Disuniformità con gradiente in direzione del campo ( )

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Disuniformità con gradiente in direzione del campo ( )"

Transcript

1 Disuniformità con gradiente in direzione del campo ( ) Una topologia di linee magnetiche come quelle mostrate in figura e caratterizzata da un gradiente del campo che produce una forza risultante nella direzione di B. La forza di Lorentz che compare nell equazione del moto (14-1) a causa del gradiente del campo ha una componente nelle direzione del campo: z (14.2) con : (14-3) r Dalla : si puo calcolare B r in funzione di B z. In coordinate cilindriche : z (14-4) 1

2 ossia: (14-5) Se r L è abbastanza piccolo che: Ossia Pertanto la forza e uguale a: B m = v q B (14-6) (14-7) (14-8) 2

3 Momento magnetico di una carica in moto Quando una particella entra nella struttura magnetica in cui il campo magnetico cresce, subisce una forza ritardante proporzionale alla componente del gradiente e alla quantità : (14-9) che e consistente con la definizione di momento magnetico di una spira di raggio r L percorsa da una corrente I = q Ω c /2π: (14-10) Scritta vettorialmente, la forza ritardante e pertanto : (14-11) Il momento magnetico e associato al moto di girazione nel piano perpendicolare al moto e punta in direzione di B ma in verso opposto. 3

4 Momento magnetico Un circuito piano a sezione rettangolare di area da = dx dy, percorso da una corrente I, immerso in un campo magnetico B(r) e soggetto ad una forza F avente componenti: dy z y B (14-12) dx ovvero: (14-13) e, se e il momento magnetico vettoriale del circuito x = (14-14) 4

5 Momento magnetico La forma del circuito non importa perché un circuito di forma qualunque può sempre essere scomposto in un gran numero di spire rettangolari adiacenti. Dunque le definizioni di µ : e della forza applicata F che può anche essere scritta come (14-15) (14-16) (14-17) e valida per un circuito avente una forma qualsiasi. Il fatto che µ sia sempre diretto in direzione opposta al campo, indica che il campo magnetico prodotto dal moto delle particelle del plasma si oppone sempre al campo magnetico esterno (diamagnetismo del plasma). La deriva di può essere scritta, introducendo il momento magnetico come: (14-18) 5

6 Invarianza del momemto magnetico Il momento magnetico di una particella in moto in un campo magnetico e un invariante del moto: Infatti da : (14-19) ossia : (14-20) Per la conservazione dell energia cinetica: (14-21) Sottraendo membro a membro la (14-20) e (14-21) (14-22) si ottiene: ossia (14-23) µ = cost che esprime la conservazione del momento magnetico di una particella in moto in un campo magnetico 6

7 Conservazione del momento angolare della particella La conservazione del momento magnetico riflette la conservazione del momento angolare della particella rispetto al centro di guida. Il momento L = angolare della particella rispetto al centro di = guida e per definizione (14-23) che si conserva durante il moto. = 7

8 Il campo magnetico generato da una corrente anulare a distanza molto più grande di R, è simile a quello di un dipolo magnetico con lo stesso momento. Nella figura si fa vedere che il campo magnetico creato dalle particelle sia positive che negative, che si muovono in un campo magnetico uniforme, si oppone al campo magnetico esterno all'interno del le orbite, il che equivale ad un dipolo diamagnetico. Diamagnetismo del plasma Osserviamo che la direzione di µ m non dipende dal segno della carica; infatti, se si cambia segno a q, si inverte la direzione di v. Questa è l'origine delle proprietà diamagnetiche dei plasmi 8

9 Specchio magnetico Una applicazione della costanza del momento magnetico e il sistema di confinamento a Specchio Magnetico. Riflessione Particella R B piu forte B meno forte B piu forte Una carica che si muova in direzione assiale e soggetta ad entrambe le estremità a una forza che tende a rallentare il suo moto in entrambe le direzioni. Se il campo magnetico e sufficientemente elevato, la direzione del moto si inverte. In questo caso le particelle sono confinate anche assialmente all interno della trappola magnetica che viene chiamata specchio (magnetic mirror). 9

10 Specchio magnetico Si consideri una particella con carica q che si muove in direzione parallela all asse della struttura magnetica e sia : K = la sua energia cinetica nel punto R. (14-24) Nel punto R ci sarà una riflessione del moto se la velocità parallela si annulla, ossia se: (14-25) La conservazione del momento magnetico calcolata nello stesso punto impone: (14-26) E combinando le due Ossia la condizione per ottenere una riflessione della particella nel punto R e (14-27) Condizione di specchio 10

11 Specchio magnetico Se nello spazio delle velocità si definisce un angolo di inclinazione (pitch angle) del v v z vettore velocità rispetto alla direzione del campo magnetico e evidentemente : (14-28) e se θ 0 e troppo piccolo non ci sarà riflessione ma la particella sfuggirà in direzione assiale dalla zona di confinamento. L angolo limite magnetico, (simile all angolo limite ottico) e evidentemente: θ 0 v // = r (14-29) E si potrà identificare un cono di perdita sotteso dall angolo limite 11

12 Specchio magnetico Il cono di perdita divide lo spazio delle velocità in due parti: al suo esterno le particelle sono confinate; al suo interno sono perse. Essenzialmente sono confinate le particelle ad alta velocità perpendicolare. Il flusso magnetico incluso in un orbita di girazione e dato da: (14-30) ed e pertanto costante 12

13 Invarianti adiabatici E noto in meccanica classica che un se un corpo e in moto periodico, l integrale di azione, A = pdq dove p e q sono i momenti e le coordinate generalizzate, che variano periodicamente, e invariante nel moto. Queste quantità rimangono invarianti (invarianti adiabatici) anche se il moto del sistema non e esattamente periodico purché i parametri del sistema subiscono modificazioni lente rispetto al periodo di rotazione. L esistenza di invarianti adiabatici permettono spesso di risolvere in un modo semplice complicati problemi di dinamica. I moti di particelle cariche in campi magnetici sono sempre periodici ed esistono tre invarianti adiabatici associati al loro moto. Se assumiamo che p = mvr e il momento angolare e θ l angolo di rotazione nel piano perpendicolare al campo magnetico 2 2µ B 2 mv m v pdq = mv dθ = 2πrL mv = 2π = 4π µ Ωc q = m Ω q B c m 13

14 Accelerazione di particelle nello spazio In uno specchio magnetico a simmetria assiale. (Figura 14 a) cariche che vengano iniettate nelle regioni di campo meno intenso tra le due compressioni e che abbiano angoli di iniezione al di fuori del cono di perdita, sono intrappolate tra due punti di specchio e si muovono avanti indietro tra di essi. Sono tuttavia possibili specchi magnetici in diverse geometrie in particolare in geometria di dipolo magnetico, come quello terrestre, mostrato in Figura 14 b) Figura 14 Figura 14 14

