZIONE DEI TRIANGOLI SCALENO:
LINEE DI PROGETTAZIONE ANNUALE Disciplina: SCIENZE MATEMATICHE a.s
I.C. AMEDEO DI SAVOIA AOSTA Martina Franca (Ta) LINEE DI PROGETTAZIONE ANNUALE Disciplina: SCIENZE MATEMATICHE a.s. 2012 2013 PREMESSA DISCIPLINARE Traguardi per lo sviluppo delle competenze Le Scienze
Le isometrie del piano (DESM-DM 2014/2015)
Le isometrie del piano (DESM-DM 2014/2015) Attenzione: per completezza di lettura sono incluse alcune nozioni sulla teoria dei gruppi che non sono state svolte a lezione e non verranno richieste all esame:
Utilizzare con sicurezza le tecniche e le procedure del calcolo aritmetico, scritto e mentale, anche con riferimento a contesti reali.
SCUOLA SECONDARIA DI 1 GRADO PIANI DI STUDIO MATEMATICA ANNO SCOLASTICO 2010/2011 Competenze Utilizzare con sicurezza le tecniche e le procedure del calcolo aritmetico, scritto e mentale, anche con riferimento
3 Geometria delle masse e momento di 2 ordine 3.3 Ellisse centrale d inerzia e nocciolo centrale d inerzia
3 Geometria delle masse e momento di ordine ESERCIZI SVOLTI Considerata la sezione rappresentata in figura, calcolare i raggi d inerzia massimo e minimo, tracciare l ellisse d inerzia e il nocciolo centrale
Competenza : 1. Comunicazione efficace Indicatore: 1.1 Comprensione
SCUOLA SECONDARIA DI PRIMO GRADO MATEMATICA Competenza : 1. Comunicazione efficace Indicatore: 1.1 Comprensione Descrittori Descrittori Descrittori 1.1.1 E in grado di comprendere testi e altre fonti di
- Conoscere il concetto di insieme. - Sapere rappresentare un insieme. - Riconoscere insiemi uguali, inclusi, vuoti.
Educandato Statale E. Setti Carraro Dalla Chiesa Scuola Secondaria I Grado Via Passione 12 - Milano MATEMATICA / Classe prima Anno Scolastico 2016-2017 NUCLEI TEMATICI COMPETENZE OBIETTIVI MINIMI DI APPRENDIMENTO
Domande di Analisi Matematica tratte dai Test di autovalutazione o di recupero dei debiti formativi.
Domande di Analisi Matematica tratte dai Test di autovalutazione o di recupero dei debiti formativi. (1) Sia A l insieme dei numeri dispari minori di 56 e divisibili per 3. Quale delle seguenti affermazioni
Le Simmetrie e la Natura
Le Simmetrie e la Natura Emanuele Biolcati (Fisica) Marida Fusco (Chimica) Liceo Valsalice, 4 febbraio 2009 Definizione di Simmetria Il termine simmetria indica generalmente l'esistenza di una operazione
Liceo Scientifico Statale Leonardo da Vinci Reggio Calabria. PROGRAMMA DI MATEMATICA Per la classe IV sez.d Anno scolastico 2012/13
Liceo Scientifico Statale Leonardo da Vinci Reggio Calabria PROGRAMMA DI MATEMATICA Per la classe IV sez.d Anno scolastico 2012/13 Modulo 1: Le coniche Geometria elementare retta e circonferenza nel piano
Le simmetrie dei poliedri regolari
Le simmetrie dei poliedri regolari Le isometrie del piano e dello spazio sono state classificate da due illustri matematici. Per quanto riguarda il piano, il teorema di Chasles, del 8, afferma che nel
Didattica della Matematica 1 - classe A047 Trasformazioni geometriche - seconda parte
Didattica della Matematica 1 - classe A047 Trasformazioni geometriche - seconda parte anno acc. 2013/2014 Univ. degli Studi di Milano Cristina Turrini (Univ. degli Studi di Milano) Didattica della Matematica
CIRCONFERENZA E CERCHIO
CIRCONFERENZA E CERCHIO CERCHIO Perimetro (circonferenza) Area La circonferenza è circa 3 volte ( ) la lunghezza del diametro C= d oppure C=2 r A = r 2 Formule inverse d=c: r=c:(2 ) SETTORE CIRCOLARE È
PROGRAMMAZIONE DEL GRUPPO DISCIPLINARE A.S. 2016/2017 INDIRIZZO SCOLASTICO: LICEO SCIENTIFICO DISCIPLINA: MATEMATICA ORE SETT.
