LA CORRENTE ELETTRICA E LA RESISTENZA

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "LA CORRENTE ELETTRICA E LA RESISTENZA"

Transcript

1 LA COENTE ELETTICA E LA ESISTENZA G. Pugliese 1

2 La conduzione elettrica I materiali conduttori solidi sono costituiti da un reticolo spaziale a cui vertici si trovano gli ioni positivi ed al cui interno si muovono gli elettroni liberi. Nei metalli, per es. nel AME, il numero di elettroni per unità di volume (supponendo un elettrone libero per atomo, l ordine di grandezza è lo stesso per tutti i conduttori metallici): n N Aρ A elettroni/m 3 N A : num di Avogadro (num. di molecole x mole) A : num. di massa (num. di g x mole) ρ : densità (g/m 3 ) G. Pugliese

3 La conduzione elettrica τ m 3 1µm 3 N nτ elettroni Il moto degli e- liberi nel conduttore in equilibrio elettrostatico è disordinato: v m 1 N vi i 0 G. Pugliese 3

4 La corrente elettrica Ø Dati due conduttori carichi isolati tra loro C 1 e C a potenziali V 1 e V (V >V 1 ). Se si mettano in contatto, tramite un conduttore: Ø Fase transitoria: sotto l azione del campo E (dovuto a ΔV) si ha un flusso di elettroni da V 1 a V. Si raggiunge una situazione di equilibrio quando entrambi sono allo stesso V. V 1 V C 1 C Ø La quantità totale di carica non cambia à principio di conservazione della carica à la carica si ridistribuisce in modo che il campo all interno 0. Ø Moto ordinato di elettroni: COENTE ELETTICA. Ø Dura per un tempo molto breve + G. Pugliese 4

5 Il generatore di corrente Per mantenere la differenza di potenziale tra due punti del conduttore occorre un generatore di forza elettromotrice f.e.m.. Ø il generatore primo fu inventato nel 1800 da Alessandro Volta!! Ø il suo funzionamento di basa sul principio che il lavoro necessario per mantenere il moto ordinato di cariche è ottenuto trasformando energia chimica in energia elettrica. G. Pugliese 5

6 La corrente elettrica Sia n il numero di portatori di carica per unità di volume in una certa regione di un conduttore in cui agisca un E I portatori saranno soggetti ad una forza elettrica, quindi si muoveranno con velocità di deriva v d // E, che da origine ad una corrente. Corrente elettrica: è la quantità di carica che attraversa una data superficie Σ all interno del conduttore nel tempo Δt: d Δq i lim Δ t 0 Δt dq dt G. Pugliese 6

7 Modello Classico della conduzione elettrica Analizziamo il moto dei portatori di carica in un metallo da un punto di vista microscopico, secondo il modello di Drude-Lorentz (1906): gli ioni sono fissi gli e - si muovono attraverso il reticolo in modo disordinato nel loro moto gli e - subiscono continue interazioni o urti τ tempo Nel rame o argento: Moto disordinato con urti con gli ioni fissi medio tra due urti n 10 9 ele/m 3 1 vm vi N l :libero i cammino 0 medio G. Pugliese 7

8 Modello Classico della conduzione elettrica In presenza di un E a - e m E Essendo questa piccola rispetto a quella propria degli e, il tempo t tra due urti non cambia: < v d > 1 N Su N urti i v i+1 1 N v i e m i Alla distribuzione casuale ed isostropa della velocità si sovrappone una velocità di deriva: v d Eτ e m v i v Prima i+1 urto Eτ + 1 i Dopo ogni urto la distribuzione della velocità è casuale v d e Eτ m Dopo i urto e τe m G. Pugliese 8

9 La corrente elettrica Ø Ø Consideriamo una superficie infinitesima dσ, la cui normale formi un angolo θ con il campo E. Nel tempo Δt le cariche percorrono una distanza v d Δt Ø la carica che attraversa dσ in Δt è quella contenuta nel volume : dv v d ΔtdΣcosθ i dq dt dq n + edv n + ev d ΔtdΣcosθ di n + ev d dσcosθ G. Pugliese 9

10 La densità di corrente L intensità di corrente: di n + ev d dσcosθ Definiamo il vettore densità di corrente: di J n + ev jdσ cosθ j ndσ d Attraverso una superficie finita Σ i Σ j ndσ Φ Σ ( j) Ø L intensità corrente è pari al flusso del vettore densità di corrente attraverso la superficie Σ G. Pugliese 10

11 La densità di corrente Se S è ortogonale a J i jσ j i Σ Ø La densità di corrente: è la corrente che attraversa l unità di superficie perpendicolare alla direzione del moto delle cariche. J n + ev d G. Pugliese 11

12 La densità di corrente Nei conduttori metallici la corrente è legata agli elettroni liberi (negativi) J -en v - - (J ha sempre verso concorde ad E) Nei fluidi ionizzati o nei semiconduttori la corrente è dovuta sia ai portatori + che -: -en v + en v J Ø Su scala macroscopica non è possibile correlare il verso della corrente con il segno dei portatori di carica: ossia dato un campo gli stessi effetti si hanno se i portatori sono positivi o negativi. Ø Si assume come verso di percorrenza quello delle cariche positive G. Pugliese

13 Unità di misura per la COENTE Nel S.I. l unità di misura della corrente elettrica è l ampere: A (unità di misura fondamentale). Si ha l intensità di corrente di 1 A quando, attraverso una data superficie, passa la carica di 1 C in 1 s. Sottomultipli: 1mA 10-3 A 1µA 10-6 A 1 na 10-9 A Multipli: 1kA 10 3 A 1MA10 6 A A C s La densità di corrente si misura in A/m G. Pugliese 13

14 Curiosità: Calcoliamo la velocità di deriva per un conduttore cilindrico di rame di raggio r 0.5 cm attraversato da una corrente 1 A uniformemente distribuita sulla sua sezione. j i Σ i 1.7A / cm πr n ele / m ele / cm 3 v d J ne cm / s Confrontiamo questa velocità media con la velocità quadratica media di agitazione termica (assumendo che il gas elettronico si comporti come un gas perfetto) v qm 3 kt m e m / s

15 La corrente stazionaria Consideriamo una regione di spazio di volume τ delimitato dalla superficie chiusa, Σ. La carica totale che passa nell unità di tempo attraverso: j nd Per il principio di conservazione della carica: i Σ j ndσ > 0 q+ che esce o q j ndσ < q che entra o q j ndσ i q int t 0 + Σ che entra che esce Se l integrale è positivo la carica all interno diminuisce e quindi derivata negativa G. Pugliese 15

16 La corrente stazionaria Conduttore percorso dalla densità di corrente J, - i 1 S1 j1 n 1 ds S1 S i S j n ds I 1 I In condizioni stazionarie l intensità di corrente è la stessa attraverso ogni sezione del conduttore. Se il conduttore ha sezione variabile à la densità di corrente sarà maggiore dove la sezione è minore. G. Pugliese 16

17 Legge di Ohm della conduzione elettrica Ø Legge di Ohm della conduttività elettrica: sperimentalmente si osserva che, in regime stazionario, in un conduttore sottoposto ad una differenza di potenziale: Dove σ: conduttività elettrica (caratteristica del mezzo) E J σe ρj Ø ρ è la resistività del mezzo: ρ 1 σ Ø I conduttori che soddisfano la legge di ohm sono detti conduttori Ohmici! G. Pugliese 17