15 Anche in questo caso le linee di flusso si addensano verso i poli magnetici. Possiamo quindi pensare alle regioni polari come a due punti di specchio che danno origine a un confinamento magnetico: cariche iniettate (principalmente dal vento solare) in questo campo, al di fuori del cono di perdita, sono intrappolate tra le due regioni polari e si muovono avanti e indietro lungo le linee di flusso. Data la forma delle linee di campo, sono presenti effetti di deriva di curvatura e di gradiente, che agiscono ambedue nella direzione azimutale. Il centro di guida delle particlle pertanto, nel suo moto tra i punti di specchio, si muove anche azimutalmente intorno all asse del dipolo. Cariche di segno opposto hanno moti azimutali contrari e danno quindi origine ad una corrente di deriva intorno al dipolo. Questa configurazione è all origine delle cosiddette fasce di Van Allen, scoperte intorno alla Terra nel 1958 dalle prime sonde spaziali Explorer e Sputnik, e costituenti la magnetosfera chiusa del nostro pianeta. Nelle fasce si trovano elettroni con energie tra 40 kev e 1 MeV e protoni con energie tra 100 kev e 1 GeV, che hanno punti di specchio a latitudini intorno ai 70 e si estendono tra 1.5 e 5 volte il raggio terrestre; 15

16 Le particelle di più bassa energia sono intrappolate nelle regioni più esterne, quelle di alta energia arrivano al bordo superiore della ionosfera, intorno a qualche centinaio di km. I flussi di particelle variano tra 10 4 e 10 7 particelle cm 2 s 1. Le fasce sono formate dalla cattura di particelle cariche del vento solare che penetrano nella magnetosfera, ma anche da cariche energetiche evaporate dalla ionosfera terrestre; intense fasce di elettroni sono state osservate formarsi a seguito delle esplosioni nucleari in atmosfera. Le fasce variano irregolarmente in relazione all attività solare; le particelle delle fasce si scaricano nei punti di specchio delle regioni polari per interazioni con le particelle dell atmosfera terrestre, e sono responsabili dell attività geomagnetica e delle aurore. I moti di deriva generano la cosiddetta corrente ad anello che scorre lungo le fasce in direzione azimutale. 16

17 Meccanismi di accelerazione I voli di palloni di Hess del 1912 mostrarono che la Terra è esposta a radiazioni ionizzanti provenienti dal di fuori dell atmosfera, e quindi di origine extraterrestre. Quelli che furono chiamati raggi cosmici sono particelle cariche di alta energia, principalmente elettroni, protoni e nuclei leggeri. Lo spettro energetico dei raggi cosmici si estende dai 10 3 ai ev; tra 10 9 e i ev lo spettro segue una regolare legge di potenza (Figura. 14.7): N (E)dE E 2.66 de. L origine dei raggi cosmici è un problema ancora non risolto, sebbene oggi vi sia un consenso generale che esistano due componenti, una di origine galattica con particelle di energia fino a circa ev ed un altra di origine extragalattica che raggiunge i ev. Un indicazione che raggi cosmici siano prodotti anche in altre galassie è data dall osservazione di radiazione sincrotrone, specialmente nelle radiogalassie estese, in cui elettroni relativistici debbono essere efficientemente prodotti in modo continuo sull intera vita della sorgente. Nei nuclei delle galassie attive, quasars, blazars, ecc., la radiazione X e gamma richiedono inoltre la produzione di ioni di alta energia. 17

18 Parte di queste particelle possono sfuggire dagli oggetti e riempire lo spazio intergalattico. La presenza diffusa di particelle di alta energia appare indicare che esistano meccanismi di accelerazione di tipo universale in molte sorgenti astrofisiche. Un utile testo di riferimento per l approfondimento del problema astrofisico è stato pubblicato da Longair (High-Energy Astrophysics, 1994). E utile illustrare uno dei principali meccanismi per l accelerazione dei raggi cosmici proposto nel 1949 da Fermi e che si basa proprio sul principio di confinamento magnetico in sistemi a specchio. Fermi considerò, sulla base dei dati osservativi sul mezzo interstellare, che questo fosse composto di nuvole magnetizzate che si muovono in modo caotico, connesse tra loro da un campo magnetico medio diffuso di basso valore. Figura Particelle elettricamente cariche, elettroni e ioni, seguono traiettorie composte da moti di girazione e derive del centro di guida; in particolare possono essere intrappolate nel campo debole tra due nuvole magnetizzate dove invece il campo medio è più intenso (che quindi possono costituire sistema di confinamento magnetico cosmico) e possono essere diffuse al di fuori della bottiglia non appena acquistano un energia superiore a quella di confinamento. 18

19 Lo schema generale dell interazione è quello di una distribuzione isotropa di particelle che subiscono riflessioni a specchio con una distribuzione isotropa di nuvole magnetizzate. Nelle riflessioni è presa in considerazione anche la presenza della velocità propria U della nuvola, che può essere concorde o discorde con la velocità u della carica di massa m lungo il campo. Si consideri una singola collisione elastica tra nuvola magnetica e particella, schematizzata in figura. Si suppone che la nuvola magnetica abbia una massa infinita e pertanto che il sistema di riferimento della nuvola sia lo stesso di quello del baricentro della collisione. L energia E della particella in questo riferimento e la componente p x del suo momento parallela alla direzione della velocità U della nuvola saranno pertanto: Figura 14-11) (14-31) dove θ e l angolo tra le direzioni di p ed U dopo la collisione. Nella collisione con un ostacolo di massa infinita l energia nel centro di massa si conserva e il segno dell impulso si inverte ossia (14-32) 19

20 Nel sistema dell osservatore e invece (14-33) e pertanto la variazione di energia (14-34) dove il II termine del II membro e dominante (u >> U) ma dipende da θ, variando da un guadagno di energia per θ = 0 (head on collision) ad una perdita di energia θ = π (overtaking collision) Mediando sulla funzione di distribuzione degli angoli di collisione si ottiene per u c: (14-35) che rappresenta il guadagno medio di energia in una singola collisione alla Fermi. Per potere calcolare lo spettro dei raggi cosmici è necessaria una valutazione media della variazione di energia in funzione del tempo, e per questo e necessaria una valutazione media della distanza L fra nuvole magnetizzate. Il tempo medio tra due collisioni t = L/(u cos Φ) dove Φ è l angolo tra la velocità u e la direzione del campo magnetico. Il tempo medio (mediato su Φ) diventa < t > L/2c dove il fattore ½ è dovuto alla media sul coseno. 20

21 Il tasso di crescita diventa pertanto : de dt E < t > (14-36) Per ricavare lo spettro tipico che deriva da questo tipo di dinamica si suppone che al tempo t le particelle nell intervallo di energia traee E+ΔE sianof(e)δe; al tempo t+δt saranno state rimpiazzate da quelle che avevano al tempo t energia trae e E + ΔE dove E = E αeδt ed E + ΔE = (E + ΔE) α(e + ΔE) Δt che sonof(e )ΔE = F(E αeδt) Sviluppando in serie di Taylor per piccoli ΔE si ottiene:. Pertanto la variazione di F(E)ΔE nell intervallo di tempo t è : F ( E) E = F' (E) E' - F(E) E = e sviluppando ancora per piccoli αeδt: (14-37) (14-38) (14-39) ossia dividendo per t Ε e passando al limite per t 0: (14-40) 21