ISTITUTO D ISTRUZIONE SUPERIORE Enrico Mattei ISTITUTO TECNICO COMMERCIA LICEO SCIENTIFICO LICEO dellescienze UMANE Via delle Rimembranze, 26 40068 San Lazzaro di Savena BO Tel. 051 464510 464545 fax 452735
SCUOLA PRIMARIA MATEMATICA (Classe 1ª)
SCUOLA PRIMARIA MATEMATICA (Classe 1ª) Operare con i numeri nel calcolo scritto e mentale Leggere e scrivere numeri naturali in cifre e lettere. Contare in senso progressivo e regressivo. Raggruppare,
Progetto Pilota Valutazione della scuola italiana. Anno Scolastico PROVA DI MATEMATICA. Scuola Superiore. Classe Prima.
Ministero dell Istruzione, dell Università e della Ricerca Gruppo di lavoro per la predisposizione degli indirizzi per l attuazione delle disposizioni concernenti la valutazione del servizio scolastico
METODI E TECNOLOGIE PER L INSEGNAMENTO DELLA MATEMATICA. Lezione n 10
METODI E TECNOLOGIE PER L INSEGNAMENTO DELLA MATEMATICA Lezione n 10 In questa lezione percorriamo gli argomenti della geometria che interessano la scuola primaria, in modo essenziale, o meglio ancora
a) S/ 4; b) S/ 8; c) S/12; d) S/16; e) Nessuna delle precedenti. 2. Due triangoli sono congruenti se hanno congruenti:
1. Sia ABC un triangolo equilatero di area S. Siano L, M, N, i punti medi dei lati AB, BC, CA, e E, F, D, i punti medi dei lati LM, MN, NL.. L area del triangolo DEF è uguale a: a) S/ 4; b) S/ 8; c) S/12;
C7. Circonferenza e cerchio
7. irconferenza e cerchio 7.1 Introduzione ai luoghi geometrici Un luogo geometrico è l insieme dei punti del piano che godono di una proprietà detta proprietà caratteristica del luogo geometrico. Esempio
Problemi di geometria
1 2 6 7 9 Calcola la misura dell ipotenusa di un triangolo rettangolo i cui cateti misurano 11,2 cm e 1 cm. [1,7 cm] In un triangolo rettangolo l ipotenusa misura cm, un cateto è dell ipotenusa. Calcola
C8. Teoremi di Euclide e di Pitagora - Esercizi
C8. Teoremi di Euclide e di Pitagora - Esercizi EQUIVALENZA DI FIGURE GEOMETRICHE E CALCOLO DI AREE 1) Dimostra che ogni mediana divide un triangolo in due triangoli equivalenti. 2) Dato un parallelogramma
Circonferenze e cerchi
Alunno/a... Geometria Classe... Sez.... Data... Circonferenze e cerchi 1 Definisci la circonferenza: 2 Definisci il settore circolare: 3 Definisci la figura che nel disegno è colorata in grigio: 4 Osserva
CURRICOLO DI MATEMATICA CLASSE I SCUOLA PRIMARIA Anno scolastico 2016/2017
CURRICOLO DI MATEMATICA CLASSE I SCUOLA PRIMARIA Anno scolastico 2016/2017 AREA MATEMATICO SCIENTIFICO - TECNOLOGICA Utilizzare le procedure del calcolo aritmetico scritto e mentale con i numeri naturali.
Precorso di Matematica
UNIVERSITÀ DEGLI STUDI ROMA TRE FACOLTA DI ARCHITETTURA Precorso di Matematica Anna Scaramuzza Anno Accademico 2005-2006 17-24 Ottobre 2005 INDICE 1. GEOMETRIA EUCLIDEA........................ 2 1.1 Triangoli...............................