18 Modello Classico (Legge di Ohm) Ø σ è la conduttività del mezzo (dipende dalla natura del conduttore). Ø Ø J -en- vd v d e τe m J σe e J σ // E -en Ø Legge di ohm della conduzione elettrica J σ ne m ne m τ E σe - v d τ G. Pugliese 18

19 Conduttori metallici Conduttore metallico cilindrico percorso da una corrente in regime stazionario V V a - V b d.d.p. ai capi del conduttore E ρj i J S (E/ρ) S à E (ρ/s) i V V A V B B A E d l Eh resistenza del conduttore V ρ S ih V i G. Pugliese 19

20 Legge di ohm per conduttori metallici Se la sezione del conduttore è variabile: dv E ds dh ρ S i E (ρ/s) i Integrando su tutto il conduttore: V B A E ds V A V B i i POSTO: (i è la stessa in ogni sezione del conduttore, essendo la corrente stazionaria) B A dh ρ S G. Pugliese 0

21 Legge di ohm per conduttori metallici Legge di Ohm per i conduttori metallici: in regime stazionario il rapporto tra la d.d.p applicata ai capi di un conduttore metallico e l intensità di corrente è pari alla resistenza del conduttore, che dipende solamente dalla natura del conduttore e dalle sue dimensioni. V I ρh S Unità di misura: 1. La resistenza:. Le resistività: [] (ohm) Ω V/A S Ωm ρ Ωm h m G. Pugliese 1

22 esistenza e Temperatura La resistività (e quindi la resistenza) di conduttori, semiconduttori e isolanti dipende dalla temperatura: Ø La resistività di un conduttore metallico è piccola e generalmente cresce linearmente con la temperatura. La resistività, nelle tabelle, è riportata a 0 C, può essere quindi convertita ad altre temperature con una semplice espressione. ρ ρ α 0 1 ρ (1 + αδt) dove Δt t 0 C α : coefficiente termico 0 Δρ Δt G. Pugliese

23 esistenza e Temperatura Condu)ori Semi - condu)ori isolan/ G. Pugliese 3

24 esistenza e Temperatura Ø La grande resistività dei semiconduttori decresce per riscaldamento. Ø In alcuni metalli (x es. il mercurio) la resistività decresce fortemente in vicinanza dello zero assoluto, saltando ad un valore approssimativamente nullo, al di sotto di un temperatura detta critica, T C : si è in condizioni di superconduttività. Più recentemente questo fenomeno è stato osservato anche con alcune ceramiche a temperature più elevate (100 K) (superconduttività ad alta temperatura). Ø molto piccole à corren; I alte a parità di V.. G. Pugliese 4

25 Effetto Joule Va Vb Per spostare la carica dq da A e B, viene compiuto il lavoro: dw ΔV dq ΔV i dt La potenza spesa dal campo per far circolare la corrente i à P dw / dt ΔV i Se vale le legge di ohm: P I ΔV / Ø A causa degli urti gli elettroni cedono l energia acquistata al conduttore, dando luogo ad un aumento di temperatura. Ø L effetto di riscaldamento di un conduttore percorso da corrente si chiama effetto Joule G. Pugliese 5

26 Effetto Joule Il lavoro compiuto per far passare una corrente i attraverso un conduttore metallico per un tempo t: W t Pdt 0 t 0 i dt Se i è costante: W i t I superconduttori hanno una resistività molto bassa, quasi nulla. Hanno il grosso vantaggio che non occorre spendere questa potenza per mantenere la corrente (ma bisogna mantenere i cavi a bassissime temperature!!) G. Pugliese 6

27 Circuiti elettrici Nei circuiti elettrici vengono impiegati i resistori, ossia, conduttori ohmici caratterizzati da un determinato valore della resistenza e dal valore massimo della potenza che può essere dissipata. Più resistori possono essere collegati insieme: 1. In serie. In parallelo G. Pugliese 7

28 Collegamenti in serie In regime stazionario la i è la stessa: Legge di ohm: V V A B VB 1i V ( ) i A VC 1 + i equi V i C ( ) equi 1 + La potenza totale spesa: P ( V P A VC ) i eqi P1 + G. Pugliese 8

29 Collegamenti in parallelo i 1 i i + equi V V V V i Δ + Δ Δ + Δ Le due hanno la stessa d.d.p. Poiché la corrente è stazionaria: equi La potenza totale spesa: ) 1 1 ( i V V V V i i P eq eq

30 Lavoro in elettrostatica campo elettrostatico E dl 0 E W F q 0 campo elettromotore q 0E(P) dl ε E dl Forza elettromotrice G. Pugliese 30

31 Forza Elettromotrice V B A VB E ds E A ds i T Circuito chiuso i Ø per avere corrente che circoli nel circuito serve una f.e.m. Ø un Campo E la cui circuitazione non sia nulla Ø forze di natura quindi non elettrostatica (NON conservative) Ø il dispositivo che genera questa f.e.m, può sfruttare azioni meccaniche o reazioni chimiche o qualunque altro meccanismo. G. Pugliese 31

32 Forza Elettromotrice Ø il campo elettrostatico E el è sempre diretto da A à B sia nel conduttore che nel generatore. Ø la sua circuitazione 0 E el ds B A A ( E ds) + ( E ds) int el ext B el 0 Ø nel generatore deve esserci un campo E * non elettrostatico (campo elettromotore) che faccia muovere le cariche. ε E d s B E el ds A + ( E el + E * ) ds A B A B E * d s Ø Il campo E è: non conservativo e la f.e.m coincide con la tensione del campo elettromotore calcolata lungo la linea interna che va da B ad A G. Pugliese 3

33 Forza Elettromotrice La corrente che attraversa il conduttore esternamente circola anche nel generatore da B ad A. Definiamo la resistenza interna dal generatore: i ε ( r+ ) ε B A A B * ( Eel + E ) ds ri A * Eel ds + ( Eel + E ) ds i + B ri Ø La corrente che circola nel circuito è data dal rapporto tra la f.e.m fornita dal generatore e la resistenza totale. G. Pugliese 33

34 Forza Elettromotrice ε i + ri V A V B i ε ri Ø la differenza ai capi A e B della resistenza è sempre inferiore alla forza elettromotrice fornita dal generatore (si dice che vi è una caduta di potenziale o di tensione ai capi della resistenza). La eguaglia solo nel caso in cui il circuito è aperto (i 0): V A V B ε Ø A circuito aperto, ossia i 0 la f.e.m. è pari alla d.d.p. misurata ai capi del generatore. G. Pugliese 34

35 Forza Elettromotrice ε i + ri ε idt i dt + ri dt ε i i + ri Ø il lavoro o la potenza fornito dal generatore viene dissipato nelle resistenze del circuito G. Pugliese 35

36 Carica del Condensatore: circuito C il condensatore si carica ε V + V C q( t) ε C i( t) + q( t) C dq( t) dt dq( t) q Cε i( t) dt C dq( t) dt q 0 dq( t) q Cε 1 C t 0 dt q t C Cε ( 1 e )

37 Carica del Condensatore: circuito C t C q Cε ( 1 e ) V C i q t) ε (1 e C τ C C ΩF V A V ε e ( t C costante di tempo t C i εe C V C A s t C )

38 Scarica del Condensatore: circuito C Viene chiuso il circuito q C dq( t) i (la carica diminuisce nel tempo) dt V C 0 V C V q C i q C dq dt q q 0 dq q t 0 dt C q q 0 e t C

39 Scarica del Condensatore: circuito C q q 0 e t C V C q C q C t 0 C e V0 e t C i( t) dq dt q0 C e t C V0 e t C VC

40 Processo di carica la potenza istantanea erogata dal generatore: P gen εi ε e t / C Quella spesa nel resistore P i ε t / C e La potenza di carica del condensatore P C V C i ε e ε t / C t / C e P gen P La potenza erogata dal generatore viene in parte dissipata sulla resistenza ed in parte consumata per aumentare l energia elettrostatica del condensatore.