22 Se le particelle rimangono confinate nella regione delle nuvole (la Galassia nel caso specifico) per un tempo tipico τ dopo il quale vengono perdute perchè aumentando la loro energia, possono sfuggire dai punti a specchio, occorre aggiungere un termine di perdita: la cui soluzione in condizioni stazionarie, F/ t 0, è:. Questa relazione mostra che il meccanismo statistico di riflessione da parte di nuvole magnetizzate nel mezzo interstellare può generare spettri di potenza; questo è il più significativo risultato del modello proposto da Fermi. (14.41) (13.42) Vanno menzionati tuttavia alcuni punti di incertezza, pur tenendo conto della semplicità del modello. 1. α e τ debbono essere indipendenti dall energia per produrre una legge di potenza; soprattutto una costanza di τ sembra difficile da giustificare, anche se ciò può avere effetto solo sulla parte di alta energia dello spettro. 2. Per spiegare gli indici spettrali osservati occorre che ατ 1 in tutti i casi, richiesta non ovvia tenendo conto della varietà di situazioni e parametri fisici. 22

23 Nel caso dei raggi cosmici nella Galassia è stato proposto che, essendo paragonabili le densità di energia nei raggi cosmici e nella dinamica delle nuvole (equipartizione), la velocità delle nuvole si aggiusti in modo da produrreατ 1; d altra parte i valori stimati osservativamente per le due quantità non sembrano soddisfare questa richiesta del modello. 3. Il processo di collisione magnetica dev essere effettivamente molto soffice e lento per evitare che i nuclei dei raggi cosmici si frantumino. 4. Una difficoltà comune a tutti i processi di tipo stocastico è la loro intrinseca anisotropia. La collisione tra particella energetica e nuvola fornisce energia parallela al campo magnetico, per cui la riflessione risulta sempre più difficile man mano che procede l accelerazione. Per mantenere il processo serve dunque un ulteriore processo che ridistribuisca l energia isotropicamente, come ad esempio le collisioni con onde turbolente isotrope. 5. Il processo di accelerazione compete anche con le perdite energetiche che sono state trascurate. In effetti esiste un energia di soglia al di sotto della quale le particelle perdono radiativamente più rapidamente di quanto guadagnino. Pertanto non si può pensare che il meccanismo di Fermi sia sufficiente: può essere in grado di accelerare particelle che già abbiano superato l energia di soglia, per cui è richiesto un meccanismo di preaccelerazione (Fig ). 23

24 Il processo di Fermi è comunque piuttosto lento, essendo il tipico guadagno di energia proporzionale a (U/c) 2 con la velocità media delle nuvole del gas interstellare U 15 km s 1 molto piccola rispetto alla velocità della luce. Una possibilità per rendere il processo più efficiente è quella di costruire situazioni in cui tutte le collisioni siano head-on. Ciò può ad esempio avvenire nei fronti delle onde d urto ove irregolarità magnetiche su ambedue i lati del fronte possano funzionare da centri di riflessione che intrappolono particelle. Le particelle possono muoversi avanti e indietro attraverso il fronte e ad ogni passaggio subiscono collisioni head-on. In tal caso si mostra che il tasso di accelerazione de/dtdiventa proporzionale alla prima potenza del rapporto U/c, e si parla quindi di processo di Fermi del prim ordine, mentre quello stocastico precedente viene indicato come processo di Fermi del second ordine. Figura

Lezione 15 Geometrie lineari di confinamento magnetico

Lezione 15 Geometrie lineari di confinamento magnetico Lezione 15 Geometrie lineari di confinamento magnetico G. Bosia Universita di Torino G. Bosia Introduzione alla fisica del plasma Lezione 15 1 Disuniformità con gradiente in direzione del campo ( ) Una

Dettagli

Lezione 6 Geometrie lineari e toroidali di confinamento magnetico

Lezione 6 Geometrie lineari e toroidali di confinamento magnetico Lezione 6 Geometrie lineari e toroidali di confinamento magnetico G. Bosia Universita di Torino G. Bosia - Fisica del plasma confinato Lezione 6 1 Disuniformità con gradiente in direzione del campo ( )

Dettagli

Lezione 5 Moti di particelle in un campo magnetico

Lezione 5 Moti di particelle in un campo magnetico Lezione 5 Moti di particelle in un campo magnetico G. Bosia Universita di Torino G. Bosia - Fisica del plasma confinato Lezione 5 1 Moto di una particella carica in un campo magnetico Il confinamento del

Dettagli

Lezione 14 Moti di particelle in un campo magnetico

Lezione 14 Moti di particelle in un campo magnetico Lezione 14 Moti di particelle in un campo magnetico G. Bosia Universita di Torino G. Bosia - Fisica del plasma confinato Lezione 14 1 Confinamento magnetico La difficolta della fisica di un sistema a confinamento

Dettagli

Moti a particella singola

Moti a particella singola Moti a particella singola La teoria delle orbite ha come scopo lo studio della traiettoria di particelle singole in campi di forze EM imposte dall esterno, eventualmente variabili nello spazio e/o nel

Dettagli

Per casa. [ 2, N, uscente]

Per casa. [ 2, N, uscente] p.273 libro Per casa Una carica di 0,5 μc viaggia in un campo magnetico di 0,15 T con velocità di 3 m/s in una direzione perpendicolare con il campo. Trovare intensità direzione e verso della forza che

Dettagli

MAGNETISMO. Alcuni materiali (calamite o magneti) hanno la proprietà di attirare pezzetti di ferro (o cobalto, nickel e gadolinio).

MAGNETISMO. Alcuni materiali (calamite o magneti) hanno la proprietà di attirare pezzetti di ferro (o cobalto, nickel e gadolinio). MAGNETISMO Alcuni materiali (calamite o magneti) hanno la proprietà di attirare pezzetti di ferro (o cobalto, nickel e gadolinio). Le proprietà magnetiche si manifestano alle estremità del magnete, chiamate

Dettagli

Corso di Radioastronomia 2

Corso di Radioastronomia 2 Corso di Radioastronomia 2 Aniello (Daniele) Mennella Davide Maino Dipartimento di Fisica Prima parte: principali meccanismi di emissione e assorbimento Parte 1 Lezione 2 L emissione di sincrotrone La

Dettagli

= E qz = 0. 1 d 3 = N

= E qz = 0. 1 d 3 = N Prova scritta d esame di Elettromagnetismo 7 ebbraio 212 Proff.. Lacava,. Ricci, D. Trevese Elettromagnetismo 1 o 12 crediti: esercizi 1, 2, 4 tempo 3 h; Elettromagnetismo 5 crediti: esercizi 3, 4 tempo

Dettagli

Perchè non si è semplicemente assunto che il campo magnetico B abbia la direzione della forza magnetica agente su di un filo percorso da corrente?

