Introduzione alla δ di Dirac

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Introduzione alla δ di Dirac"

Transcript

1 UniPD Facoltà di Ingegneria a.a Insegnamento di SEGNALI E SISTEMI (ALSI - Finesso) Introduzione alla δ di Dirac La δ di Dirac è uno strumento matematico di grande utilità nello studio di segnali e di sistemi. In questa nota ci limitiamo ad introdurne euristicamente la definizione e a fornire le conoscenze operative necessarie. Rimandiamo chi desidera approfondire l argomento ai testi di Matematica. In letteratura la δ di Dirac è nota come: funzione delta, funzione impulsiva, impulso ideale. La δ è una funzione generalizzata definita dalla seguente equazione δ(τ)x(τ)dτ = x(0) (1) valida per ogni x continua nell intorno del punto t = 0. In molti testi ingegneristici la (1) è detta proprietà rivelatrice, nel senso che la δ rivela il valore del segnale x nell origine. L interpretazione intuitiva è la seguente. Per ogni T > 0 definiamo il segnale r T (t) := 1 ( ) t T rect = 1 ( ( u t + T ) ( u t T )) () T T (tracciatene il grafico!) allora, indicando con m T il valore medio di x nell intervallo [ T, T ], r T (τ)x(τ)dτ = 1 T T T x(τ)dτ = m T Per il teorema del valore medio, m T x(0) quando T 0 e dunque lim T 0 r T (τ)x(τ)dτ = x(0) Scambiando limite ed integrale (nella teoria rigorosa questo non si può fare senza precauzioni) otteniamo ( ) lim r T (τ) x(τ)dτ = x(0) T 0 1

2 e dunque la δ è interpretabile come δ(t) = lim T 0 r T (t) = { 0, se t 0, se t = 0 (3) Intuitivamente possiamo pensare che la δ che compare in (1) sia approssimabile in pratica con una funzione r T con T molto piccolo. Conseguenze della definizione (a) Ponendo x(t) = 1 (funzione costante) si ha δ(τ)dτ = 1 (4) ovvero l area sotto la δ vale 1. Questa proprietà vale anche per r T, qualunque sia T, e si conserva al limite. Si osservi che è valida anche la b per ogni [a, b] che contenga il punto 0. a δ(τ)dτ = 1 (b) Effettuando il cambio di variabile τ = τ nella (1) si ottiene δ( τ)x(τ)dτ = δ(τ)x( τ)dτ = x(0) (5) dove, nella seconda uguaglianza, usiamo il fatto che x( τ) τ=0 = x(0). Nella (1) δ(τ) e δ( τ) producono lo stesso risultato, possiamo dunque identificarle tra loro e considerare δ(t) un segnale pari δ( t) = δ(t) Questo è anche evidente nel processo di approssimazione: i segnali r T sono per definizione pari. (c) Ponendo g(t) = x(s t) abbiamo, applicando la (1), δ(τ)g(τ)dτ = g(0)

3 sostituendo a g la sua definizione ed osservando che g(0) = x(s) si ha δ(τ)x(s τ)dτ = x(s) La lettera s è stata introdotta per distinguere la traslazione dalla variabile indipendente. Tornando ad indicare con t la variabile indipendente δ(τ)x(t τ)dτ = x(t) (6) Questa rappresentazione integrale del segnale x è di fondamentale importanza per il seguito. Con la sostituzione di variabile t τ = τ si può riscrivere l ultimo integrale come δ(t τ)x(τ)dτ = x(t) (7) In virtù della parità della δ quest ultima relazione si può anche scrivere δ(τ t)x(τ)dτ = x(t) (8) Sostituendo x(t) = 1 nelle ultime due equazioni si dimostra che, per ogni t, δ(t τ)dτ = δ(τ t)dτ = 1. A partire dalla (1), le formule (6), (7) e (8) sono state derivate con passaggi elementari, ma è di fondamentale importanza sviluppare un intuizione che permetta di riconoscerne la validità per semplice ispezione. La (7) contiene la funzione δ centrata nel punto τ = t dell asse di integrazione. Approssimando δ(t τ) con r T (t τ) (per T piccolo) il risultato della (7) è il valore medio di x nell intervallino [ t T, t + T ] dell asse di integrazione τ che vale circa x(t), come compare a destra della (7). Questi stessi ragionamenti si applicano anche alla (8) in virtù della parità della δ. Nella (6) l impulso rimane fermo nell origine mentre il segnale è traslato e ribaltato sull asse di integrazione τ in modo tale che nell origine si presenti il valore x(t), infatti x(t τ) τ=0 = x(t), e quindi il calcolo del valore medio nell intervallino [ T, T ] dell asse τ fornisce x(t). Il seguente metodo dovrebbe aiutare a sviluppare l intuizione della (6). Disegnate su un foglio bianco gli assi cartesiani chiamando τ l asse delle ascisse 3

4 (che sarà l asse di integrazione) e tracciate δ(τ), centrata nell origine. Ora su un foglio trasparente disegnate una nuova coppia di assi cartesiani, sempre chiamando τ l asse delle ascisse e tracciate il grafico del segnale x(τ). Rovesciate ora il foglio trasparente (sollevandolo dal tavolo e ruotandolo di 180 gradi) e sovrapponete gli assi τ dei due fogli. Facendo scorrere orizzontalmente il foglio trasparente sul foglio bianco otterrete il segnale x(t τ), dove t è il punto dell asse τ (di integrazione - sul foglio bianco) dove cade l asse delle ordinate del foglio trasparente. Un attimo di riflessione vi convincerà del fatto che nell origine dell asse d integrazione compare ora il valore x(t). La δ nell origine selezionerà quindi proprio il valore x(t). Facendo scorrere il foglio trasparente da t = a t = si ottiene come risultato dell operazione di media nell intorno dell origine proprio il segnale x(t) di partenza. Questo sforzo sarà ampiamente ripagato nel seguito. (d) L operazione definita dalle formule (6) e (7) merita un nome ed una notazione. Dati due segnali x ed y si dice convoluzione dei due segnali il segnale x y definito da x y (t) := x(t τ)y(τ)dτ = x(τ)y(t τ)dτ la seconda uguaglianza si ottiene effettuando il cambio di variabile τ = t τ come visto in precedenza. Con l usuale abuso di notazione si scrive spesso x(t) y(t) per indicare la convoluzione dei segnali x ed y. Alla luce di questa definizione le formule (6) e (7) si riassumono in δ(t) x(t) = x(t) (e) Qualunque sia T R valgono le formule δ(τ)x(t + T τ)dτ = x(t + T ), δ(t + T τ)x(τ)dτ = x(t + T ) Basta sostituire t + T al posto di t nelle formule (6) e (7). Impiegando la definizione della convoluzione si può scrivere δ(t + T ) x(t) = δ(t) x(t + T ) = x(t + T ) 4