41 Processo di carica: conservazione energia Il lavoro fornito dal generatore, quello consumato nella resistenza e l energia elettrostatica del condensatore: W ε t / C gen Pgendt e dt 0 0 Cε W P dt 0 1 Cε Δ U e P C dt 0 1 Cε

42 Processo di scarica: conservazione energia Nel processo di scarica viene dissipata energia, pari all energia elettrostatica iniziale del condensatore: W ε P dt e 0 0 t / C dt 1 0 Cε q C

LA CORRENTE ELETTRICA E LA RESISTENZA

LA CORRENTE ELETTRICA E LA RESISTENZA L CORRENTE ELETTRIC E L RESISTENZ G. Pugliese La conduzione elettrica I materiali conduttori solidi sono costituiti da un reticolo spaziale a cui vertici si trovano gli ioni positivi ed al cui interno

Dettagli

Info generali sul corso

Info generali sul corso Info generali sul corso Programma FISII (docente dott. G. Pugliese):. Corrente Elettrica. Forza magnetica e Campo magnetico 3. Sorgenti del campo Magnetico. Legge di mpere ESONERO 4. Campi Elettrici e

Dettagli

Conduzione elettrica

Conduzione elettrica Conduzione elettrica Corrente elettrica i lim t t d dt dτ v dtdσcosθ d d di nev dtdσcosθ d nev dσcosθ d Definiamo il vettore densità di corrente j nev d dunue di j u d n Σ L intensità di corrente attraverso

Dettagli

Moto degli elettroni T ~ 0 0 K E F. exp 1 kt 1.7 2/ 3

Moto degli elettroni T ~ 0 0 K E F. exp 1 kt 1.7 2/ 3 Moto degli elettroni Necessaria la meccanica quantistica Potenziale medio in cui si muovono gli elettroni + principio di esclusione di Pauli Energia di Fermi E F : energie elettroni tra E min ed E F (E

Dettagli

CAPITOLO 5 CORRENTE ELETTRICA

CAPITOLO 5 CORRENTE ELETTRICA CAPITOLO 5 CORRENTE ELETTRICA Elisabetta Bissaldi (Politecnico di Bari) - A.A. 2017-2018 2 Conduzione elettrica Materiali conduttori SOLIDI: Costituiti da un reticolo spaziale Ai vertici: ioni positivi

Dettagli

Grandezza fondamentale nel SI, per ragioni di maggior facilita' a mantenere uno standard accurato e stabile rispetto alla carica

Grandezza fondamentale nel SI, per ragioni di maggior facilita' a mantenere uno standard accurato e stabile rispetto alla carica Moto di cariche: situazione non statica Richiede la presenza di campi elettrici, portatori ~ liberi ede: conduttori, elettroliti, semiconduttori, gas/liquidi ionizzati, vuoto Enfasi su conduttori Es. tipico:

Dettagli

Potenza spesa dalla forza per mantenere la carica in moto con velocita` v D. dp dv

Potenza spesa dalla forza per mantenere la carica in moto con velocita` v D. dp dv Legge di Ohm J E E J 1 resistivita` Potenza spesa dalla forza per mantenere la carica in moto con velocita` v D P F v ee v 2 E D per unita` di volume D dp dv nee v D J E J Energia trasferita agli ioni

Dettagli

Corrente elettrica. Testo di riferimento: Elementi di Fisica, Mazzoldi, Nigro, Voci. a.a Aprile 2018, Bari

Corrente elettrica. Testo di riferimento: Elementi di Fisica, Mazzoldi, Nigro, Voci. a.a Aprile 2018, Bari Corrente elettrica a.a. 2017-2018 Testo di riferimento: Elementi di Fisica, Mazzoldi, Nigro, Voci 23 Aprile 2018, Bari Dal programma o 2.0 CFU Conduttori e Dielettrici Corrente elettrica: Conduzione elettrica.

Dettagli

CAPITOLO 5 CORRENTE ELETTRICA

CAPITOLO 5 CORRENTE ELETTRICA CAPITOLO 5 CORRENTE ELETTRICA Elisabetta Bissaldi (Politecnico di Bari) - A.A. 2018-2019 2 Conduzione elettrica Materiali conduttori SOLIDI: Costituiti da un reticolo spaziale Ai vertici: ioni positivi

Dettagli

Corrente ele)rica. Cariche in movimento e legge di Ohm

Corrente ele)rica. Cariche in movimento e legge di Ohm Corrente ele)rica Cariche in movimento e legge di Ohm Corrente ele)rica Nei metalli si possono avere elettroni che si muovono anche velocemente fra un estremo e l altro del metallo, ma la risultante istante

Dettagli

0 : costante dielettrica nel vuoto

0 : costante dielettrica nel vuoto 0 : costante dielettrica nel vuoto Φ Flusso del campo elettrico E dφ E E da EdAcosθ Se la superficie è chiusa (superficie gaussiana) il flusso si calcola come integrale chiuso: Φ E dφ E E da v EdAcosθ

Dettagli

Formulario Elettromagnetismo

Formulario Elettromagnetismo Formulario Elettromagnetismo. Elettrostatica Legge di Coulomb: F = q q 2 u 4 0 r 2 Forza elettrostatica tra due cariche puntiformi; ε 0 = costante dielettrica del vuoto; q = cariche (in C); r = distanza

Dettagli

Corrente ele)rica. Cariche in movimento e legge di Ohm

Corrente ele)rica. Cariche in movimento e legge di Ohm Corrente ele)rica Cariche in movimento e legge di Ohm Corrente ele)rica Nei metalli si possono avere elettroni che si muovono anche velocemente fra un estremo e l altro del metallo, ma senza una differenza

Dettagli

Corrente ele)rica resistenza circui1 a corrente con1nua

Corrente ele)rica resistenza circui1 a corrente con1nua Corrente ele)rica resistenza circui1 a corrente con1nua Corrente ele)rica Se colleghiamo un filo condu)ore a un disposi1vo (per esempio una ba)eria) che mantenga una d.d.p. ΔV costante compiendo del lavoro

Dettagli

Flusso e corrente 1. Il caso idraulico. fluido di densità µ. densità di corrente J. dm dv. v n. dm dt ds. dm dt. flusso elementare

Flusso e corrente 1. Il caso idraulico. fluido di densità µ. densità di corrente J. dm dv. v n. dm dt ds. dm dt. flusso elementare l caso idraulico Flusso e corrente fluido di densità µ ds densità di corrente J n v v n J dm v µ d v ds dds v n flusso elementare v n dm ds d Φ J n ds d dm portata attraverso una sezione S Φ S ( J) J nds