Ore annue: 132 MODULO 1
Liceo B. Russell VIA IV NOVEMBRE 35, 38023 CLES Indirizzo: Liceo Linguistico CLASSI 2 e Programmazione Didattica Disciplina: Ore annue: 132 Matematica Settembre ottobre MODULO 1 novembre Disequazioni numeriche
Problemi di geometria
1 2 3 4 5 6 7 8 9 10 11 12 13 14 In un triangolo rettangolo l altezza relativa all ipotenusa è lunga 16 cm e la proiezione sull ipotenusa di un cateto è lunga 4 cm. Calcola l area del triangolo. [544 cm
CURRICOLO DELLA SCUOLA SECONDARIA DI PRIMO GRADO DISCIPLINA: MATEMATICA CLASSE 1^
CURRICOLO DELLA SCUOLA SECONDARIA DI PRIMO GRADO DISCIPLINA: MATEMATICA CLASSE 1^ Nucleo fondante 1: IL NUMERO Argomento 1: Sistemi di numerazione Sa rappresentare graficamente numeri, ordinarli e confrontarli.
U. A. 1 GLI INSIEMI CONOSCENZE
U. A. 1 GLI INSIEMI Acquisire il significato dei termini,dei simboli e caratteristiche dell'insieme delle parti, dell'insieme differenza e complementare della partizione di un insieme e del prodotto cartesiano.
PROGRAMMAZIONE DISCIPLINARE ISTITUTO PROFESSIONALE COMMERCIALE MATEMATICA
PROGRAMMAZIONE DISCIPLINARE PROGRAMMAZIONE DISCIPLINARE ISTITUTO PROFESSIONALE COMMERCIALE MATEMATICA CLASSE PRIMA IPC LEGENDA COMPETENZE 1) Utilizzare le tecniche e le procedure del calcolo aritmetico
LA CIRCONFERENZA, I POLIGONI INSCRITTI E CIRCOSCRITTI
LA CIRCONFERENZA, I POLIGONI INSCRITTI E CIRCOSCRITTI 1. La circonferenza e il cerchio ESERCIZI 1 A Disegna un triangolo ABC di altezza CH relativa ad AB. Fissa un segmento ED minore di CH. Determina il
PROGRAMMAZIONE ANNUALE DI MATEMATICA - SCUOLA PRIMARIA IST. COMP. DON MILANI CERNUSCO S/N -
MATEMATICA: PROGRAMMAZIONE CLASSE PRIMA UTILIZZARE I PER PROGRAMMAZIONE ANNUALE DI MATEMATICA - SCUOLA PRIMARIA IST. COMP. DON MILANI CERNUSCO S/N - 1.1 Risolvere, a livello orale o con l aiuto di una
Un serbatoio ha la stessa capacità del cilindro di massimo volume inscritto in una sfera di raggio 60 cm. Quale è la capacità in litri del serbatoio?
Quesiti ord 011 Pagina 1 di 6 a cura dei Prof. A. Scimone, G. Florio,. R. Sofia Quesito 1 Un serbatoio ha la stessa capacità del cilindro di massimo volume inscritto in una sfera di raggio 60 cm. Quale
1. Il triangolo ABC ha i lati lunghi 12 cm, 17
www.matematicamente.it Esame di stato scuola secondaria di primo grado - Esercitazione 1 1 Esame di stato scuola secondaria di primo grado Esercitazione a cura di Michela Occhioni Cognome e nome: data:
Trasformazioni, simmetrie e tassellazioni del piano
Trasformazioni, simmetrie e tassellazioni del piano Abbiamo finora analizzato le possibili ripetizioni di un motivo grafico su un pezzo di carta, che siano immaginabili come incollature della carta, cosí
METODI E TECNOLOGIE PER L INSEGNAMENTO DELLA MATEMATICA. Lezione n 11
METODI E TECNOLOGIE PER L INSEGNAMENTO DELLA MATEMATICA Lezione n 11 In questa lezione percorriamo gli argomenti della geometria che interessano la scuola primaria, in modo essenziale, o meglio ancora
NUMERI SCUOLA SECONDARIA I GRADO
NUMERI Eseguire addizioni, sottrazioni, moltiplicazioni, divisioni e confronti tra i numeri conosciuti (numeri naturali, numeri interi, frazioni e numeri decimali), quando possibile a mente oppure utilizzando
Allenamenti di Matematica
rescia, 3-4 febbraio 2006 llenamenti di Matematica Geometria 1. Il trapezio rettangolo contiene una circonferenza di raggio 1 metro, tangente a tutti i suoi lati. Sapendo che il lato obliquo è lungo 7
Reticoli bidimensionali e simmetria
Reticoli bidimensionali e simmetria La descrizione dei tutte le strutture cristalline può avvenire seguendo due processi logici: Elencando, caso per caso, ogni struttura, tentando poi di trovare delle
PROGRAMMA DI MATEMATICA
A.S. 2015/2016 ALGEBRA - Equazioni letterali fratte PROGRAMMA DI MATEMATICA - Disequazioni di 1 grado ad una incognita intere e frazionarie - Sistemi di disequazioni di 1 o grado in una incognita - Sistemi
Angoli formati da due rette parallele tagliate da una trasversale (alterni interni ed esterni, corrispondenti, coniugati).