5 il risultato vale qualunque sia la traslazione T, in particolare per ogni k Z Vale quindi la formula δ(t + kt ) x(t) = k= δ(t + kt ) x(t) = x(t + kt ) k= x(t + kt ) = rep T (x(t)) dove con rep T (x(t)) abbiamo indicato la ripetizione periodica di x(t) definita in precedenza. (f) Sia f(t) una funzione continua nell origine, allora ed analogamente f(t) δ(t) = f(0) δ(t) (9) f(t) δ(t T ) = f(t ) δ(t T ) f(t) δ(t + T ) = f( T ) δ(t + T ) La validità della (9) si dimostra scrivendo la definizione (1): per ogni x f(τ)δ(τ)x(τ)dτ = f(0)x(0) (10) Infatti possiamo pensare che il segnale su cui opera δ sia f(t)x(t), il valore rivelato sarà dunque f(0)x(0). Ma questo è lo stesso risultato che si ottiene applicando f(0) δ al segnale x. Poiché il comportamento integrale (cioè nella formula (1)) di f(t)δ(t) è identico a quello di f(0)δ(t) concludiamo che le due sono identiche (lo stesso ragionamento che aveamo impiegato per dimostrare la parità). Le altre regole si ricavano in modo analogo. Intuitivamente: nell approssimazione, per T piccolo, f(t)r T (t) f(0)r T (t). In pratica: alla funzione che moltiplica l impulso si sostituisce la costante pari al valore della funzione nel punto dove l impulso è centrato. Esempi: cos tδ(t) = δ(t), e jt δ(t) = δ(t), ma anche tδ(t) = 0! (g) L impulso è spesso rappresentato con una freccia centrata nel punto di applicazione e di altezza pari all ampiezza dell impulso stesso. Si tenga presente che, dimensionalmente, l ampiezza dell impulso rappresenta un area e non un valore, vale infatti c δ(τ)dτ = c 5

6 Relazione con il gradino unitario La rappresentazione integrale del gradino unitario è δ(τ)u(t τ)dτ = u(t), (11) Poiché u(t τ) = 1 nell intervallo (, t) e 0 altrove la (11) è t δ(τ)dτ = u(t) (anche questa formula deve risultare intuitivamente evidente al lettore). Applicando la regola di differenziazione sotto il segno di integrale (nella teoria rigorosa questo non si può fare) si ottiene d u(t) = δ(t) dt Un altra spiegazione intuitiva di questa importante relazione si ottiene leggendo la (3) come la definizione della derivata di una funzione ovvero (l incremento è simmetrico rispetto al punto t dove si valuta la derivata) u δ(t) = lim r T (t) = lim T 0 T 0 ( t + T ) ( u t T T ) = d dt u(t) Differenziazione di segnali con discontinuità a salto Saremo spesso interessati a scrivere la derivata generalizzata di segnali contenenti discontinuità a salto. Sia x(t) un segnale differenziabile ovunque tranne che in un numero finito di punti di discontinuità a salto. La derivata generalizzata di x(t) coincide con quella classica nei punti di differenziabilità. Nei punti di salto compaiono δ di Dirac centrate nei punti di discontinuità e di ampiezza pari all ampiezza del salto. Esempio 1 Sia x(t) = (t + 1)u(1 t). Calcoliamo la derivata generalizzata con le usuali regole del calcolo diferenziale, ma ricordando che d dt u(t) = δ(t). d x(t) = 1 u(1 t) + (t + 1)δ(1 t) ( 1) = u(1 t) δ(t 1) dt dove abbiamo anche fatto uso della parità di δ e della regola f(t) δ(t T ) = f(t ) δ(t T ). Graficamente questa derivata si traccia immediatamente senza fare calcoli. Provare! 6

7 Esercizi Esercizio 1. Scegliere la risposta corretta (a) (b) (c) (d) cos t δ(t τ)dτ = δ(t), 1, cos t cos τ δ(t τ)dτ = δ(t), 1, cos t cos(t τ) δ(t τ)dτ = δ(t), 1, cos t e jω(t τ) δ(τ)dτ = e jωt, δ(t), 1 (e) sin(t + π 4 ) δ(t π 4 ) = δ(t), 0, δ(t π 4 ) Esercizio. (a) Dimostrare che, qualunque sia a > 0, mentre a a a a δ(τ)x(t τ)dτ = x(t) (1) δ(t τ)x(τ)dτ = x(t) rect( t a ) (13) Suggerimento: Dimostrare che la (1) è interpretabile come rect( t a ) δ(t) x(t), mentre la (13) è δ(t) rect( t a ) x(t). Concludere applicando le proprietà dimostrate. Confrontare questo risultato con le (6), (7). (b) Per quale insieme di segnali x vale x(t) = rect( t a ) x(t)? Esercizio 3. Calcolare la derivata generalizzata del segnale x(t) = sign(t) = u(t) u( t) sia analiticamente che graficamente last update Feb, 18, 005 7

Segnali e Sistemi (Ingegneria Informatica)

Segnali e Sistemi (Ingegneria Informatica) Segnali e Sistemi (Ingegneria Informatica) Lezione 4 last update Oct 22, 2004 c 2004 Finesso, Pavon, Pinzoni 1 GRADINO UNITARIO A TEMPO CONTINUO Èilsegnale u(t) = 1 se t 0, 0 se t

Dettagli

Elettronica II Segnali periodici; serie di Fourier; trasformata di Fourier p. 2

Elettronica II Segnali periodici; serie di Fourier; trasformata di Fourier p. 2 Elettronica II Segnali periodici; serie di Fourier; trasformata di Fourier Valentino Liberali Dipartimento di Tecnologie dell Informazione Università di Milano, 26013 Crema e-mail: liberali@dti.unimi.it

Dettagli

Teoria dei Segnali. 1 Proprietà della trasformata di Fourier. correlazione tra segnali; autocorrelazione

Teoria dei Segnali. 1 Proprietà della trasformata di Fourier. correlazione tra segnali; autocorrelazione Teoria dei Segnali Proprietà della trasformata di Fourier; correlazione tra segnali; autocorrelazione Valentino Liberali Dipartimento di Fisica Università degli Studi di Milano valentino.liberali@unimi.it

Dettagli

Teoria dei Segnali Proprietà della trasformata di Fourier; correlazione tra segnali; autocorrelazione