Dettagli

Cenni di elettrostatica

Cenni di elettrostatica Cenni di elettrostatica L' osservazione di fenomeni di natura elettrica risale al settimo secolo a.c, quando si scopri che l'ambra, l'ebanite e altri materiali, strofinati con un panno di lana, acquistano

Dettagli

dq dt Università degli Studi di Bari Aldo Moro Dip. DiSAAT - Ing. Francesco Santoro Corso di Fisica

dq dt Università degli Studi di Bari Aldo Moro Dip. DiSAAT - Ing. Francesco Santoro Corso di Fisica Corrente elettrica Consideriamo il moto non accelerato e con velocità piccole rispetto a quella della luce nel vuoto di un insieme di particelle dotate di carica elettrica: possono ritenersi valide le

Dettagli

ELETTRICITÀ CORRENTE CONTINUA LEZIONE N. 29

ELETTRICITÀ CORRENTE CONTINUA LEZIONE N. 29 LEZIONE N. 29 (LA CONDUZIONE ELETTRICA NEI METALLI) Nei metalli gli atomi sono talmente vicini che qualche elettrone esterno viene a trovarsi nel campo elettrico dell atomo più vicino. Per questo motivo

Dettagli

Circuiti Elettrici + -

Circuiti Elettrici + - Circuiti Elettrici Dato un corpo carico positivamente ed uno carico negativamente. I due corpi generano un campo elettrico e ciascuno si trova ad un potenziale differente. Esiste cioè una differenza di

Dettagli

Corrente elettrica. Consideriamo un filo di materiale conduttore ai cui estremi viene applicata una d.d.p ΔV = V A V B con V A >V B.

Corrente elettrica. Consideriamo un filo di materiale conduttore ai cui estremi viene applicata una d.d.p ΔV = V A V B con V A >V B. Corrente elettrica ) Definizione di corrente elettrica Consideriamo un filo di materiale conduttore ai cui estremi viene applicata una d.d.p Δ con >. Nel filo si stabilisce un campo elettrico che esercita

Dettagli

Correnti e circuiti. E' il rapporto tra la quantità di carica che attraversa una sezione del conduttore e l'intervallo di tempo impiegato. Q t.

Correnti e circuiti. E' il rapporto tra la quantità di carica che attraversa una sezione del conduttore e l'intervallo di tempo impiegato. Q t. 1 Correnti e circuiti Correnti e circuiti corrente: la quantità di carica che attraversa una superficie nell unità di tempo i i Q t lim t 0 Q t dq dt 1 Ampere (A) 1 C/s E' il rapporto tra la quantità di

Dettagli

Esame di Stato 2006 tema n. 2 1 M.Vincoli

Esame di Stato 2006 tema n. 2 1 M.Vincoli Esame di Stato 6 tema n. 1 M.Vincoli 1. L effetto Joule consiste nella dissipazione termica di energia a seguito del passaggio di corrente in un elemento resistivo. Supponiamo di avere un circuito costituito

Dettagli

Corrente elettrica. In questo tratto di conduttore in cui si è stabilita una certa corrente, passa una carica dq nel tempo dt.

Corrente elettrica. In questo tratto di conduttore in cui si è stabilita una certa corrente, passa una carica dq nel tempo dt. Corrente elettrica La corrente elettrica è data da un flusso netto di cariche in moto. Gli elettroni di conduzione, all interno di un filo isolato di rame, si muovono in modo casuale a una velocità di

Dettagli

Corrente elettrica. Consideriamo un filo di materiale conduttore ai cui estremi viene applicata una d.d.p V = V A V con V >V.

Corrente elettrica. Consideriamo un filo di materiale conduttore ai cui estremi viene applicata una d.d.p V = V A V con V >V. Corrente elettrica ) Definizione di corrente elettrica Consideriamo un filo di materiale conduttore ai cui estremi viene applicata una d.d.p = con >. Nel filo si stabilisce un campo elettrico che esercita

Dettagli

CORRENTE ELETTRICA parte I a

CORRENTE ELETTRICA parte I a Richiami sulla CORRENTE ELETTRICA parte I a - CORRENTE ELETTRICA - LEGGI DI OHM - CIRCUITI IN CORRENTE CONTINUA Corrente elettrica Un flusso di cariche elettriche da un punto ad un altro di un conduttore

Dettagli

CORRENTE ELETTRICA Intensità e densità di corrente sistema formato da due conduttori carichi a potenziali V 1 e V 2 isolati tra loro V 2 > V 1 V 2

CORRENTE ELETTRICA Intensità e densità di corrente sistema formato da due conduttori carichi a potenziali V 1 e V 2 isolati tra loro V 2 > V 1 V 2 COENTE ELETTICA Intensità e densità di corrente sistema formato da due conduttori carichi a potenziali V 1 e V isolati tra loro V > V 1 V V 1 Li colleghiamo mediante un conduttore Fase transitoria: sotto

Dettagli

Q V C = coulomb volt. Quando ad un conduttore isolato viene conferita una carica elettrica Q, esso assume un potenziale V.

Q V C = coulomb volt. Quando ad un conduttore isolato viene conferita una carica elettrica Q, esso assume un potenziale V. CAPACITÀ ELETTRICA Quando ad un conduttore isolato viene conferita una carica elettrica Q, esso assume un potenziale. Si definisce capacità elettrica Unità di misura della capacità elettrica nel S.I. C

Dettagli

CAPITOLO 5 CORRENTE ELETTRICA

CAPITOLO 5 CORRENTE ELETTRICA CAPITOLO 5 5.1 Introduzione In questo capitolo abbandoniamo la statica per parlare di cariche in movimento. In un conduttore gli elettroni sono le cariche mobili e in condizioni normali e a temperatura

Dettagli

Corrente elettrica. a = e E/m. La velocita' cresce linearmente. v= a t

Corrente elettrica. a = e E/m. La velocita' cresce linearmente. v= a t Corrente elettrica In un buon conduttore è disponibile una notevole quantità di elettroni liberi di muoversi Se applico un campo elettrico E essi sono accelerati a = e E/m La velocita' cresce linearmente

Dettagli

La corrente elettrica

La corrente elettrica 1 La corrente elettrica All interno di ogni conduttore metallico vi sono degli elettroni che sono debolmente legati ai nuclei. Questi elettroni sono liberi di muoversi all interno del metallo e sono detti

Dettagli

Relazione di Fisica Generale II. La corrente elettrica e i circuiti elementari. Antonella Sara Montella Stefano Tagliaferri Angela Vagnetti

Relazione di Fisica Generale II. La corrente elettrica e i circuiti elementari. Antonella Sara Montella Stefano Tagliaferri Angela Vagnetti Relazione di Fisica Generale II La corrente elettrica e i circuiti elementari Antonella Sara Montella Stefano Tagliaferri Angela Vagnetti Teoria delle bande All interno di un metallo gli elettroni possono

Dettagli

Il vettore densità di corrente è solenoidale V=RI

Il vettore densità di corrente è solenoidale V=RI Corrente elettrica Equazione di continuita' r r ρ = J t ρ nel caso stazionario: = 0 e r J r = 0 t J densità di corrente ρ densità di carica Il vettore densità di corrente è solenoidale Leggi di ohm V=RI