Perchè non si è semplicemente assunto che il campo magnetico B abbia la direzione della forza magnetica agente su di un filo percorso da corrente? Perchè non si è semplicemente assunto che il campo magnetico B abbia la direzione della forza magnetica agente su di un filo percorso da corrente? Si abbia una molla verticale al cui estremo inferiore

Dettagli

Forza di Lorentz ( o. magnetica) I = qtx È. k : E = àxt. c ab Seno %ÈÈ : . imo

Forza di Lorentz ( o. magnetica) I = qtx È. k : E = àxt. c ab Seno %ÈÈ : . imo Forza di Lorentz ( o magnetica). I = qtx È k : E = àxt :C =# ÙT = ; c ab Seno. imo %ÈÈ : F- QVB sono È t sia at che a È ( Io regola della mano deste casi particolari : $ 0=0 o T =/ 80 F = o feriti serrò

Dettagli

CAPITOLO 1 FORZA ELETTROSTATICA CAMPO ELETTROSTATICO

CAPITOLO 1 FORZA ELETTROSTATICA CAMPO ELETTROSTATICO CAPITOLO 1 FORZA ELETTROSTATICA CAMPO ELETTROSTATICO Elisabetta Bissaldi (Politecnico di Bari) 2 L elettromagnetismo INTERAZIONE ELETTROMAGNETICA = INTERAZIONE FONDAMENTALE Fenomeni elettrici e fenomeni

Dettagli

Rivelatori Caratteristiche generale e concetti preliminari

Rivelatori Caratteristiche generale e concetti preliminari Rivelatori Caratteristiche generale e concetti preliminari Stage Residenziale 2012 Indice Caratteristiche generali sensibilità, risposta, spettro d ampiezza, risoluzione energetica, efficienza, tempo morto

Dettagli

Interazioni di tipo magnetico II

Interazioni di tipo magnetico II INGEGNERIA GESTIONALE corso di Fisica Generale Prof. E. Puddu Interazioni di tipo magnetico II 1 Forza magnetica su una carica in moto Una particella di carica q in moto risente di una forza magnetica

Dettagli

CAMPO MAGNETICO Proprietà della magnetite (Fe 3 O 4 ): attira a sé materiali ferrosi o altre sostanze dette magnetiche Poli del magnete = parti in

CAMPO MAGNETICO Proprietà della magnetite (Fe 3 O 4 ): attira a sé materiali ferrosi o altre sostanze dette magnetiche Poli del magnete = parti in CAMPO MAGNETICO Proprietà della magnetite (Fe 3 O 4 ): attira a sé materiali ferrosi o altre sostanze dette magnetiche Poli del magnete = parti in cui si evidenzia tale proprietà Proprietà magnetiche possono

Dettagli

, mentre alla fine, quando i due cilindri ruotano solidalmente, L = ( I I ) ω. . Per la conservazione, abbiamo

, mentre alla fine, quando i due cilindri ruotano solidalmente, L = ( I I ) ω. . Per la conservazione, abbiamo A) Meccanica Un cilindro di altezza h, raggio r e massa m, ruota attorno al proprio asse (disposto verticalmente) con velocita` angolare ω i. l cilindro viene appoggiato delicatamente su un secondo cilindro

Dettagli

Soluzione degli esercizi dello scritto di Meccanica del 17/06/2019

Soluzione degli esercizi dello scritto di Meccanica del 17/06/2019 Soluzione degli esercizi dello scritto di Meccanica del 17/06/2019 Esercizio 1 Un corpo rigido è formato da un asta di lunghezza L = 2 m e massa trascurabile, ai cui estremi sono fissati due corpi puntiformi,

Dettagli

Esercizio (tratto dal problema 7.36 del Mazzoldi 2)

Esercizio (tratto dal problema 7.36 del Mazzoldi 2) Esercizio (tratto dal problema 7.36 del Mazzoldi 2) Un disco di massa m D = 2.4 Kg e raggio R = 6 cm ruota attorno all asse verticale passante per il centro con velocità angolare costante ω = 0 s. ll istante

Dettagli

UNIVERSITA DEGLI STUDI DI GENOVA SCUOLA POLITECNICA FISICA GENERALE I

UNIVERSITA DEGLI STUDI DI GENOVA SCUOLA POLITECNICA FISICA GENERALE I FISICA GENERALE I - Sede di Spezia Prova A del 11/01/2016 ME 1 Un ragno di massa m R = 5.0 g usa il proprio filo come una liana (lunghezza L =10 cm). Partendo da fermo con il filo inclinato di un angolo

Dettagli

FISICA (modulo 1) PROVA SCRITTA 07/07/2014. ESERCIZI (Motivare sempre i vari passaggi nelle soluzioni)

FISICA (modulo 1) PROVA SCRITTA 07/07/2014. ESERCIZI (Motivare sempre i vari passaggi nelle soluzioni) FISICA (modulo 1) PROVA SCRITTA 07/07/2014 ESERCIZI (Motivare sempre i vari passaggi nelle soluzioni) E1. Un blocco di legno di massa M = 1 kg è appeso ad un filo di lunghezza l = 50 cm. Contro il blocco

Dettagli

Il problema dei due corpi La dinamica planetaria

Il problema dei due corpi La dinamica planetaria Il problema dei due corpi La dinamica planetaria La Meccanica Classica Lagrange Hamilton Jacobi Vettori Per rendere conto della 3-dimensionalità in fisica, e in matematica, si usano delle grandezze più

Dettagli

Interazioni di tipo magnetico II

Interazioni di tipo magnetico II NGEGNERA GESTONALE corso di Fisica Generale Prof. E. Puddu nterazioni di tipo magnetico 1 Forza magnetica su una carica in moto Una particella di carica q in moto risente di una forza magnetica chiamata

Dettagli

Introduzione agli acceleratori Parte III: Emissione di sincrotrone

Introduzione agli acceleratori Parte III: Emissione di sincrotrone Introduzione agli acceleratori Parte III: Emissione di sincrotrone Gabriele Chiodini Istituto Nazionale di Fisica Nucleare Sezione di Lecce Corso di Laurea Magistrale in Fisica dell Università del Salento

Dettagli

Elettromagnetismo. Proprietà della forza magnetica. Lezione n Prof. Francesco Ragusa Università degli Studi di Milano

Elettromagnetismo. Proprietà della forza magnetica. Lezione n Prof. Francesco Ragusa Università degli Studi di Milano Elettromagnetismo Prof. Francesco Ragusa Università degli Studi di Milano Lezione n. 20 13.3.2018 Proprietà della forza magnetica Anno Accademico 2017/2018 La forza di Lorentz Insistiamo ancora sul fatto

Dettagli

Il campo magnetico. n I poli magnetici di nome contrario non possono essere separati: non esiste il monopolo magnetico

Il campo magnetico. n I poli magnetici di nome contrario non possono essere separati: non esiste il monopolo magnetico Il campo magnetico n Le prime osservazioni dei fenomeni magnetici risalgono all antichità n Agli antichi greci era nota la proprietà della magnetite di attirare la limatura di ferro n Un ago magnetico

Dettagli

CAPITOLO 7 TEOREMA DI AMPERE

CAPITOLO 7 TEOREMA DI AMPERE CAPITOLO 7 DI 7.1 Prima legge elementare di Laplace Le correnti generano i campi magnetici. Per calcolare il campo magnetico prodotto da un filo percorso da corrente dobbiamo usare una procedura simile

Dettagli

Prova scritta del corso di Fisica con soluzioni

Prova scritta del corso di Fisica con soluzioni Prova scritta del corso di Fisica con soluzioni Prof. F. Ricci-Tersenghi 2/0/203 Quesiti. Una corpo di massa m = 250 g è appoggiato su un piano scabro (µ d = 0.2 e µ s = 0.6) e collegato ad una molla di

Dettagli

Lezione 4 Proprietà fondamentali di un plasma II

Lezione 4 Proprietà fondamentali di un plasma II Lezione 4 Proprietà fondamentali di un plasma II G. Bosia Universita di Torino 1 Interfaccia elettrico tra plasma e prima parete solida Quando un plasma e in contatto con un corpo solido, (quale la parete

Dettagli

Appunti di elettromagnetismo

Appunti di elettromagnetismo Appunti di elettromagnetismo Andrea Biancalana ottobre 1999 1 Magneti e correnti elettriche Magneti: esistono materiali che manifestano interazioni non-gravitazionali e non-elettriche; caratteristica dei

Dettagli

Principio di inerzia

Principio di inerzia Dinamica abbiamo visto come si descrive il moto dei corpi (cinematica) ma oltre a capire come si muovono i corpi è anche necessario capire perchè essi si muovono Partiamo da una domanda fondamentale: qual

Dettagli

Campo magne*co F B. Il verso della forza di deviazione è tale che i vettori F, v, B (in quest ordine) formano una terna destrorsa.