Teoria dei Segnali Proprietà della trasformata di Fourier; correlazione tra segnali; autocorrelazione Teoria dei Segnali Proprietà della trasformata di Fourier; correlazione tra segnali; autocorrelazione p. 1 Teoria dei Segnali Proprietà della trasformata di Fourier; correlazione tra segnali; autocorrelazione

Dettagli

Teoria dei Segnali Richiami di analisi matematica; alcune funzioni notevoli

Teoria dei Segnali Richiami di analisi matematica; alcune funzioni notevoli Teoria dei Segnali Richiami di analisi matematica; alcune funzioni notevoli Valentino Liberali Dipartimento di Fisica Università degli Studi di Milano valentino.liberali@unimi.it Teoria dei Segnali Richiami

Dettagli

Trasformate al limite

Trasformate al limite Bozza Data 6/0/007 Trasormate al limite La unzione generalizzata delta di Dirac Funzioni, unzionali e distribuzioni Prima di deinire la delta di Dirac conviene ricordare le seguenti deinizioni: unzione

Dettagli

SEGNALI E SISTEMI Proff. L. Finesso, M. Pavon e S. Pinzoni (a.a ) Homework assignment #2 Testo e Soluzione

SEGNALI E SISTEMI Proff. L. Finesso, M. Pavon e S. Pinzoni (a.a ) Homework assignment #2 Testo e Soluzione SEGNALI E SISTEMI Proff. L. Finesso, M. Pavon e S. Pinzoni (a.a. 00-005) Homework assignment # Testo e Soluzione Esercizio Si consideri l equazione differenziale ordinaria, lineare a coefficienti costanti

Dettagli

Analisi Matematica II Corso di Ingegneria Biomedica Compito A del f(x, y) = x 2 + y 2

Analisi Matematica II Corso di Ingegneria Biomedica Compito A del f(x, y) = x 2 + y 2 Analisi Matematica II Corso di Ingegneria Biomedica Compito A del -7- - È obbligatorio consegnare tutti i fogli, anche quelli della brutta. - Le risposte senza giustificazione sono considerate nulle. Esercizio.

Dettagli

CENNI SUL CONCETTO DI FUNZIONE

CENNI SUL CONCETTO DI FUNZIONE CENNI SUL CONCETTO DI FUNZIONE Dati due insiemi A e B, una funzione f è una relazione tra gli elementi dell insieme A e gli elementi dell insieme B tale che ad ogni elemento di A corrisponde uno ed un

Dettagli

SEGNALI E SISTEMI (a.a ) Proff. L. Finesso, M. Pavon e S. Pinzoni Prova scritta 15 dicembre 2003 Testo e Soluzione

SEGNALI E SISTEMI (a.a ) Proff. L. Finesso, M. Pavon e S. Pinzoni Prova scritta 15 dicembre 2003 Testo e Soluzione Esercizio 1 [punti 4] SEGNALI E SISTEMI (a.a. 003-004) Proff. L. Finesso, M. Pavon e S. Pinzoni Prova scritta 15 dicembre 003 Testo e Soluzione Per ciascuno dei seguenti segnali dire se è periodico e,

Dettagli

Appunti: Antitrasformazione

Appunti: Antitrasformazione Appunti: Antitrasformazione Giulio Cazzoli v0.2 (AA. 2017-2018) 1 Antitrasformazione 2 1.1 Formula di Riemann........................................... 2 1.2 Convoluzione...............................................

Dettagli

Sviluppi e derivate delle funzioni elementari

Sviluppi e derivate delle funzioni elementari Sviluppi e derivate delle funzioni elementari In queste pagine dimostriamo gli sviluppi del prim ordine e le formule di derivazioni delle principali funzioni elementari. Utilizzeremo le uguaglianze lim

Dettagli

Corso di SEGNALI a.a Corso di SEGNALI. anno accademico Trasformata di Fourier: esercizi d esame

Corso di SEGNALI a.a Corso di SEGNALI. anno accademico Trasformata di Fourier: esercizi d esame Corso di SEGNLI a.a.008 009 Corso di SEGNLI anno accademico 008-009 rasormata di Fourier: esercizi d esame. Successivamente si calcoli il valore di () per 0, ±/ e ±/. Per calcolare la trasormata di questo

Dettagli

Corso di Analisi Matematica Limiti di funzioni

Corso di Analisi Matematica Limiti di funzioni Corso di Analisi Matematica Limiti di funzioni Laurea in Informatica e Comunicazione Digitale A.A. 2013/2014 Università di Bari ICD (Bari) Analisi Matematica 1 / 39 1 Definizione di ite 2 Il calcolo dei

Dettagli

ISTITUZIONI DI ANALISI SUPERIORE B Prova scritta del 17/3/2003

ISTITUZIONI DI ANALISI SUPERIORE B Prova scritta del 17/3/2003 ISTITUZIONI DI ANALISI SUPEIOE B Prova scritta del 7/3/3 Sia f : C la funzione così definita: { se t

Dettagli

Dispense del corso di Analisi II

Dispense del corso di Analisi II Dispense del corso di Analisi II versione preliminare Paolo Tilli Dipartimento di Matematica Politecnico di Torino email: paolo.tilli@polito.it 8 gennaio 5 Capitolo 6 La trasformata di Fourier 6. Introduzione

Dettagli

Maturità scientifica 1983 sessione ordinaria

Maturità scientifica 1983 sessione ordinaria Maturità scientifica 198 sessione ordinaria Soluzione a cura di Francesco Daddi 1 Si studi la funzione y = a x 1 e se ne disegni il grafico Si determinino le intersezioni della curva da essa rappresentata

Dettagli

Soluzione esercizi sulle funzioni - 5 a E Liceo Scientifico - 04/11/ 13

Soluzione esercizi sulle funzioni - 5 a E Liceo Scientifico - 04/11/ 13 Soluzione esercizi sulle funzioni - 5 a E Liceo Scientifico - 04// 3 Esercizio. Si consideri la funzione ) se 0 f) e se 0. e si verifichi che non è continua in 0. Che tipo di discontinuità presenta in

Dettagli

Analisi Matematica II Corso di Ingegneria Gestionale Compito del f(x, y) = log 1 + (x y 2 ) x 2.

Analisi Matematica II Corso di Ingegneria Gestionale Compito del f(x, y) = log 1 + (x y 2 ) x 2. Analisi Matematica II Corso di Ingegneria Gestionale Compito del 7-7-6 - È obbligatorio consegnare tutti i fogli, anche la brutta. - Le risposte senza giustificazione sono considerate nulle. Esercizio.