ppunti di geometria.s. 013-014 1 Prof. Luigi ai PPUNTI ngoli formati da due rette parallele tagliate da una trasversale (alterni interni ed esterni, corrispondenti, coniugati). In un triangolo l angolo
APPUNTI DI GEOMETRIA SOLIDA
APPUNTI DI GEOMETRIA SOLIDA Geometria piana: (planimetria) studio delle figure i cui punti stanno tutti su un piano Geometria solida: (stereometria) studio delle figure i cui punti non giacciono tutti
MATERIA Matematica. ASSE CULTURALE DI RIFERIMENTO : DENOMINAZIONE Insiemi numerici fondamentali
MATERIA Matematica CLASSE I^ ITIS DOCENTI: Cocchini, Buono UF N 1: Insiemi numerici fondamentali ASSE CULTURALE DI RIFERIMENTO : DENOMINAZIONE MATEMATICO Insiemi numerici fondamentali COMPETENZE: Utilizzare
Geometria figure piane Raccolta di esercizi
Geometria figure piane Raccolta di esercizi RETTANGOLO 1. Calcola il perimetro e l area di un rettangolo le cui dimensioni misurano rispettivamente 13 cm e 22 cm. [70 cm; 286 cm 2 ] 2. Un rettangolo ha
2B GEOMETRIA. Isoperimetria, equivalenza e calcolo delle aree. Esercizi supplementari di verifica
2 GEOMETRI Isoperimetria, equivalenza e calcolo delle aree Esercizi supplementari di verifica Esercizio 1 Metti una crocetta su vero (V) o falso (F) di fianco ad ogni affermazione. a) V F ue poligoni isoperimetrici
PROGRAMMA DI MATEMATICA PER LA CLASSE 1^A DEL LICEO SCIENTIFICO MALPIGHI ANNO SCOLASTICO INSEGNANTE: MASCI ORNELLA
PROGRAMMA DI MATEMATICA PER LA CLASSE 1^A DEL LICEO SCIENTIFICO MALPIGHI ANNO SCOLASTICO 2014-2015 INSEGNANTE: MASCI ORNELLA ALGEBRA NUMERI NATURALI: - Ripetizione dei numeri naturali e delle quattro operazioni
Nucleo Fondante Competenze-Conoscenze-Abilità Contenuti Metodi Materiali - Strumenti Raccordi disciplinari
Nucleo Fondante Competenze-Conoscenze-Abilità Contenuti Metodi Materiali - Strumenti Raccordi disciplinari NUMERI Concetto di insieme e sua rappresentazione Operazioni con gli insiemi Eseguire le quattro
La matematica e la scienza nelle bolle
MATEMATICA TRASPARENTE COME BOLLE DI SAPONE Un percorso didattico-sperimentale per le scuole secondarie di primo grado Relatore I. Tamanini Laureanda Silvia Dirupo La matematica e la scienza nelle bolle
Nucleo concettuale : IL NUMERO
Nucleo concettuale : IL NUMERO UAD 1: L INSIEME N E LA SUE OPERAZIONI Conoscere il significato di termini e simboli Saper applicare regole e che specificano i concetti di numerazione proprietà relative
risoluzione di problemi da risolvere tramite la risoluzione di sistemi ed equazioni di 1^ grado. 5 R ed i Radicali
ORD. MODULO MODULO ARGOMENTO 1 Disequazioni disequazioni di 1^ grado disequazioni fratte disequazioni di grado superiore da risolvere con la scomposizione in fattori sistemi di disequazioni 2 Geometria
MATEMATICA CLASSE QUARTA
MATEMATICA CLASSE QUARTA a) I NUMERI NATURALI E LE 4 OPERAZIONI U.D.A. : 1 I NUMERI NATURALI 1. Conoscere l evoluzione dei sistemi di numerazione nella storia dell uomo. 2. Conoscere e utilizzare la numerazione
LICEO SCIENTIFICO B. TOUSCHEK - GROTTAFERRATA (RM) GRUPPO DISCIPLINARE DI MATEMATICA E FISICA ANNO SCOLASTICO 2016/2017
LICEO SCIENTIFICO B. TOUSCHEK - GROTTAFERRATA (RM) GRUPPO DISCIPLINARE DI MATEMATICA E FISICA ANNO SCOLASTICO 2016/2017 PROGRAMMAZIONE MATEMATICA ALLEGATO 1 SCHEMA PROGRAMMAZIONE ANNUALE CLASSE PRIMA A