Campo magne*co F B. Il verso della forza di deviazione è tale che i vettori F, v, B (in quest ordine) formano una terna destrorsa. Campo magne*co Il Magne*smo L esistenza di una forza capace di attirare particelle metalliche risale all antica città di Magnesia in Grecia. In quella città ricca di molte miniere di Ferro si osservarono

Dettagli

Sessione ordinaria 08/_2 1 M. Vincoli

Sessione ordinaria 08/_2 1 M. Vincoli Sessione ordinaria 08/_2 1 M. Vincoli Riportiamo nella fig. 1 una rappresentazione in pianta della distribuzione di corrente; indichiamo quindi con y il piano perpendicolare ai due fili e passante per

Dettagli

I.S.I.S.S. A. Giordano Venafro (IS) Appunti di Fisica n. 3

I.S.I.S.S. A. Giordano Venafro (IS) Appunti di Fisica n. 3 I.S.I.S.S. A. Giordano Venafro (IS) 1 Fenomeni Magnetici prof. Valerio D Andrea VB ST - A.S. 2017/2018 Appunti di Fisica n. 3 In natura esiste un minerale che è in grado di attirare oggetti di ferro: la

Dettagli

Energia del campo elettromagnetico

Energia del campo elettromagnetico Energia del campo elettromagnetico 1. Energia 2. Quantità di moto 3. Radiazione di dipolo VII - 0 Energia Come le onde meccaniche, anche le onde elettromagnetiche trasportano energia, anche se non si propagano

Dettagli

CAPITOLO 3 LA LEGGE DI GAUSS

CAPITOLO 3 LA LEGGE DI GAUSS CAPITOLO 3 LA LEGGE DI GAUSS Elisabetta Bissaldi (Politecnico di Bari) - A.A. 2017-2018 2 Premesse TEOREMA DI GAUSS Formulazione equivalente alla legge di Coulomb Trae vantaggio dalle situazioni nelle

Dettagli

MODULO DI ELETTROMAGNETISMO Prova Pre-Esame del 28 GENNAIO 2009 A.A

MODULO DI ELETTROMAGNETISMO Prova Pre-Esame del 28 GENNAIO 2009 A.A MODULO D ELETTROMAGNETSMO Prova Pre-Esame del 28 GENNAO 2009 A.A. 2008-2009 FSCA GENERALE Esercizi FS GEN: Punteggio in 30 esimi 1 8 Fino a 4 punti COGNOME: NOME: MATR: 1. Campo elettrostatico La sfera

Dettagli

Gli esperimenti condotti da Faraday hanno portato a stabilire l esistenza di una forza elettromotrice e quindi di una corrente indotta in un circuito

Gli esperimenti condotti da Faraday hanno portato a stabilire l esistenza di una forza elettromotrice e quindi di una corrente indotta in un circuito Gli esperimenti condotti da Faraday hanno portato a stabilire l esistenza di una forza elettromotrice e quindi di una corrente indotta in un circuito quando: 1) il circuito è in presenza di un campo magnetico

Dettagli

Elementi di Fisica 2CFU

Elementi di Fisica 2CFU Elementi di Fisica 2CFU III parte - Elettromagnetismo Andrea Susa MAGNETISMO 1 Magnete Alcune sostanze naturali, come ad esempio la magnetite, hanno la proprietà di attirare pezzetti di ferro, e per questo

Dettagli

Astrofisica e particelle elementari

Astrofisica e particelle elementari Astrofisica e particelle elementari aa 2007-08 Lezione 5 Bruno Borgia SCOPERTA DEI RAGGI COSMICI (1) Alla fine del 1800 i fisici, studiando la conducibilità dei gas con gli elettroscopi a foglioline d

Dettagli

Elettromagnetismo (4/6) Magnetismo Lezione 22, 18/12/2018, JW ,

Elettromagnetismo (4/6) Magnetismo Lezione 22, 18/12/2018, JW , Elettromagnetismo (4/6) Magnetismo Lezione 22, 18/12/2018, JW 26.1-26.4, 26.6-26.7 1 1. Magneti permanenti Le estremità di una barretta magnetica corrispondono a poli opposti (detti polo nord e polo sud).

Dettagli

Approfondimenti. Rinaldo Rui. ultima revisione: 29 maggio 2019

Approfondimenti. Rinaldo Rui. ultima revisione: 29 maggio 2019 Approfondimenti Rinaldo Rui ultima revisione: 29 maggio 2019 1 Sistemi ermodinamici 1.4 Lezione #4 1.4.2 eoria cinetica dei gas Il metodo statistico consiste nel definire un modello fisico-matematico,

Dettagli

Unità 9. Il campo magnetico

Unità 9. Il campo magnetico Unità 9 Il campo magnetico 1. La forza di Lorentz Se un fascio catodico è in un campo magnetico: La forza di Lorentz Gli elettroni risentono di una forza magnetica anche se non sono in un filo metallico;

Dettagli

Esercitazione 1 Legge di Ohm, induzione elettromagnetica, leggi di conservazione

Esercitazione 1 Legge di Ohm, induzione elettromagnetica, leggi di conservazione Esercitazione 1 Legge di Ohm, induzione elettromagnetica, leggi di conservazione March 15, 2016 1 Legge di Ohm 1.1 Gusci sferici concentrici Griffiths problema 7.1 Due gusci metallici sferici e concentrici,

Dettagli

c. In entrambi i casi si tratta di superfici chiuse: per il teorema di Gauss, Φ ( B

c. In entrambi i casi si tratta di superfici chiuse: per il teorema di Gauss, Φ ( B QUESITI 1 Quesito La C. Su ciascuna coppia di lati opposti si crea una coppia di forze uguali e contrarie. La coppia che agisce sui lati paralleli all asse di rotazione fa ruotare la spira fino a quando

Dettagli

OSCILLATORE ARMONICO SEMPLICE

OSCILLATORE ARMONICO SEMPLICE OSCILLATORE ARMONICO SEMPLICE Un oscillatore è costituito da una particella che si muove periodicamente attorno ad una posizione di equilibrio. Compiono moti oscillatori: il pendolo, un peso attaccato

Dettagli

( ) = E i. E i. = πr 2 db. = 1 2 r db

( ) = E i. E i. = πr 2 db. = 1 2 r db II Variazione del campo magnetico vista da un circuito fisso: la presenza di corrente (movimento degli elettroni) richiede l esistenza di un campo elettrico indotto E i. ε i = E i ds = dφ B dt N.B. il

Dettagli

Problema (tratto dal 7.42 del Mazzoldi 2)