Dettagli

Introduzione ai segnali determinati

Introduzione ai segnali determinati Teoria dei segnali Unità 1 Introduzione ai segnali determinati Introduzione ai segnali determinati Sviluppo in serie di Fourier Trasformata di Fourier 005 Politecnico di Torino 1 Introduzione ai segnali

Dettagli

0.1 Arco di curva regolare

0.1 Arco di curva regolare .1. ARCO DI CURVA REGOLARE 1.1 Arco di curva regolare Se RC(O, i, j, k ) è un riferimento cartesiano fissato per lo spazio euclideo E, e se v (t) = x(t) i + y(t) j + z(t) k è una funzione a valori vettoriali

Dettagli

Analisi Matematica II Corso di Ingegneria Gestionale Compito del xy + 2x + 2y + 2xy + 2x + 2y + sin

Analisi Matematica II Corso di Ingegneria Gestionale Compito del xy + 2x + 2y + 2xy + 2x + 2y + sin Analisi Matematica II Corso di Ingegneria Gestionale Compito del 9--8 - È obbligatorio consegnare tutti i fogli, anche la brutta e il testo. - Le risposte senza giustificazione sono considerate nulle.

Dettagli

Premesse matematiche

Premesse matematiche Premesse matematiche 2.8 Trasformata di Fourier Sia f(t) una funzione reale, o complessa, di variabile reale t, che soddisfi la condizione di Dirichlet 1, e sia a modulo integrabile, cioe : f(t) dt

Dettagli

04 - Numeri Complessi

04 - Numeri Complessi Università degli Studi di Palermo Facoltà di Economia CdS Statistica per l Analisi dei Dati Appunti del corso di Matematica 04 - Numeri Complessi Anno Accademico 2013/2014 M. Tumminello, V. Lacagnina e

Dettagli

Le derivate parziali

Le derivate parziali Sia f(x, y) una funzione definita in un insieme aperto A R 2 e sia P 0 = x 0, y 0 un punto di A. Essendo A un aperto, esiste un intorno I(P 0, δ) A. Preso un punto P(x, y) I(P 0, δ), P P 0, possiamo definire

Dettagli

D Analisi Matematica 1 (Corso di Laurea in Informatica e Bioinformatica)

D Analisi Matematica 1 (Corso di Laurea in Informatica e Bioinformatica) COGNOME NOME Matr. D Firma dello studente Tempo: ore. Prima parte: test a risposta multipla. Una ed una sola delle 4 affermazioni è corretta. Indicatela con una croce. È consentita una sola correzione

Dettagli

Comunicazione Elettriche L-A Identità ed equazioni

Comunicazione Elettriche L-A Identità ed equazioni Comunicazione Elettriche L-A Identità ed equazioni Gennaio - Marzo 2009 Identità ed equazioni relative alle comunicazioni elettriche tratti dalle lezioni del corso di Comunicazioni Elettriche L-A alla

Dettagli

ARGOMENTI MATEMATICA PER L INGEGNERIA

ARGOMENTI MATEMATICA PER L INGEGNERIA ARGOMENTI DI MATEMATICA PER L INGEGNERIA VOLUME 2 Esercizi proposti Quando non diversamente precisato, nel seguito si intenderà( sempre che nel piano sia stato introdotto un sistema cartesiano ortogonale

Dettagli

Seconda esperienza - Verifica di alcune proprietà delle trasformate di Laplace -

Seconda esperienza - Verifica di alcune proprietà delle trasformate di Laplace - Seconda esperienza - Verifica di alcune proprietà delle trasformate di Laplace - Alpigiani Cristiano 17 novembre 2005 Introduzione Scopo di questa esperienza è quello di familiarizzare con alcune proprietà

Dettagli

Istituzioni di Matematiche Modulo A (ST)

Istituzioni di Matematiche Modulo A (ST) Istituzioni di Matematiche Modulo A ST) V I foglio di esercizi ESERCIZIO. Si calcoli + sin t) dt t cos t + log + t))dt e + tg t + e t )dt cos t dt t. Calcoliamo il primo dei due. Si tratta di un ite della

Dettagli

Appunti di Matematica 5 - Derivate - Derivate. Considero una funzione e sia e definita in un intorno completo di.

Appunti di Matematica 5 - Derivate - Derivate. Considero una funzione e sia e definita in un intorno completo di. Derivate Definizione di derivata di f(x) in x D o f Considero una funzione e sia e definita in un intorno completo di. Consideriamo il rapporto (detto rapporto incrementale ) È evidente che il rapporto

Dettagli

Analisi Matematica II Corso di Ingegneria Gestionale Compito del f(x, y) = sin( x 2 + 2y 2 )

Analisi Matematica II Corso di Ingegneria Gestionale Compito del f(x, y) = sin( x 2 + 2y 2 ) Analisi Matematica II Corso di Ingegneria Gestionale Compito del 9--9 - È obbligatorio consegnare tutti i fogli, anche la brutta e il testo - Le risposte senza giustificazione sono considerate nulle Esercizio

Dettagli

Prova di AUTOVALUTAZIONE (novembre 2009). nota: l esame ha validità solo se incluso nel piano degli studi per l anno accademico corrente.

Prova di AUTOVALUTAZIONE (novembre 2009). nota: l esame ha validità solo se incluso nel piano degli studi per l anno accademico corrente. UNIVERSITA DEGLI STUDI ROMA TRE CdS in Ingegneria Informatica corso di FONDAMENTI DI TELECOMUNICAZIONI Prova di AUTOVALUTAZIONE (novembre 2009). COMPITO A nota: l esame ha validità solo se incluso nel

Dettagli

Analisi Matematica 2. Trasformazioni integrali. Trasformazioni integrali 1 / 15

Analisi Matematica 2. Trasformazioni integrali. Trasformazioni integrali 1 / 15 Analisi Matematica 2 Trasformazioni integrali Trasformazioni integrali 1 / 15 Trasformazioni integrali. 1) Formule di Gauss-Green: nel piano: trasformano un integrale doppio in un integrale curvilineo,

Dettagli

DIFFERENZIAZIONE. Sia f una funzione reale di variabile reale con dominio un intervallo. Se f è derivabile in un punto x 0, allora: f(x) f(x 0 ) lim

DIFFERENZIAZIONE. Sia f una funzione reale di variabile reale con dominio un intervallo. Se f è derivabile in un punto x 0, allora: f(x) f(x 0 ) lim DIFFERENZIAZIONE 1 Regola della catena Sia f una funzione reale di variabile reale con dominio un intervallo. Se f è derivabile in un punto x 0, allora: f(x) f(x 0 ) lim = f (x 0 ). x x 0 x x 0 Questa

Dettagli

Analisi Matematica II Corso di Ingegneria Gestionale Compito del

Analisi Matematica II Corso di Ingegneria Gestionale Compito del Analisi Matematica II Corso di Ingegneria Gestionale Compito del 30-0-08 - È obbligatorio consegnare tutti i fogli, anche la brutta e il testo. - Le risposte senza giustificazione sono considerate nulle.