Dettagli

Cavo Carbonio. Sergio Rubio Carles Paul Albert Monte

Cavo Carbonio. Sergio Rubio Carles Paul Albert Monte Cavo o Sergio Rubio Carles Paul Albert Monte o, Rame e Manganina PROPRIETÀ FISICHE PROPRIETÀ DEL CARBONIO Proprietà fisiche del o o Coefficiente di Temperatura α o -0,0005 ºC -1 o Densità D o 2260 kg/m

Dettagli

Fisica Generale B 4. Corrente Elettrica

Fisica Generale B 4. Corrente Elettrica Fisica Generale B 4. Corrente Elettrica http://campus.cib.unibo.it/2474/ March 21, 2017 Corrente Elettrica bbiamo visto che in condizioni statiche (equilibrio) il campo elettrico E all interno di un conduttore

Dettagli

Elettronica II Grandezze elettriche microscopiche (parte 1) p. 2

Elettronica II Grandezze elettriche microscopiche (parte 1) p. 2 Elettronica II Grandezze elettriche microscopiche (parte 1) Valentino Liberali Dipartimento di Tecnologie dell Informazione Università di Milano, 26013 Crema e-mail: liberali@dti.unimi.it http://www.dti.unimi.it/

Dettagli

Lezione 16. Elettrodinamica

Lezione 16. Elettrodinamica Lezione 16 Elettrodinamica Introduzione Nei conduttori solidi qualche elettrone per atomo può diventare libero di muoversi passando da un atomo all'altro. Applicando la teoria cinetica dei gas si trova

Dettagli

Condensatore. Un coppia di conduttori carichi a due potenziali diversi con cariche opposte costituisce un condensatore

Condensatore. Un coppia di conduttori carichi a due potenziali diversi con cariche opposte costituisce un condensatore Condensatore Un coppia di conduttori carichi a due potenziali diversi con cariche opposte costituisce un condensatore +Q Q V o semplicemente V Un condensatore è caratterizzato da una capacità C che dipende

Dettagli

Esame di stato 2014_2 2 M.Vincoli

Esame di stato 2014_2 2 M.Vincoli Esame di stato 0_ M.Vincoli . Per semplificare i calcoli, evitando altresì di introdurre immediatamente grandezze numeriche, è utile adottare una notazione semplificatrice, per cui poniamo:, 0 0,,0 0,60

Dettagli

I FENOMENI ELETTRICI CLASSE DELLE LAUREE TRIENNALI DELLE PROFESSIONI SANITARIE DELLA RIABILITAZIONE

I FENOMENI ELETTRICI CLASSE DELLE LAUREE TRIENNALI DELLE PROFESSIONI SANITARIE DELLA RIABILITAZIONE CLASSE DELLE LAUREE TRIENNALI DELLE PROFESSIONI SANITARIE DELLA RIABILITAZIONE I FENOMENI ELETTRICI CARICA ELETTRICA FORZA DI COULOMB CAMPO ELETTRICO E POTENZIALE ELETTRICO CORRENTE E LEGGI DI OHM RESISTENZA

Dettagli

Q=costante (indipendente dal dielettrico)

Q=costante (indipendente dal dielettrico) Se in un condensatore viene posto un materiale dielettrico con costante 5 volte maggiore rispetto quella dell aria: Quali grandezze cambiano tra Q, C e V? Q=costante (indipendente dal dielettrico) C =

Dettagli

Circuiti elettrici. Marcello Borromeo corso di Fisica per Farmacia - Anno Accademico

Circuiti elettrici. Marcello Borromeo corso di Fisica per Farmacia - Anno Accademico Circuiti elettrici Possiamo combinare molti oggetti già studiati per fare circolare corrente nel modo che ci conviene Possiamo usare condensatori e solenoidi Introdurremo anche generatori (i motori delle

Dettagli

Correnti elettriche, resistenze, legge di Ohm

Correnti elettriche, resistenze, legge di Ohm Correnti elettriche, resistenze, legge di Ohm Se in un conduttore, tra due punti qualsiasi sulla sua superficie o al suo interno, si mantiene una differenza di potenziale (ddp ) V - V - > 0 il campo elettrico

Dettagli

La corrente elettrica

La corrente elettrica La corrente elettrica L'intensità della corrente elettrica Si chiama corrente elettrica un moto ordinato di cariche elettriche In un filo metallico (come il filamento di una lampadina) le cariche in moto

Dettagli

La corrente elettrica

La corrente elettrica La corrente elettrica L'intensità della corrente elettrica Si chiama corrente elettrica un moto ordinato di cariche elettriche In un filo metallico (come il filamento di una lampadina) le cariche in moto

Dettagli

Fenomeni elettrici. Modello dell atomo, carica elettrica, forza tra cariche stazionarie. Campo elettrico e potenziale elettrostatico

Fenomeni elettrici. Modello dell atomo, carica elettrica, forza tra cariche stazionarie. Campo elettrico e potenziale elettrostatico Fenomeni elettrici Legge di Coulomb Modello dell atomo, carica elettrica, forza tra cariche stazionarie Campo elettrico e potenziale elettrostatico Campo elettrico, linee di forza, lavoro della forza elettrostatica,

Dettagli

Campi Elettrici e Magnetici. ELETTROSTATICA Cariche Elettriche e Forze Elettriche

Campi Elettrici e Magnetici. ELETTROSTATICA Cariche Elettriche e Forze Elettriche Campi Elettrici e Magnetici ELETTROSTATICA Cariche Elettriche e Forze Elettriche Esperienza ==> Forza tra cariche SI INTRODUCE UNA NUOVA GRANDEZZA FONDAMENTALE: LA CARICA ELETTRICA UNITÀ DI MISURA NEL

Dettagli

Esercizio 5.1. Un conduttore cilindrico di rame, avente sezione di area Σ = 4 mm 2, è percorso da una corrente di intensità i = 8 A.

Esercizio 5.1. Un conduttore cilindrico di rame, avente sezione di area Σ = 4 mm 2, è percorso da una corrente di intensità i = 8 A. CAPITOLO 5 ESERCIZI Elisabetta Bissaldi (Politecnico di Bari) - A.A. 2018-2019 2 Esercizio 5.1 Un conduttore cilindrico di rame, avente sezione di area Σ = 4 mm 2, è percorso da una corrente di intensità

Dettagli

Conduttori e dielettrici

Conduttori e dielettrici Conduttori e dielettrici a.a. 2017-2018 Testo di riferimento: Elementi di Fisica, Mazzoldi, Nigro, Voci 23 Aprile 2018, Bari Dal programma o 2.0 CFU Conduttori e Dielettrici Corpi conduttori in equilibrio

Dettagli

Primo Parziale Fisica Generale T-B

Primo Parziale Fisica Generale T-B Primo Parziale Fisica Generale T-B (CdL Ingegneria Civile e Informatica [A-K]) Prof. M. Sioli 23/11/2012 Soluzioni Compito B Esercizi Ex. 1 Tre cariche puntiformi sono disposte ai vertici di un uadrato

Dettagli

Secondo tema. Risoluzione del problema Il testo stabilisce che il resistore con resistenza R 3 dissipa una potenza P 3 = 40,0 W. Dalla relazione (18)

Secondo tema. Risoluzione del problema Il testo stabilisce che il resistore con resistenza R 3 dissipa una potenza P 3 = 40,0 W. Dalla relazione (18) Secondo tema Nel circuito riportato in figura V = 3,60 10 2 V, R 1 = 1,20 10 2 Ω, R 2 = 2,40 10 2 Ω, R 3 = 3,60 10 2 Ω, R 4 è un resistore variabile di resistenza massima pari a 1,80 10 2 Ω. Considerando