Problema (tratto dal 7.42 del Mazzoldi 2) Problema (tratto dal 7.4 del azzoldi Un disco di massa m D e raggio R ruota attorno all asse verticale passante per il centro con velocità angolare costante ω. ll istante t 0 viene delicatamente appoggiata

Dettagli

Notiamo che, per una massa che rotorivoluisca sull orbita senza scorrimento, per la componente giroscopica, con V n. v p

Notiamo che, per una massa che rotorivoluisca sull orbita senza scorrimento, per la componente giroscopica, con V n. v p Natura fisica ed espressione della forza di Lorentz, calcolo del campo magnetico nucleare Abbiamo visto che, se applichiamo il principio di conservazione del momento angolare nello spazio, se la massa

Dettagli

Lezione 16 Geometrie toroidali di confinamento magnetico

Lezione 16 Geometrie toroidali di confinamento magnetico Lezione 16 Geometrie toroidali di confinamento magnetico G. osia Universita di Torino G. osia - Fisica del plasma confinato Lezione 16 1 Geometria toroidale I più moderni sistemi di confinamento magnetico

Dettagli

Prova Scritta di Elettricità e Magnetismo e di Elettromagnetismo A. A Febbraio 2008 (Proff. F.Lacava, C.Mariani, F.Ricci, D.

Prova Scritta di Elettricità e Magnetismo e di Elettromagnetismo A. A Febbraio 2008 (Proff. F.Lacava, C.Mariani, F.Ricci, D. Prova Scritta di Elettricità e Magnetismo e di Elettromagnetismo A. A. 2006-07 - 1 Febbraio 2008 (Proff. F.Lacava, C.Mariani, F.Ricci, D.Trevese) Modalità: - Prova scritta di Elettricità e Magnetismo:

Dettagli

CAPITOLO 1 ELETTROSTATICA

CAPITOLO 1 ELETTROSTATICA CAPITOLO 1 1.1 Introduzione Nell elettromagnetismo studieremo fenomeni elettrici e magnetici che rappresentano un altra interazione fondamentale della natura (dopo quella gravitazionale che abbiamo visto

Dettagli

Fenomeni Magnetici. Campo Magnetico e Forza di Lorentz. Moto di cariche in campo magnetico. Momento e campo magnetico di una spira.

Fenomeni Magnetici. Campo Magnetico e Forza di Lorentz. Moto di cariche in campo magnetico. Momento e campo magnetico di una spira. Fenomeni Magnetici Campo Magnetico e Forza di Lorentz Moto di cariche in campo magnetico Momento e campo magnetico di una spira Legge di Ampère Solenoide Campo Magnetico I fenomeni magnetici possono essere

Dettagli

Le osservazioni e i modelli: update

Le osservazioni e i modelli: update Disclaimer: credits given in the first presentation of this series Le osservazioni e i modelli: update n La quantità di moto (mv) si conserva sempre nelle interazioni! d! F = ( mv) dl = 0 dt ds = Q ε 0

Dettagli

Compito n Descrivere i fenomeni d urto secondo le leggi della fisica classica. Descrivere l evoluzione di questo fenomeno nella fisica moderna.

Compito n Descrivere i fenomeni d urto secondo le leggi della fisica classica. Descrivere l evoluzione di questo fenomeno nella fisica moderna. Compito n.1 1. Descrivere i fenomeni d urto secondo le leggi della fisica classica. Descrivere l evoluzione di questo fenomeno nella fisica moderna.. Fenomeni elettrici e magnetici dipendenti dal tempo:

Dettagli

Campo magnetico. in direzione uscente dalla pagina. in direzione entrante nella pagina

Campo magnetico. in direzione uscente dalla pagina. in direzione entrante nella pagina Campo magnetico 1. Due fili rettilinei indefiniti, disposti perpendicolarmente come in figura, sono percorsi da correnti uguali nel verso indicato. I fili sono disposti praticamente sullo stesso piano

Dettagli

P = r. o + r. O + ω r (1)

P = r. o + r. O + ω r (1) 1 5.1-MOTI RELATIVI Parte I 5.1-Moti relativi-cap5 1 5.1-Moti relativi Teorema delle velocità relative Riprendiamo l impostazione tracciata nel paragrafo 2.6 (moti relativi 2-D) e consideriamo un sistema

Dettagli

Derivata materiale (Lagrangiana) e locale (Euleriana)

Derivata materiale (Lagrangiana) e locale (Euleriana) ispense di Meccanica dei Fluidi 0 0 det 0 = [ (0 ) + ( ( ) ) + (0 0 ) ] = 0. Pertanto, v e µ sono indipendenti tra loro e costituiscono una nuova base. Con essi è possibile descrivere altre grandezze,

Dettagli

Teoria cinetica di un sistema di particelle

Teoria cinetica di un sistema di particelle Teoria cinetica di un sistema di particelle La meccanica dei fluidi modellati come sistemi continui, sviluppata dal XII e XIII secolo e in grado di descrivere fenomeni dinamici macroscopici con buona approssimazione

Dettagli

Esercizio: pendolo sferico. Soluzione

Esercizio: pendolo sferico. Soluzione Esercizio: pendolo sferico Si consideri un punto materiale di massa m vincolato a muoversi senza attrito sulla superficie di una sfera di raggio R e soggetto alla forza di gravita. Ridurre il moto alle

Dettagli

Magnete. Campo magnetico. Fenomeni magnetici. Esempio. Esempio. Che cos è un magnete? FENOMENI MAGNETICI

Magnete. Campo magnetico. Fenomeni magnetici. Esempio. Esempio. Che cos è un magnete? FENOMENI MAGNETICI Magnete FENOMENI MAGNETICI Che cos è un magnete? Un magnete è un materiale in grado di attrarre pezzi di ferro Prof. Crosetto Silvio 2 Prof. Crosetto Silvio Quando si avvicina ad un pezzo di magnetite

Dettagli

Esercizi aprile Sommario Conservazione dell energia e urti a due corpi.

Esercizi aprile Sommario Conservazione dell energia e urti a due corpi. Esercizi 2.04.8 3 aprile 208 Sommario Conservazione dell energia e urti a due corpi. Conservazione dell energia. Esercizio Il motore di un ascensore solleva con velocità costante la cabina contenente quattro

Dettagli

Compito di Fisica 2 Ingegneria Elettronica e delle Telecomunicazioni 18 Gennaio 2018

Compito di Fisica 2 Ingegneria Elettronica e delle Telecomunicazioni 18 Gennaio 2018 Compito di Fisica Ingegneria Elettronica e delle Telecomunicazioni 18 Gennaio 018 1 Una distribuzione volumetrica di carica a densità volumetrica costante = + 4 10-6 C/m 3 si + + + + + + estende nella

Dettagli

Prova scritta del corso di Fisica con soluzioni. Prof. F. Ricci-Tersenghi 14/11/2014

Prova scritta del corso di Fisica con soluzioni. Prof. F. Ricci-Tersenghi 14/11/2014 Prova scritta del corso di Fisica con soluzioni Prof. F. icci-tersenghi 14/11/214 Quesiti 1. Si deve trascinare una cassa di massa m = 25 kg, tirandola con una fune e facendola scorrere su un piano scabro

Dettagli

ESAME DI FISICA II- Sessione 16/07/2013 Compito per l Ordinamento 270 e i VV.OO.