Dettagli

Corso di Laurea in Ingegneria Informatica Prova di Analisi Matematica 1

Corso di Laurea in Ingegneria Informatica Prova di Analisi Matematica 1 Corso di Laurea in Ingegneria Informatica Prova di Analisi Matematica 1 30 Gennaio 2018 Scrivere subito nome e cognome e matricola sul foglio risposte e preparare il libretto sul banco per il controllo.

Dettagli

Cognome: Nome: Matricola: a. Si enunci e dimostri il teorema della media integrale per funzioni continue. (5 punti)

Cognome: Nome: Matricola: a. Si enunci e dimostri il teorema della media integrale per funzioni continue. (5 punti) Analisi e Geometria Seconda Prova 3 gennaio 207 Docente: Politecnico di Milano Scuola di Ingegneria Industriale e dell Informazione Cognome: Nome: Matricola: a. Si enunci e dimostri il teorema della media

Dettagli

Con la formula che usa le aree delle sezioni trasversali abbiamo. h l(y) 2 d y V = cos y log(x 1) = x 1

Con la formula che usa le aree delle sezioni trasversali abbiamo. h l(y) 2 d y V = cos y log(x 1) = x 1 PROVA SCRITTA di MATEMATICA Laurea triennale in Sc. Geologiche e Sc. Naturali Facoltà di S.M.F.N. Seconda sessione, primo appello - A.A. 1/11-13 giu 11 Gli esercizi sono da risolvere in modo esplicito.

Dettagli

TRASFORMATE DI LAPLACE

TRASFORMATE DI LAPLACE FONDAMENTI DI CONTROLLI AUTOMATICI Ingegneria Meccanica http://web.ing.unimo.it/~lbiagiotti/fondamenticontrolli1415.html TRASFORMATE DI LAPLACE Ing. e-mail: luigi.biagiotti@unimore.it http://www.dii.unimore.it/~lbiagiotti

Dettagli

Corso di Calcolo Numerico

Corso di Calcolo Numerico Corso di Laurea in Ingegneria Gestionale Sede di Fermo Corso di 9 - EQUAZIONI DIFFERENZIALI ORDINARIE valori iniziali Valori iniziali Ci occuperemo della soluzione numerica di equazioni del prim ordine

Dettagli

8. LIMITI. Definizioni e primi teoremi Calcolo di limiti

8. LIMITI. Definizioni e primi teoremi Calcolo di limiti ISTITUZIONI DI MATEMATICHE E FONDAMENTI DI BIOSTATISTICA 8. LIMITI Definizioni e primi teoremi Calcolo di limiti A. A. 213-214 1 IDEA INTUITIVA DI LIMITE I Caso Sia f una funzione definita in ogni punto

Dettagli

Riferimenti: R.Adams, Calcolo Differenziale 2. Capitoli 3.4, 3.9. Esercizi 3.4, 3.9.

Riferimenti: R.Adams, Calcolo Differenziale 2. Capitoli 3.4, 3.9. Esercizi 3.4, 3.9. Appunti sul corso di Complementi di Matematica - mod Analisi prof. B.Baccelli 200/ 07 - Funzioni vettoriali, derivata della funzione composta, formula di Taylor. Riferimenti: R.Adams, Calcolo Differenziale

Dettagli

Jean Baptiste Joseph Fourier ( ) La Trasformata di Fourier. Costruzione della trasformata di Fourier (1/4) Outline. cke i kπt.

Jean Baptiste Joseph Fourier ( ) La Trasformata di Fourier. Costruzione della trasformata di Fourier (1/4) Outline. cke i kπt. Jean Baptiste Joseph Fourier (1768 1830) La Trasformata di Fourier (Metodi Matematici e Calcolo per Ingegneria) Enrico Bertolazzi DIMS Università di Trento anno accademico 2007/2008 http://www-groups.dcs.st-and.ac.uk/

Dettagli

Teoria dei Segnali Processo di Poisson e rumore granulare

Teoria dei Segnali Processo di Poisson e rumore granulare Teoria dei Segnali Processo di Poisson e rumore granulare Valentino Liberali Dipartimento di Fisica Università degli Studi di Milano valentino.liberali@unimi.it Teoria dei Segnali Processo di Poisson e

Dettagli

Teoria dei Segnali Richiami ai numeri complessi; serie e trasformata di Fourier

Teoria dei Segnali Richiami ai numeri complessi; serie e trasformata di Fourier Teoria dei Segnali Richiami ai numeri complessi; serie e trasformata di Fourier Valentino Liberali Dipartimento di Fisica Università degli Studi di Milano valentino.liberali@unimi.it Teoria dei Segnali

Dettagli

Funzioni reali di variabile reale

Funzioni reali di variabile reale Funzioni reali di variabile reale Lezione per Studenti di Agraria Università di Bologna (Università di Bologna) Funzioni reali di variabile reale 1 / 50 Funzioni Definizione Sia A un sottoinsieme di R.

Dettagli

Analisi Matematica II Corso di Ingegneria Gestionale Compito del f(x, y) = log(1 + x 2 y) lim x 2 x

Analisi Matematica II Corso di Ingegneria Gestionale Compito del f(x, y) = log(1 + x 2 y) lim x 2 x Analisi Matematica II Corso di Ingegneria Gestionale Compito del -7-14 Esercizio 1. (14 punti) Data la funzione = log(1 + x y) i) determinare il dominio e studiare l esistenza del ite (x,y) (,) x x ii)

Dettagli

Sistemi dinamici Introduzione Descrizione Soluzione Funzione di trasferimento Stabilità Regime permanente

Sistemi dinamici Introduzione Descrizione Soluzione Funzione di trasferimento Stabilità Regime permanente Controlli Automatici (AUT) - 09AKSBL Sistemi dinamici Introduzione Descrizione Soluzione Funzione di trasferimento Stabilità Regime permanente Sistemi dinamici - Introduzione Concetto di sistema. Si parla

Dettagli

Disequazioni di secondo grado

Disequazioni di secondo grado Disequazioni di secondo grado. Disequazioni Definizione: una disequazione è una relazione di disuguaglianza tra due espressioni. Detti p() e g() due polinomi definiti in un insieme A, una disequazione

Dettagli

Richiami sullo studio di funzione

Richiami sullo studio di funzione Richiami sullo studio di funzione Per studiare una funzione y = f() e disegnarne un grafico approssimativo, possiamo procedere in ordine secondo i seguenti passi:. determinare il campo di esistenza (o

Dettagli

Esperimenti computazionali con Mathematica: la trasformata di Fourier

Esperimenti computazionali con Mathematica: la trasformata di Fourier Matematica Open Source http://www.extrabyte.info Quaderni di Analisi Matematica 06 Esperimenti computazionali con Mathematica: la trasformata di Fourier Marcello Colozzo 3 0 5 5 0 Ω LA TRASFORMATA DI FOURIER

Dettagli

Es. 1 Es. 2 Es. 3 Es. 4 Totale Teoria. Punteggi degli esercizi: Es.1: 8 punti; Es.2: 8 punti; Es.3: 8 punti; Es.4: 8 punti.