MONITORAGGIO VERIFICHE TRIMESTRALI
ISTITUTO COMPRENSIVO S. D ARRIGO - VENETICO D. S. Prof.ssa Lilia Leonardi MONITORAGGIO VERIFICHE TRIMESTRALI Anno scolastico 0-0 Sperimentazione didattica Consolidamento delle competenze di Italiano e
Matematica Introduzione alla geometria
Matematica Introduzione alla geometria prof. Vincenzo De Felice 2014 Problema. Si mostri che un triangolo con due bisettrici uguali è isoscele. La matematica è sfuggente. Ziodefe 1 2 Tutto per la gloria
Simmetrie nei poliedri
Simmetrie nei poliedri Livello scolare: 1 biennio Abilità interessate Individuare e riconoscere nel mondo reale le figure. geometriche note e descriverle con la terminologia specifica. Analizzare con strumenti
Syllabus delle conoscenze e abilità per il modulo Matematica di base comune a tutti i corsi di laurea scientifici
Syllabus delle conoscenze e abilità per il modulo Matematica di base comune a tutti i corsi di laurea scientifici Numeri numeri primi, scomposizione in fattori massimo divisore comune e minimo multiplo
Curricolo Verticale Scuola Secondaria di I Grado I. C. S. Via Libertà San Donato Milanese (MI) CLASSE PRIMA
CLASSE PRIMA TRAGUARDI per lo sviluppo delle competenze OBIETTIVI CONTENUTI al termine della classe 3 a Comprendere il significato logico dei numeri nell insieme N e rappresentarli sulla retta orientata.
MATEMATICA SCUOLA SECONDARIA CLASSE TERZA
MATEMATICA SCUOLA SECONDARIA CLASSE TERZA TRAGUARDI PER LO SVILUPPO DELLE COMPETENZE RELATIVI A NUMERI L alunno si muove con sicurezza nel calcolo anche con i numeri razionali, ne padroneggia le diverse
f : A A = f (A) In altre parole f è una funzione che associa a un punto del piano un altro punto del piano e che si può invertire.
Consideriamo l insieme P dei punti del piano e una f funzione biiettiva da P in P: f : { P P A A = f (A) In altre parole f è una funzione che associa a un punto del piano un altro punto del piano e che
Programma di matematica classe I sez. E a.s
Programma di matematica classe I sez. E a.s. 2015-2016 Testi in adozione: Leonardo Sasso vol.1- Ed. Petrini La matematica a colori Edizione blu per il primo biennio MODULO A: I numeri naturali e i numeri
CONVITTO NAZIONALE CARLO ALBERTO Scuole annesse: Primaria Secondaria I grado Liceo Scientifico
CONVITTO NAZIONALE CARLO ALBERTO Scuole annesse: Primaria Secondaria I grado Liceo Scientifico Baluardo Partigiani n 6 28100 - Novara Tel. 0321/620047 - Fax. 0321/620622 Email: [email protected]
Anna Montemurro. 3Geometria. e misura
Anna Montemurro Destinazione Matematica 3Geometria e misura ... verifico 1 Come si definisce il cerchio? Che cosa s intende per raggio e per diametro di un cerchio? Disegna tre cerchi, rispettivamente
MATEMATICA CLASSE QUINTA
MATEMATICA CLASSE QUINTA UNITÀ DIDATTICA N. 1 IL NUMERO 1. Rappresentare, leggere, scrivere e operare con i numeri naturali e decimali avendo la consapevolezza del valore posizionale delle cifre. 2. Operare
Test di Matematica di base
Test di Matematica di base Geometria Il rapporto tra la superficie di un quadrato e quella di un triangolo equilatero di eguale lato è a. 4 b. 4 d. [ ] Quali sono le ascisse dei punti della curva di equazione