ESAME DI FISICA II- Sessione 16/07/2013 Compito per l Ordinamento 270 e i VV.OO. ESAME DI FISICA II- Sessione 16/07/2013 Compito per l Ordinamento 270 e i VV.OO. PROBLEMA 1 Una lastra di dielettrico (a=b=1 cm; spessore 0.1 cm), in cui si misura un campo elettrico di 10 3 V.m -1, presenta

Dettagli

69.8/3 = 23.2 = 23 automobili

69.8/3 = 23.2 = 23 automobili Meccanica 19 Aprile 2017 Problema 1 (1 punto) Una moto salta una fila di automobili di altezza h= 1.5 m e lunghezza l=3m ciascuna. La moto percorre una rampa che forma con l orizzontale un angolo = 30

Dettagli

V = qvb R. CICLOTRONE - Lawrence, 1932! B

V = qvb R. CICLOTRONE - Lawrence, 1932! B CICLOTRONE - Lawrence, 1932! B Ciclotrone nei Laboratori Nazionali INFN di Legnaro (PD) Ciclotrone: gli ioni accelerati effettuano traiettorie con raggio crescente => il campo magnetico occupa tutto lo

Dettagli

a/2+l/2 a/2-l/2 -a/2+l/2 -a/2-l/2

a/2+l/2 a/2-l/2 -a/2+l/2 -a/2-l/2 Esame scritto di Elettromagnetismo del 17 Giugno 014 - a.a. 013-014 proff. F. Lacava, F. icci, D. Trevese Elettromagnetismo 10 o 1 crediti: esercizi 1,,3 tempo 3 h e 30 min; ecupero di un esonero: esercizi

Dettagli

x : p x,i = 2 MV 0 = MV 3 cosθ MV 4 cosθ 4 = p x,f y : p y,i = 0 = MV 3 sinθ 3 3 MV 4 sinθ 4 = p x,f

x : p x,i = 2 MV 0 = MV 3 cosθ MV 4 cosθ 4 = p x,f y : p y,i = 0 = MV 3 sinθ 3 3 MV 4 sinθ 4 = p x,f Esercizio 1 Il corpo 1 e il corpo 2, entrambi considerabili come puntiformi, si trovano su un piano orizzontale xy privo di attrito. Inizialmente, rispetto al sistema di riferimento inerziale x y, il corpo

Dettagli

Misure di campi magnetici: bobine di Helmholtz e solenoidi

Misure di campi magnetici: bobine di Helmholtz e solenoidi Misure di campi magnetici: bobine di Helmholtz e solenoidi - S.S., 12 Settembre 2007 - Per il calcolo del campo magnetico prodotto da una corrente che fluisce in un circuito di forma nota è utile servirsi

Dettagli

Il candidato descriva in generale l importanza delle leggi di conservazione in fisica e successivamente discuta l applicazione di una di queste leggi.

Il candidato descriva in generale l importanza delle leggi di conservazione in fisica e successivamente discuta l applicazione di una di queste leggi. Il candidato descriva in generale l importanza delle leggi di conservazione in fisica e successivamente discuta l applicazione di una di queste leggi. Una legge di conservazione è un'espressione matematicamente

Dettagli

RISOLUZIONE DI PROBLEMI DI FISICA

RISOLUZIONE DI PROBLEMI DI FISICA RISOUZIONE DI PROBEMI DI FISICA Problema 1 Una massa puntiforme m = 2 kg è soggetta ad una forza centrale con associata energia potenziale radiale U( r) 6 A =, dove A = 2 J m 6. Il momento angolare della

Dettagli

QUARTO APPELLO FISICA GENERALE T-2, Prof. G. Vannini Corso di Laurea in Ingegneria Elettrica e dell Automazione

QUARTO APPELLO FISICA GENERALE T-2, Prof. G. Vannini Corso di Laurea in Ingegneria Elettrica e dell Automazione UARTO APPELLO 11092017 FISICA GENERALE T-2, Prof G Vannini Corso di Laurea in Ingegneria Elettrica e dell Automazione ESERCIZIO 1 Una sfera conduttrice di raggio R1 = 2 cm e carica = 1 mc è circondata

Dettagli

Grandezze angolari. Lineare Angolare Relazione x θ x = rθ. m I I = mr 2 F N N = rf sin θ 1 2 mv2 1

Grandezze angolari. Lineare Angolare Relazione x θ x = rθ. m I I = mr 2 F N N = rf sin θ 1 2 mv2 1 Grandezze angolari Lineare Angolare Relazione x θ x = rθ v ω v = ωr a α a = αr m I I = mr 2 F N N = rf sin θ 1 2 mv2 1 2 Iω 2 Energia cinetica In forma vettoriale: v = ω r questa collega la velocità angolare

Dettagli

Campo magnetico e forza di Lorentz (II)

Campo magnetico e forza di Lorentz (II) Campo magnetico e forza di Lorentz (II) Moto di particelle cariche in un campo magnetico Seconda legge elementare di Laplace Principio di equivalenza di Ampere Effetto Hall Galvanometro Moto di una particella

Dettagli

Indice 3. Note di utilizzo 9. Ringraziamenti 10. Introduzione 11

Indice 3. Note di utilizzo 9. Ringraziamenti 10. Introduzione 11 Indice Indice 3 Note di utilizzo 9 Ringraziamenti 10 Introduzione 11 Capitolo 1 Grandezze fisiche e schematizzazione dei sistemi materiali 13 1.1 Grandezze fisiche ed operazione di misura 13 1.2 Riferimento

Dettagli

Fenomenologia Forza magnetica su carica in moto e definizione di campo magnetico Forza magnetica su conduttore percorso da corrente

Fenomenologia Forza magnetica su carica in moto e definizione di campo magnetico Forza magnetica su conduttore percorso da corrente CAMPO MAGNETICO Fenomenologia Forza magnetica su carica in moto e definizione di campo magnetico Forza magnetica su conduttore percorso da corrente INTERAZIONI MAGNETICHE Le proprietà magnetiche di alcuni

Dettagli

Il campo magnetico. Non esiste la carica magnetica (monopoli magnetici) Due modi per creare campi magnetici: elettromagnete:

Il campo magnetico. Non esiste la carica magnetica (monopoli magnetici) Due modi per creare campi magnetici: elettromagnete: Il campo magnetico Non esiste la carica magnetica (monopoli magnetici) Due modi per creare campi magnetici: elettromagnete: correnti elettrici creano campo magnetici magneti permanenti (calamiti) ogni

Dettagli

CAPITOLO 7 SORGENTI DEL CAMPO MAGNETICO LEGGE DI AMPERE PROPRIETÀ MAGNETICHE DELLA MATERIA

CAPITOLO 7 SORGENTI DEL CAMPO MAGNETICO LEGGE DI AMPERE PROPRIETÀ MAGNETICHE DELLA MATERIA CAPITOLO 7 SORGENTI DEL CAMPO MAGNETICO LEGGE DI AMPERE PROPRIETÀ MAGNETICHE DELLA MATERIA Elisabetta Bissaldi (Politecnico di Bari) - A.A. 2017-2018 2 Campo magnetico prodotto da una corrente Si consideri

Dettagli

σ int =. σ est = Invece, se il guscio è collegato a massa, la superficie esterna si scarica e la densità di carica σ est è nulla. E =.