Es. 1 Es. 2 Es. 3 Es. 4 Totale Teoria. Punteggi degli esercizi: Es.1: 8 punti; Es.2: 8 punti; Es.3: 8 punti; Es.4: 8 punti. Es. Es. Es. 3 Es. 4 Totale Teoria Analisi e Geometria Terzo appello 8 Settembre 4 Compito B Docente: Politecnico di Milano Ingegneria Industriale Cognome: Nome: Matricola: Punteggi degli esercizi: Es.:

Dettagli

Cognome Nome: Matricola: Corso di Laurea: Fondamenti di Controlli Automatici - A.A. 2011/12 20 settembre Domande Teoriche

Cognome Nome: Matricola: Corso di Laurea: Fondamenti di Controlli Automatici - A.A. 2011/12 20 settembre Domande Teoriche Fondamenti di Controlli Automatici - A.A. / settembre - Domande Teoriche Cognome Nome: Matricola: Corso di Laurea: Per ciascuno dei test a soluzione multipla segnare con una crocetta tutte le affermazioni

Dettagli

Scuole italiane all estero - Bilingue italo-albanesi 2005

Scuole italiane all estero - Bilingue italo-albanesi 2005 www.matefilia.it Scuole italiane all estero - Bilingue italo-albanesi 25 1) Studiare e rappresentare graficamente in un piano cartesiano ortogonale XOY la funzione F(x) = x2 +1 4 x2. Verificare che le

Dettagli

Trasformata di Fourier

Trasformata di Fourier Trasformata di Fourier Ø Risposta impulsiva e integrale di convoluzione Ø Rappresentazione di segnali nel tempo e in frequenza Ø Filtri idealmente e fisicamente realizzabili, stabilità Ø Trasformazioni

Dettagli

Controlli Automatici L-A - Esercitazione

Controlli Automatici L-A - Esercitazione Controlli Automatici L-A - Esercitazione 1. Si consideri lo schema a blocchi di figura. d(t) K d x(t) e(t) R(s) u(t) G(s) y(t) - R(s) = K τs + 1 s + 1, G(s) = K d = 2 s(s 2 + 6s + ), a) Considerando gli

Dettagli

La trasformata di Laplace

La trasformata di Laplace La trasformata di Laplace (Metodi Matematici e Calcolo per Ingegneria) Enrico Bertolazzi DIMS Universitá di Trento anno accademico 2005/2006 La trasformata di Laplace 1 / 34 Outline 1 La trasformata di

Dettagli

Variabili aleatorie parte 2. 1 Definizione di funzione di ripartizione o funzione cumulativa (CDF)

Variabili aleatorie parte 2. 1 Definizione di funzione di ripartizione o funzione cumulativa (CDF) Statistica e analisi dei dati Data: 11 aprile 2016 Variabili aleatorie parte 2 Docente: Prof. Giuseppe Boccignone Scriba: Alessandra Birlini 1 Definizione di funzione di ripartizione o funzione cumulativa

Dettagli

PROBLEMI DI FISICA MODERNA E MECCANICA QUANTISTICA. FISICA MODERNA anno accademico

PROBLEMI DI FISICA MODERNA E MECCANICA QUANTISTICA. FISICA MODERNA anno accademico PROBLEMI DI FISICA MODERNA E MECCANICA QUANTISTICA FISICA MODERNA anno accademico 007-008 () Sia dato un sistema che può trovarsi in tre stati esclusivi,, 3, e si supponga che esso si trovi nello stato

Dettagli

Analisi Matematica I per Ingegneria Gestionale, a.a Scritto del secondo appello, 1 febbraio 2017 Testi 1

Analisi Matematica I per Ingegneria Gestionale, a.a Scritto del secondo appello, 1 febbraio 2017 Testi 1 Analisi Matematica I per Ingegneria Gestionale, a.a. 206-7 Scritto del secondo appello, febbraio 207 Testi Prima parte, gruppo.. Trovare le [0, π] che risolvono la disequazione sin(2) 2. 2. Dire se esistono

Dettagli

05 - Funzioni di una Variabile

05 - Funzioni di una Variabile Università degli Studi di Palermo Facoltà di Economia Dipartimento di Scienze Economiche, Aziendali e Statistiche Appunti del corso di Matematica 05 - Funzioni di una Variabile Anno Accademico 2015/2016

Dettagli

Note sul teorema fondamentale e sulla formula fondamentale del calcolo integrale

Note sul teorema fondamentale e sulla formula fondamentale del calcolo integrale Note sul teorema fondamentale e sulla formula fondamentale del calcolo integrale Definizione. Sia f:[a, b] R una funzione reale continua definita sull intervallo [a, b] R. Una funzione primitiva (o semplicemente

Dettagli

Analisi Matematica II Corso di Ingegneria Biomedica Compito del A. f(x, y) = x + y 2 + log(x y)

Analisi Matematica II Corso di Ingegneria Biomedica Compito del A. f(x, y) = x + y 2 + log(x y) Analisi Matematica II Corso di Ingegneria Biomedica Compito del 4-6- - A - È obbligatorio consegnare tutti i fogli, anche quelli della brutta. - Le risposte senza giustificazione sono considerate nulle.

Dettagli

Matematica II prof. C.Mascia

Matematica II prof. C.Mascia Corso di laurea in CHIMICA INDUSTRIALE Sapienza, Università di Roma Matematica II prof CMascia alcuni esercizi, parte, 7 marzo 25 Indice Testi degli esercizi 2 Svolgimento degli esercizi 4 Testi degli

Dettagli

Materiale didattico relativo al corso di Matematica corso base Prof. G. Rotundo a.a.2013/14

Materiale didattico relativo al corso di Matematica corso base Prof. G. Rotundo a.a.2013/14 Materiale didattico relativo al corso di Matematica corso base Prof. G. Rotundo a.a.2013/14 ATTENZIONE: questo materiale contiene i lucidi utilizzati per le lezioni. NON sostituisce il libro, che deve

Dettagli

Foglio di Esercizi 9 con Risoluzione 29 dicembre 2015

Foglio di Esercizi 9 con Risoluzione 29 dicembre 2015 Matematica per Farmacia, a.a. 5/6 Foglio di Esercizi 9 con Risoluzione 9 dicembre 5 Esercizio. Integrare per parti: L integrale che poi si ottiene puó essere risolto con una sostituzione). ln d e arctan

Dettagli

Funzioni vettoriali di variabile scalare

Funzioni vettoriali di variabile scalare Capitolo 11 Funzioni vettoriali di variabile scalare 11.1 Curve in R n Abbiamo visto (capitolo 2) come la posizione di un punto in uno spazio R n sia individuata mediante le n coordinate di quel punto.