Dettagli

FISICA GENERALE II CdL in Scienza dei Materiali a.a. 2018/2019 Prof. Roberto Francini Programma del corso:

FISICA GENERALE II CdL in Scienza dei Materiali a.a. 2018/2019 Prof. Roberto Francini Programma del corso: FISICA GENERALE II CdL in Scienza dei Materiali a.a. 2018/2019 Prof. Roberto Francini Programma del corso: - Proprietà generali delle cariche elettriche - Cariche puntiformi e distribuzioni continue di

Dettagli

Cariche e Campi Elettrici

Cariche e Campi Elettrici PROGRAMMA FINALE di FISICA A.S. 2016/2017 5 Liceo Classico LIBRO DI TESTO Parodi, Ostili, Onori Il Linguaggio della Fisica 3 - Linx MODULO N. 1 Cariche e Campi Elettrici U.D. 1 Carica Elettrica e Legge

Dettagli

Main training FISICA. Lorenzo Manganaro. Lezione 12 Corrente elettrica

Main training FISICA. Lorenzo Manganaro. Lezione 12 Corrente elettrica Main training 2017-2018 FISICA Lorenzo Manganaro Lezione 12 Corrente elettrica Lezione 12 Corrente Elettrico 1. Leggi di Ohm 2. Legge di Joule 3. Leggi di Kirchhoff e circuiti Statistica 30 25 20 15 1.

Dettagli

CAPITOLO 3 LA LEGGE DI GAUSS

CAPITOLO 3 LA LEGGE DI GAUSS CAPITOLO 3 LA LEGGE DI GAUSS Elisabetta Bissaldi (Politecnico di Bari) - A.A. 2017-2018 2 Premesse TEOREMA DI GAUSS Formulazione equivalente alla legge di Coulomb Trae vantaggio dalle situazioni nelle

Dettagli

PROGRAMMA DI FISICA. CLASSE: 4^ SEZ.:A Scientifico

PROGRAMMA DI FISICA. CLASSE: 4^ SEZ.:A Scientifico Viale Papa Giovanni XXIII 25 10098 RIVOLI Tel. 0119586756 Fax 0119589270 Sede di SANGANO 10090 via San Giorgio, 10 Tel. e fax 0119087184 SCIENTIFICO LINGUISTICO SCIENZE UMANE ECONOMICO SOCIALE e-mail:

Dettagli

S.I.C.S.I. Scuola Interuniversitaria Campana di Specializzazione all Insegnamento VIII ciclo - a.a. 2008/2009

S.I.C.S.I. Scuola Interuniversitaria Campana di Specializzazione all Insegnamento VIII ciclo - a.a. 2008/2009 S.I.C.S.I. Scuola Interuniversitaria Campana di Specializzazione all Insegnamento VIII ciclo - a.a. 2008/2009 Conduzione elettrica nei metalli (conduttori e semiconduttori) Corso di Laboratorio di Didattica

Dettagli

= E qz = 0. 1 d 3 = N

= E qz = 0. 1 d 3 = N Prova scritta d esame di Elettromagnetismo 7 ebbraio 212 Proff.. Lacava,. Ricci, D. Trevese Elettromagnetismo 1 o 12 crediti: esercizi 1, 2, 4 tempo 3 h; Elettromagnetismo 5 crediti: esercizi 3, 4 tempo

Dettagli

Ministero dell Istruzione, dell Università e della Ricerca

Ministero dell Istruzione, dell Università e della Ricerca Pag. / Sessione ordinaria 014 Seconda prova scritta Ministero dell Istruzione, dell Università e della icerca BST ESAME DI STATO DI LICEO SCIENTIFICO COSI SPEIMENTALI Tema di: FISICA Secondo tema Nel circuito

Dettagli

Elettrodinamica. 1. La corrente elettrica continua 2. I circuiti elettrici. Prof Giovanni Ianne

Elettrodinamica. 1. La corrente elettrica continua 2. I circuiti elettrici. Prof Giovanni Ianne Elettrodinamica 1. La corrente elettrica continua 2. I circuiti elettrici Prof. Giovanni Ianne 1 La corrente elettrica Si chiama corrente elettrica un moto ordinato di cariche elettriche. La lampada ad

Dettagli

La differenza di potenziale che dà origine ad un fulmine può raggiungere 10 9 V e la carica coinvolta può arrivare fino a 40 C.

La differenza di potenziale che dà origine ad un fulmine può raggiungere 10 9 V e la carica coinvolta può arrivare fino a 40 C. La differenza di potenziale che dà origine ad un fulmine può raggiungere 0 9 V e la carica coinvolta può arrivare fino a 40. Quanta energia è liberata nella scarica? V U q 0 9 E n U qv 40x0 J un area pari

Dettagli

2 CORRENTE ELETTRICA STAZIONARIA (teoria)

2 CORRENTE ELETTRICA STAZIONARIA (teoria) 2 CORRENTE ELETTRIC STZIONRI (teoria) 1 La corrente elettrica Particelle cariche in movimento danno origine ad una flusso di corrente elettrica. Esistono diverso tipi di corrente elettrica: Corrente di

Dettagli

Corso di fisica generale con elementi di fisica tecnica

Corso di fisica generale con elementi di fisica tecnica Corso di fisica generale con elementi di fisica tecnica Aniello (Daniele) Mennella Dipartimento di Fisica Secondo modulo Parte prima (fondamenti di elettromagnetismo) Lezione 2 Circuiti elettrici Sommario

Dettagli

σ int =. σ est = Invece, se il guscio è collegato a massa, la superficie esterna si scarica e la densità di carica σ est è nulla. E =.

σ int =. σ est = Invece, se il guscio è collegato a massa, la superficie esterna si scarica e la densità di carica σ est è nulla. E =. Esercizio 1 a) Poiché la carica è interamente contenuta all interno di una cavità circondata da materiale conduttore, si ha il fenomeno dell induzione totale. Quindi sulla superficie interna della sfera

Dettagli

Corsi di Laurea in Ingegneria per l ambiente ed il Territorio e Chimica. Esercizi 1 FISICA GENERALE L-B. Prof. Antonio Zoccoli

Corsi di Laurea in Ingegneria per l ambiente ed il Territorio e Chimica. Esercizi 1 FISICA GENERALE L-B. Prof. Antonio Zoccoli rof. Antonio Zoccoli 1) Una carica Q è distribuita uniformemente in un volume sferico di raggio R. Determinare il lavoro necessario per spostare una carica q da una posizione a distanza infinita ad una

Dettagli

Circuiti elettrici. Marcello Borromeo corso di Fisica per Farmacia - Anno Accademico

Circuiti elettrici. Marcello Borromeo corso di Fisica per Farmacia - Anno Accademico Circuiti elettrici Per muovere una carica tra due punti ci vuole un campo elettrico, quindi una differenza di potenziale (ddp) Se la carica si muove in un percorso chiuso (circuito) ho bisogno di un congegno

Dettagli

Esercitazioni di fisica

Esercitazioni di fisica Esercitazioni di fisica Alessandro Berra 9 maggio 2014 1 Elettrostatica 1 Tre cariche puntiformi di carica q=0.2 µc sono disposte ai vertici di un triangolo equilatero di lato l. Determinare il valore