σ int =. σ est = Invece, se il guscio è collegato a massa, la superficie esterna si scarica e la densità di carica σ est è nulla. E =. Esercizio 1 a) Poiché la carica è interamente contenuta all interno di una cavità circondata da materiale conduttore, si ha il fenomeno dell induzione totale. Quindi sulla superficie interna della sfera

Dettagli

Compito del 7 luglio 2014

Compito del 7 luglio 2014 Compito del 7 luglio 04 Ottica geometrica Un occhio miope può solo mettere a fuoco oggetti a distanza finita o R (punto remoto dell occhio). Schematizziamo un occhio miope con una lente convergente di

Dettagli

Prova Scritta di di Meccanica Analitica

Prova Scritta di di Meccanica Analitica Prova Scritta di di Meccanica Analitica 7 gennaio 015 Problema 1 Un punto di massa unitaria si muove sull asse x soggetto al potenziale V (x) = x e x a) Determinare le posizioni di equilibrio e la loro

Dettagli

Campo magnetico terrestre

Campo magnetico terrestre Magnetismo Vicino a Magnesia, in Asia Minore, si trovava una sostanza capace di attrarre il ferro Due sbarrette di questo materiale presentano poli alle estremità, che si attraggono o si respingono come

Dettagli

Forze su cariche nei fili: il motore elettrico

Forze su cariche nei fili: il motore elettrico Forze su cariche nei fili: il motore elettrico In presenza di un campo magnetico B, un tratto di filo (d l) percorsa da una corrente i è soggetto ad una forza F = id l B. Un tratto rettilineo di filo di

Dettagli

Oscillazioni. Si produce un oscillazione quando un sistema viene perturbato rispetto a una posizione di equilibrio stabile

Oscillazioni. Si produce un oscillazione quando un sistema viene perturbato rispetto a una posizione di equilibrio stabile Oscillazioni Si produce un oscillazione quando un sistema viene perturbato rispetto a una posizione di equilibrio stabile Caratteristica più evidente del moto oscillatorio è di essere un moto periodico,

Dettagli

Comune ordine di riempimento degli orbitali di un atomo

Comune ordine di riempimento degli orbitali di un atomo Comune ordine di riempimento degli orbitali di un atomo Le energie relative sono diverse per differenti elementi ma si possono notare le seguenti caratteristiche: (1) La maggior differenza di energia si

Dettagli

Legge di Faraday. x x x x x x x x x x E x x x x x x x x x x R x x x x x x x x x x. x x x x x x x x x x. x x x x x x x x x x E B 1 Φ B.

Legge di Faraday. x x x x x x x x x x E x x x x x x x x x x R x x x x x x x x x x. x x x x x x x x x x. x x x x x x x x x x E B 1 Φ B. Φ ε ds ds dφ = dt Legge di Faraday E x x x x x x x x x x E x x x x x x x x x x R x x x x x x x x x x 1 x x x x x x x x x x E x x x x x x x x x x E Schema Generale Elettrostatica moto di q in un campo E

Dettagli

O + ω r (1) Due casi sono fondamentali (gli altri si possono pensare una sovrapposizione di questi due:

O + ω r (1) Due casi sono fondamentali (gli altri si possono pensare una sovrapposizione di questi due: 1 5.1-MOTI RELATIVI Parte I 5.1-Moti relativi-cap5 1 5.1-Moti relativi Teorema delle velocità relative Riprendiamo l impostazione tracciata nel paragrafo 2.6 (moti relativi 2-D) e consideriamo un sistema

Dettagli

QUINTA LEZIONE: corrente elettrica, legge di ohm, carica e scarica di un condensatore, leggi di Kirchoff

QUINTA LEZIONE: corrente elettrica, legge di ohm, carica e scarica di un condensatore, leggi di Kirchoff QUINTA LEZIONE: corrente elettrica, legge di ohm, carica e scarica di un condensatore, leggi di Kirchoff Esercizio Un conduttore cilindrico in rame avente sezione di area S = 4mm è percorso da una corrente

Dettagli

Sezione d urto classica

Sezione d urto classica Capitolo Sezione d urto classica In meccanica classica, ogni particella del fascio incidente segue una traiettoria ben definita sotto l azione del potenziale. Se V (r) è centrale, il momento angolare è

Dettagli

Meccanica quantistica (5)

Meccanica quantistica (5) Meccanica quantistica (5) 0/7/14 1-MQ-5.doc 0 Oscillatore armonico Se una massa è sottoposta ad una forza di richiamo proporzionale allo spostamento da un posizione di equilibrio F = kx il potenziale (

Dettagli

Campi magnetici generati da corrente

Campi magnetici generati da corrente Campi magnetici generati da corrente E noto che una particella carica in moto genera un campo magnetico nella zona circostante. Vediamo ora come calcolare il campo magnetico generato da una corrente. Suddividiamo

Dettagli

Lezione 12 - Azione a distanza

Lezione 12 - Azione a distanza Lezione 12 - Azione a distanza Immaginiamo di disporre di un corpo puntiforme con carica q 1 e di mettere nelle sue vicinanze un secondo corpo con carica q 2 In base alla legge di Coulomb possiamo affermare

Dettagli

Dati numerici: f = 200 V, R 1 = R 3 = 100 Ω, R 2 = 500 Ω, C = 1 µf.

Dati numerici: f = 200 V, R 1 = R 3 = 100 Ω, R 2 = 500 Ω, C = 1 µf. ESERCIZI 1) Due sfere conduttrici di raggio R 1 = 10 3 m e R 2 = 2 10 3 m sono distanti r >> R 1, R 2 e contengono rispettivamente cariche Q 1 = 10 8 C e Q 2 = 3 10 8 C. Le sfere vengono quindi poste in

Dettagli

Fisica Main Training Lorenzo Manganaro

Fisica Main Training Lorenzo Manganaro Fisica Main Training 2016-2017 Lorenzo Manganaro 1. Campo magnetico e Forza di Lorentz 2. Campo magnetico e corrente elettrica 3. Induzione elettromagnetica 4. Applicazioni 30 25 20 Veterinaria Ottica

Dettagli

Lezione 9 Forze e campi magnetici

Lezione 9 Forze e campi magnetici Lezione 9 Forze e campi magnetici 9.1 Forza di Lorentz Serway, Cap 22 Forza di Lorenz (particella carica) F = q v B Forza di Lorenz (filo rettilineo di lunghezza l percorso da corrente I) F = I l B Legge

Dettagli

La quantità di moto. Il masso ha più quantità di moto della persona in fuga.

La quantità di moto. Il masso ha più quantità di moto della persona in fuga. La quantità di moto Il masso ha più quantità di moto della persona in fuga. La quantità di moto La quantità di moto: esprime l inerzia nel movimento, cioè la difficoltà di fermare un oggetto in movimento

Dettagli

CAPITOLO 4: DINAMICA DEI SISTEMI DI PUNTI MATERIALI:

CAPITOLO 4: DINAMICA DEI SISTEMI DI PUNTI MATERIALI: CAPITOLO 4: DINAMICA DEI SISTEMI DI PUNTI MATERIALI: 4.1 Il centro di massa. Nel precedente capitolo si è parlato ampiamente della dinamica di un punto materiale, ossia di quel ramo della meccanica che

Dettagli