Dettagli

Studiamo adesso il comportamento di f(x) alla frontiera del dominio. Si. x 0 lim f(x) = lim. x 2 +

Studiamo adesso il comportamento di f(x) alla frontiera del dominio. Si. x 0 lim f(x) = lim. x 2 + Esercizi del 2//09. Data la funzione f(x) = ln(x 2 2x) (a) trovare il dominio, gli eventuali asintoti e gli intervalli in cui la funzione cresce o decresce. Disegnare il grafico della funzione. (b) Scrivere

Dettagli

Campi conservativi e forme esatte - Esercizi svolti

Campi conservativi e forme esatte - Esercizi svolti Campi conservativi e forme esatte - Esercizi svolti 1) Dire se la forma differenziale è esatta. ω = 2 2 (1 + 2 2 ) 2 d + 2 2 (1 + 2 2 ) 2 d 2) Individuare in quali regioni sono esatte le seguenti forme

Dettagli

Università Carlo Cattaneo Ingegneria gestionale Analisi matematica a.a. 2016/2017

Università Carlo Cattaneo Ingegneria gestionale Analisi matematica a.a. 2016/2017 Università Carlo Cattaneo Ingegneria gestionale Analisi matematica a.a. 2016/201 Primitive quasi elementari = + 1 = ln + = + + 1 sin = cos+ cos = sin + 1 + " = arctan + = arcsin+ &1 " Tecnica di integrazione

Dettagli

SIMULAZIONE - 29 APRILE QUESITI

SIMULAZIONE - 29 APRILE QUESITI www.matefilia.it SIMULAZIONE - 29 APRILE 206 - QUESITI Q Determinare il volume del solido generato dalla rotazione attorno alla retta di equazione y= della regione di piano delimitata dalla curva di equazione

Dettagli

Modulo di Matematica, Corsi di Laurea in VIT e STAL - Raccolta degli Esami A.A

Modulo di Matematica, Corsi di Laurea in VIT e STAL - Raccolta degli Esami A.A Modulo di Matematica, Corsi di Laurea in VIT e STL - Raccolta degli Esami.. 9- Facoltà di graria Corsi di Laurea in VIT e STL Modulo di Matematica Esame del //.. 9/ Scritto Teoria Esercizi Voto Istruzioni:

Dettagli

Impulso e funzioni generalizzate

Impulso e funzioni generalizzate Sapienza Universita di Roma Dispensa per il corso di Segnali Deterministici e Stocastici Corso di Laurea in Ingegneria Clinica Impulso e funzioni generalizzate Lorenzo Piazzo AA 2016/17 Versione del 5/10/2016

Dettagli

Analisi Matematica II Corso di Ingegneria Biomedica Compito del

Analisi Matematica II Corso di Ingegneria Biomedica Compito del Analisi Matematica II Corso di Ingegneria Biomedica Compito del -6- - È obbligatorio consegnare tutti i fogli, anche quelli della brutta. - Le risposte senza giustificazione sono considerate nulle. Esercizio.

Dettagli

ANALISI 1 - Teoremi e dimostrazioni vari

ANALISI 1 - Teoremi e dimostrazioni vari ANALISI 1 - Teoremi e dimostrazioni vari Sommario Proprietà dell estremo superiore per R... 2 Definitivamente... 2 Successioni convergenti... 2 Successioni monotone... 2 Teorema di esistenza del limite

Dettagli

I teoremi della funzione inversa e della funzione implicita

I teoremi della funzione inversa e della funzione implicita I teoremi della funzione inversa e della funzione implicita Appunti per il corso di Analisi Matematica 4 G. Mauceri Indice 1 Il teorema della funzione inversa 1 Il teorema della funzione implicita 3 1

Dettagli

Sistemi LTI a Tempo Continuo

Sistemi LTI a Tempo Continuo Capitolo 3 Sistemi LTI a Tempo Continuo 3.1 Proprietà di Linearità e Tempo Invarianza 3.1.1 Linearità Si indichi con T [.] la trasormazione ingresso-uscita, o unzione di traserimento, di un sistema S 1,

Dettagli

Esercizi geometria analitica nello spazio. Corso di Laurea in Informatica. Docente: Andrea Loi. Correzione

Esercizi geometria analitica nello spazio. Corso di Laurea in Informatica. Docente: Andrea Loi. Correzione Esercizi geometria analitica nello spazio Corso di Laurea in Informatica Docente: Andrea Loi Correzione 1. Denotiamo con P 1, P 13, P 3, P 1, P, P 3, P i simmetrici di un punto P rispetto ai piani coordinati

Dettagli

Dom. 1 Dom 2 Es. 1 Es. 2 Es. 3 Es. 4 Totale. Cognome: Nome: Matricola:

Dom. 1 Dom 2 Es. 1 Es. 2 Es. 3 Es. 4 Totale. Cognome: Nome: Matricola: Dom. 1 Dom Es. 1 Es. Es. 3 Es. 4 Totale Analisi e Geometria 1 Primo appello 16 febbraio 016 Docente: Politecnico di Milano Scuola di Ingegneria Industriale e dell Informazione Cognome: Nome: Matricola:

Dettagli

Esercitazioni di Matematica

Esercitazioni di Matematica Università degli Studi di Udine Anno Accademico 009/00 Facoltà di Agraria Corsi di Laurea in VIT e STAL Esercitazioni di Matematica novembre 009 Trovare le soluzioni della seguente disequazione: x + +

Dettagli

Analisi Matematica II Corso di Ingegneria Gestionale Compito del A

Analisi Matematica II Corso di Ingegneria Gestionale Compito del A Analisi Matematica II Corso di Ingegneria Gestionale Compito del -7-5 - A Esercizio ( punti Data la funzione f(x, y = x + y + 4xy 8x 4y + 4 i trovare tutti i punti critici e, se possibile, caratterizzarli