Dettagli

Corrente elettrica e circuiti

Corrente elettrica e circuiti Corrente elettrica e circuiti Slide 1 Materiali: prima classificazione Conduttori : sostanze nelle quali alcune o tutte le cariche elettriche possono muoversi liberamente sotto l'azione di forze elettriche

Dettagli

Carica elettrica. Costituzione dell atomo: nucleo con protoni (carica +e) e neutroni (carica 0) elettroni (carica -e) orbitanti attorno al nucleo

Carica elettrica. Costituzione dell atomo: nucleo con protoni (carica +e) e neutroni (carica 0) elettroni (carica -e) orbitanti attorno al nucleo I FENOMENI ELETTRICI Carica elettrica Forza di Coulomb Campo elettrico Potenziale elettrico Intensità di corrente Leggi di Ohm Resistenza e resistivita Effetto termico della corrente Elettrolisi Carica

Dettagli

Esercizi di Elettricità

Esercizi di Elettricità Università di Cagliari Laurea Triennale in Biologia Corso di Fisica Esercizi di Elettricità 1. Quattro cariche puntiformi uguali Q = 160 nc sono poste sui vertici di un quadrato di lato a. Quale carica

Dettagli

Lez.4 Bipoli elementari. Università di Napoli Federico II, CdL Ing. Meccanica, A.A , Elettrotecnica. Lezione 4 Pagina 1

Lez.4 Bipoli elementari. Università di Napoli Federico II, CdL Ing. Meccanica, A.A , Elettrotecnica. Lezione 4 Pagina 1 Lez.4 Bipoli elementari Università di Napoli Federico II, CdL Ing. Meccanica, A.A. 2017-2018, Elettrotecnica. Lezione 4 Pagina 1 Bipoli elementari adinamici Sono governati da semplici equazioni del tipo

Dettagli

Proprietà elettriche della materia

Proprietà elettriche della materia Proprietà elettriche della materia Conduttori Materiali in cui le cariche elettriche scorrono con facilità. In un metallo gli elettroni più esterni di ciascun atomo formano una specie di gas all interno

Dettagli

4πε. Esercizio 1. per r > R A. E = 0 per r R A, E =

4πε. Esercizio 1. per r > R A. E = 0 per r R A, E = Esercizio 1 a) Il campo elettrostatico E all interno e all esterno della sfera di raggio R A deve essere, per simmetria, radiale ed assumere lo stesso valore in ogni punto di una generica sfera concentrica

Dettagli

Corso di fisica applicata con elementi di fisica tecnica A.A. 2016/2017

Corso di fisica applicata con elementi di fisica tecnica A.A. 2016/2017 Corso di fisica applicata con elementi di fisica tecnica A.A. 2016/2017 Programma svolto Lezione 1 Carica elettrica, legge di Coulomb, campo elettrico, potenziale elettrico Breve storia dell elettricità

Dettagli

Lezione L6. 1. Conduttori Ohmici; 3. Legge di Ohm; 5. Correnti Continue ed Alternate. FISICA GENERALE II, Cassino A.A

Lezione L6. 1. Conduttori Ohmici; 3. Legge di Ohm; 5. Correnti Continue ed Alternate. FISICA GENERALE II, Cassino A.A Lezione L6. Conduttori Ohmici;. esistenza Elettrica e esistività; 3. Legge di Ohm; 4. Legge di oule-lenz; 5. Correnti Continue ed Alternate. 005 Carmine E. Pagliarone Densità di corrente elettrica e Corrente

Dettagli

QUINTA LEZIONE: corrente elettrica, legge di ohm, carica e scarica di un condensatore, leggi di Kirchoff

QUINTA LEZIONE: corrente elettrica, legge di ohm, carica e scarica di un condensatore, leggi di Kirchoff QUINTA LEZIONE: corrente elettrica, legge di ohm, carica e scarica di un condensatore, leggi di Kirchoff Esercizio Un conduttore cilindrico in rame avente sezione di area S = 4mm è percorso da una corrente

Dettagli

Carica elettrica. Costituzione dell atomo: nucleo con protoni (carica +e) e neutroni (carica 0) elettroni (carica -e) orbitanti attorno al nucleo

Carica elettrica. Costituzione dell atomo: nucleo con protoni (carica +e) e neutroni (carica 0) elettroni (carica -e) orbitanti attorno al nucleo I FENOMENI ELETTRICI Carica elettrica Forza di Coulomb Potenziale elettrico Intensità di corrente Leggi di Ohm Resistenza e resistività Effetto termico della corrente Carica elettrica Proprietà elettriche

Dettagli

Conduttore. Nota: In un cm3 di Cu (rame) vi sono circa 1023 elettroni

Conduttore. Nota: In un cm3 di Cu (rame) vi sono circa 1023 elettroni Corrente elettrica Conduttore Un conduttore metallico puo essere pensato come una struttura reticolare tridimensionale di atomi fissi con un grandissimo numero di elettroni liberi (detti ELETTRONI DI CONDUZIONE)

Dettagli

T 1? [1 livello 2014]

T 1? [1 livello 2014] Corrente elettrica 1. Nel circuito elettrico mostrato in figura l interruttore viene chiuso e il condensatore inizia a caricarsi. Quale valore avrà la carica elettrica Q del condensatore, raggiunta la

Dettagli

Lez. 2 Intensità di corrente elettrica e tensione elettrica

Lez. 2 Intensità di corrente elettrica e tensione elettrica Lez. 2 Intensità di corrente elettrica e tensione elettrica Università di Napoli Federico II, CdL Ing. Meccanica, A.A. 2017-2018, Elettrotecnica. Lezione 2 Pagina 1 Lo studio dei circuiti elettrici può

Dettagli

Esame Scritto Fisica Generale T-B/T-2

Esame Scritto Fisica Generale T-B/T-2 Esame Scritto Fisica Generale T-B/T- (CdL Ingegneria Civile e Informatica [A-K] Prof. M. Sioli II Appello A.A. 013-01 - 9/01/01 Soluzioni Esercizi Ex. 1 Sulla superficie della Terra, in condizioni di bel

Dettagli

Gli esperimenti condotti da Faraday hanno portato a stabilire l esistenza di una forza elettromotrice e quindi di una corrente indotta in un circuito

Gli esperimenti condotti da Faraday hanno portato a stabilire l esistenza di una forza elettromotrice e quindi di una corrente indotta in un circuito Gli esperimenti condotti da Faraday hanno portato a stabilire l esistenza di una forza elettromotrice e quindi di una corrente indotta in un circuito quando: 1) il circuito è in presenza di un campo magnetico

Dettagli

Dipartimento di INFORMATICA Anno Accademico 2015/16 Registro lezioni del docente MIGLIORE ERNESTO

Dipartimento di INFORMATICA Anno Accademico 2015/16 Registro lezioni del docente MIGLIORE ERNESTO Attività didattica FISICA [MFN0598] Dipartimento di INFORMATICA Anno Accademico 2015/16 Registro lezioni del docente MIGLIORE ERNESTO Corso di studio: INFORMATICA [008707] Docente titolare del corso: MIGLIORE

Dettagli

Esercizi di magnetismo

Esercizi di magnetismo Esercizi di magnetismo Fisica II a.a. 2003-2004 Lezione 16 Giugno 2004 1 Un riassunto sulle dimensioni fisiche e unità di misura l unità di misura di B è il Tesla : definisce le dimensioni [ B ] = [m]

Dettagli

Dipartimento di INFORMATICA Anno Accademico 2017/18 Registro lezioni del docente MIGLIORE ERNESTO

Dipartimento di INFORMATICA Anno Accademico 2017/18 Registro lezioni del docente MIGLIORE ERNESTO Attività didattica FISICA [MFN0598] Dipartimento di INFORMATICA Anno Accademico 2017/18 Registro lezioni del docente MIGLIORE ERNESTO Corso di studio: INFORMATICA [008707] Docente titolare del corso: MIGLIORE

Dettagli

Argomenti per esame orale di Fisica Generale (Elettromagnetismo) 9 CFU A.A. 2012/2013

Argomenti per esame orale di Fisica Generale (Elettromagnetismo) 9 CFU A.A. 2012/2013 Argomenti per esame orale di Fisica Generale (Elettromagnetismo) 9 CFU A.A. 2012/2013 1. Il campo elettrico e legge di Coulomb: esempio del calcolo generato da alcune semplici distribuzioni. 2. Il campo

Dettagli

CAPITOLO 3 LA LEGGE DI GAUSS

CAPITOLO 3 LA LEGGE DI GAUSS CAPITOLO 3 LA LEGGE DI GAUSS Elisabetta Bissaldi (Politecnico di Bari) - A.A. 2018-2019 2 Premessa TEOREMA DI GAUSS Formulazione equivalente alla legge di Coulomb Trae vantaggio dalle situazioni nelle

Dettagli

Condensatori e Corrente

Condensatori e Corrente Tutorato #9 Condensatori e Corrente La Capacità La capacità di un conduttore isolato è sostanzialmente una misura della quantità di carica che è necessario accumulare sulla supercie per aumentare il suo

Dettagli

Dipartimento di INFORMATICA Anno Accademico 2016/17 Registro lezioni del docente MIGLIORE ERNESTO

Dipartimento di INFORMATICA Anno Accademico 2016/17 Registro lezioni del docente MIGLIORE ERNESTO Attività didattica FISICA [MFN0598] Dipartimento di INFORMATICA Anno Accademico 2016/17 Registro lezioni del docente MIGLIORE ERNESTO Corso di studio: INFORMATICA [008707] Docente titolare del corso: MIGLIORE

Dettagli

LEZIONI ED ESERCITAZIONI DI FISICA Prof. Francesco Marchi 1 Appunti su: corrente elettrica, leggi di Ohm, circuiti 29 novembre 2010 1 Per altri materiali didattici o per contattarmi: Blog personale: http://francescomarchi.wordpress.com/

Dettagli

Fisica Generale II (prima parte)

Fisica Generale II (prima parte) Corso di Laurea in Ing. Medica Fisica Generale II (prima parte) Cognome Nome n. matricola Voto 4.2.2011 Esercizio n.1 Determinare il campo elettrico in modulo direzione e verso generato nel punto O dalle

Dettagli

Conducibilità elettrica nei metalli, teoria classica di Drude

Conducibilità elettrica nei metalli, teoria classica di Drude Conducibilità elettrica nei metalli, teoria classica di Drude Gli elettroni in un metallo sono particelle classiche, libere di muoversi Sotto un campo elettrico E, gli elettroni sono accelerati da una

Dettagli

CAPITOLO 8 CAMPI ELETTRICI E MAGNETICI VARIABILI NEL TEMPO

CAPITOLO 8 CAMPI ELETTRICI E MAGNETICI VARIABILI NEL TEMPO CAPITOLO 8 CAMPI ELETTRICI E MAGNETICI VARIABILI NEL TEMPO Elisabetta Bissaldi (Politecnico di Bari) - A.A. 2017-2018 2 Campo elettromagnetico Campo ELETTRICO e campo MAGNETICO sono generati entrambi da

Dettagli

Corso di fisica generale con elementi di fisica tecnica

Corso di fisica generale con elementi di fisica tecnica Corso di fisica generale con elementi di fisica tecnica Aniello (Daniele) Mennella Dipartimento di Fisica Secondo modulo Parte prima (fondamenti di elettromagnetismo) Lezione 2 Circuiti elettrici Sommario

Dettagli

Dielettrici V = V 0. E = V h = V 0 kh = E 0

Dielettrici V = V 0. E = V h = V 0 kh = E 0 Dielettrici Dielettrico: materiale non conduttore (gomma, vetro, carta paraffinata) Al contrario dei conduttori anche in presenza di un campo elettrico esterno in essi non si genera un movimento di cariche.

Dettagli

CORSO di AGGIORNAMENTO di FISICA

CORSO di AGGIORNAMENTO di FISICA MATHESIS _ ROMA CORSO di AGGIORNAMENTO di FISICA Commento ai problemi proposti nell incontro del 17 febbraio 2016 Adriana Lanza I.T:T. COLOMBO via Panisperna, 255 24 febbraio 2016 I problemi proposti TRACCE

Dettagli

CLASSE: 4C LICEO SCIENTIFICO STATALE "F.SCO SBORDONE" ANNO: 2017/2018 MATERIA: FISICA DOCENTE: CIOCI VINCENZO

CLASSE: 4C LICEO SCIENTIFICO STATALE F.SCO SBORDONE ANNO: 2017/2018 MATERIA: FISICA DOCENTE: CIOCI VINCENZO CLASSE: 4C LICEO SCIENTIFICO STATALE "F.SCO SBORDONE" ANNO: 2017/2018 MATERIA: FISICA DOCENTE: CIOCI VINCENZO RICHIAMI E APPROFONDIMENTI SU LAVORO E ENERGIA 1.1 Il lavoro di una forza 1.2 La potenza 1.3

Dettagli

POLITECNICO DI MILANO IV FACOLTÀ Ingegneria Aerospaziale Fisica Sperimentale A+B - III Appello 11 Febbraio 2008

POLITECNICO DI MILANO IV FACOLTÀ Ingegneria Aerospaziale Fisica Sperimentale A+B - III Appello 11 Febbraio 2008 POLICNICO DI MILANO IV FACOLÀ Ingegneria Aerospaziale Fisica Sperimentale A+B - III Appello 11 Febbraio 008 Giustificare le risposte e scrivere in modo chiaro e leggibile. Sostituire i valori numerici

Dettagli

Legge di Faraday. x x x x x x x x x x E x x x x x x x x x x R x x x x x x x x x x. x x x x x x x x x x. x x x x x x x x x x E B 1 Φ B.

Legge di Faraday. x x x x x x x x x x E x x x x x x x x x x R x x x x x x x x x x. x x x x x x x x x x. x x x x x x x x x x E B 1 Φ B. Φ ε ds ds dφ = dt Legge di Faraday E x x x x x x x x x x E x x x x x x x x x x R x x x x x x x x x x 1 x x x x x x x x x x E x x x x x x x x x x E Schema Generale Elettrostatica moto di q in un campo E

Dettagli

Esame Scritto Fisica Generale T-B

Esame Scritto Fisica Generale T-B Esercizio 1 Esame Scritto Fisica Generale T-B (dl Ingegneria ivile) Prof. M. Sioli VI Appello A.A. 2014-2015 - 11/09/2015 Soluzioni Esercizi Tre cariche positive Q 1, Q 2, Q 3 = 5 µ sono disposte sui vertici

Dettagli