Dettagli

Soluzioni dei problemi della maturità scientifica A.S. 2007/2008

Soluzioni dei problemi della maturità scientifica A.S. 2007/2008 Soluzioni dei problemi della maturità scientifica A.S. 007/008 Nicola Gigli Sunra J.N. Mosconi 19 giugno 008 Problema 1 (a) Determiniamo in funzione di a i lati del triangolo. Essendo l angolo BĈA retto

Dettagli

SIMULAZIONE - 29 APRILE QUESITI

SIMULAZIONE - 29 APRILE QUESITI www.matefilia.it SIMULAZIONE - 29 APRILE 206 - QUESITI Q Determinare il volume del solido generato dalla rotazione attorno alla retta di equazione y= della regione di piano delimitata dalla curva di equazione

Dettagli

SCHEDA DIDATTICA N 7

SCHEDA DIDATTICA N 7 FACOLTA DI INGEGNERIA CORSO DI LAUREA IN INGEGNERIA CIVILE CORSO DI IDROLOGIA PROF. PASQUALE VERSACE SCHEDA DIDATTICA N 7 LA DISTRIBUZIONE NORMALE A.A. 01-13 La distribuzione NORMALE Uno dei più importanti

Dettagli

Corso di Analisi Numerica

Corso di Analisi Numerica Corso di Laurea in Ingegneria Informatica Corso di Analisi Numerica 9 - EQUAZIONI DIFFERENZIALI ORDINARIE Lucio Demeio Dipartimento di Scienze Matematiche 1 Problemi ai Valori Iniziali: metodo di Eulero

Dettagli

Integrali (M.S. Bernabei & H. Thaler)

Integrali (M.S. Bernabei & H. Thaler) Integrali (M.S. Bernabei & H. Thaler) Integrali. Motivazione Che cos é un integrale? Sia f 0 e limitata b a f ( x) dx area f ( x, y) dxdy volume Definizione di integrale: b a dove f ( x) dx lim n n k b

Dettagli

Soluzione scritto 4 marzo 2011

Soluzione scritto 4 marzo 2011 .. Esercizio. Scrivere ANALISI VETTORIALE Soluzione scritto 4 marzo l integrale generale dell equaz. y + y tan(t) =, π < t < π ; un integrale particolare dell equaz. y + y tan(t) = t cos(t); un integrale

Dettagli

Derivazione numerica. Introduzione al calcolo numerico. Derivazione numerica (II) Derivazione numerica (III)

Derivazione numerica. Introduzione al calcolo numerico. Derivazione numerica (II) Derivazione numerica (III) Derivazione numerica Introduzione al calcolo numerico Il calcolo della derivata di una funzione in un punto implica un processo al limite che può solo essere approssimato da un calcolatore. Supponiamo

Dettagli

Corso di Analisi Matematica 1 - professore Alberto Valli

Corso di Analisi Matematica 1 - professore Alberto Valli Università di Trento - Corso di Laurea in Ingegneria Civile e Ingegneria per l Ambiente e il Territorio - 07/8 Corso di Analisi Matematica - professore Alberto Valli 6 foglio di esercizi - 5 ottobre 07

Dettagli

Un modello computazionale per la detezione dei bordi

Un modello computazionale per la detezione dei bordi Modelli e Principi della Percezione Data: AA 2010-11 Un modello computazionale per la detezione dei bordi Docente: Prof. Giuseppe Boccignone Scriba: 1 Il problema Il problema della modellazione di un processo

Dettagli

x x Si dice che il limite, per x che tende a x 0, di f ( x ) è uguale a se e solo se:

x x Si dice che il limite, per x che tende a x 0, di f ( x ) è uguale a se e solo se: 24 7. LA DEFINIZIONE RIGOROSA DI LIMITE 1 CASO: LIMITE FINITO PER x CHE TENDE AD UN VALORE FINITO Definizione: ( x lim ( = I I / I { }, ( I f x x x x f x x Si dice che il limite, per x che tende a x, di

Dettagli

Esercitazione n 5. 1 Limiti e continuità di funzioni in più variabili. Esercizio 1: Si verifichi che la funzione f definita per ogni (x, y) R 2 da

Esercitazione n 5. 1 Limiti e continuità di funzioni in più variabili. Esercizio 1: Si verifichi che la funzione f definita per ogni (x, y) R 2 da Esercitazione n 5 1 Limiti e continuità di funzioni in più variabili Esercizio 1: Si verifici ce la funzione f definita per ogni (, y) R 2 da { 4 y 4 se (, y) (0, 0) f(, y) = 2 +y 2 0 se (, y) = (0, 0)

Dettagli

Analisi Matematica II Corso di Ingegneria Gestionale Compito A del f(x, y) = 2 x 2 y 2 x y 2 + x y

Analisi Matematica II Corso di Ingegneria Gestionale Compito A del f(x, y) = 2 x 2 y 2 x y 2 + x y Analisi Matematica II Corso di Ingegneria Gestionale Compito A del -7- - È obbligatorio consegnare tutti i fogli, anche la brutta e il testo - Le risposte senza giustificazione sono considerate nulle Esercizio

Dettagli

SVILUPPI DI TAYLOR Esercizi risolti

SVILUPPI DI TAYLOR Esercizi risolti Esercizio 1 SVILUPPI DI TAYLOR Esercizi risolti Utilizzando gli sviluppi fondamentali, calcolare gli sviluppi di McLaurin con resto di Peano delle funzioni seguenti fino all ordine n indicato: 1. fx log1

Dettagli

Quick calculus Capitolo 1 Il problema della tangente

Quick calculus Capitolo 1 Il problema della tangente Quick calculus Capitolo 1 Il problema della tangente Introduzione Ricavare una retta tangente ad una curva di secondo grado come un circonferenza o una parabola, è un problema che si risolve facilmente.

Dettagli

Pulse Amplitude Modulation (PAM) 2 Scelta delle risposte impulsive dei filtri in trasmissione e ricezione

Pulse Amplitude Modulation (PAM) 2 Scelta delle risposte impulsive dei filtri in trasmissione e ricezione Pulse Amplitude Modulation (PAM 1 Definizione La trasmissione di una sequenza di numeri {a k } mediante un onda PAM consiste nel generare, a partire dalla sequenza {a k } il segnale a tempo continuo u(t

Dettagli

La Retta Ogni funzione di primo grado rappresenta, graficamente, una retta. L equazione della retta può essere scritta in due modi

La Retta Ogni funzione di primo grado rappresenta, graficamente, una retta. L equazione della retta può essere scritta in due modi La Retta Ogni funzione di primo grado rappresenta, graficamente, una retta. L equazione della retta può essere scritta in due modi Forma implicita Forma esplicita a x b y c 0 y m x q a c y x b b Esempio

Dettagli