Prof. Emanuele ANDRISANI
|
|
|
- Domenica Ricciardi
- 9 anni fa
- Visualizzazioni
Transcript
1 Potenze con esponente razionale Sia a > 0 e a 1. Abbiamo definito a x quando x N. Poniamo a 0 = 1 a x = a m n = n a m se x = m n Q, x > 0, m, n N a x = 1 a x se x Q, x > 0. È così definita la potenza a x, per ogni x Q. 1
2 Proprietà delle potenze con esponente razionale Sia a > 0, a 1, x, y Q; valgono le seguenti proprietà: 1. a x > 0, per ogni x Q 2. a x+y = a x a y 3. (a x ) y = a xy 4. (a b) x = a x b x 5. se a > 1 vale: 6. se 0 a 1 vale: x y a x a y x y a x a y OSSERVAZIONE a = 1 1 x = 1, per ogni x Q 2
3 Esercizio Calcolare A) 16 3 B)4 C) 1 12 D) 64 3 E)12 La risposta è alla pagina successiva. 3
4 Esercizio Calcolare A) 16 3 B)4 C) 1 12 D) 64 3 E)12 B) = = = 2 2 = 4 RISULTATO 4
5 Esercizio Semplificare A) (2 3 ) 2 3 B) (a 9 ) 2 3, a > 0 C) (c2) 5 3, 2 c > 0 La risposta è alla pagina successiva. 5
6 Esercizio Semplificare A) (2 3 ) 2 3 B) (a 9 ) 2 3, a > 0 C) (c2) 5 3, 2 c > 0 RISULTATO A) 2 2 B) a 6 C) c 5 3 6
7 Esercizio Calcolare (0, ) 1 3 La risposta è alla pagina successiva. 7
8 Esercizio Calcolare (0, ) 1 3 ( 64 ) ( = 6 ) RISULTATO = = = ( ) = 5 2 = 25 8
9 Esercizio Se c 3 2 = 27, calcolare il valore di c La risposta è alla pagina successiva. 9
10 Esercizio Se c 3 2 = 27, calcolare il valore di c RISULTATO 2 c3 = 27 c 3 = 27 2 c = = = 3 (3 2 ) 3 = 9. 10
11 Logaritmo Se a > 0, a 1 e x > 0 definiamo il logaritmo in base a di x nella maniera seguente: y R è il logaritmo in base a di x, cioè y = log a x, se y è tale che a y = x. OSSERVAZIONE: Spesso con le notazioni ln x o log x si indica il logaritmo naturale la cui base è il numero di Nepero e = Con la notazione Log x si indica invece il logaritmo decimale la cui base è il numero
12 Proprietà del logaritmo Valgono le seguenti proprietà per ogni x, y > 0, a > 0, a 1 a log a x = x, log a a x = x log a (x y) = log a x + log a y log a x y = log a x log a y log a x α = α log a x, α R log a x = log b x, b > 0, b 1 (cambiamento di base) log b a se a > 1 vale: se 0 < a < 1 vale: 0 < x y log a x log a y 0 < x y log a x log a y 12
13 Esempi log = 3 (poiché 3 3 = 1 27 ) log1 16 = 4 2 log 5 x = 2 x = 1 25 Verificare che log = 1 2 (1 + log 5 2). Si ha log = log 5 10 log 5 25 (cambio di base) = 1 2 log 5(5 2) = 1 2 (log log 5 2) = 1 2 (1 + log 5 2) 13
14 Esercizio Calcolare log 2 16 A) 4 B) 8 C) 32 D) 16 2 E) 2 16 La risposta è alla pagina successiva. 14
15 Esercizio Calcolare log 2 16 A) 4 B) 8 C) 32 D) 16 2 E) 2 16 A) log 2 16 = 4; infatti 2 4 = 16 RISULTATO 15
16 Esercizio Calcolare log 10 ( 100) A) 2 B) -2 C) 10 D) non definito E) -10 La risposta è alla pagina successiva. 16
17 Esercizio Calcolare log 10 ( 100) A) 2 B) -2 C) 10 D) non definito E) -10 RISULTATO D) Discende dalla definizione di logaritmo 17
18 Esercizio Il logaritmo di x in base 7: log 7 x = y è un numero y tale che A) y 7 = x B) x 7 = y C) 10 y = 7 D) 7 y = x E) y x = 7 La risposta è alla pagina successiva. 18
19 Esercizio Il logaritmo di x in base 7: log 7 x = y è un numero y tale che A) y 7 = x B) x 7 = y C) 10 y = 7 D) 7 y = x E) y x = 7 D) RISULTATO 19
20 Esercizio log log 10 3 = A) log 10 (4 3) B) log 10 (4 + 3) ( C) log 4 ) 10 3 D) log 10 (4 3 ) E) è un numero diverso da quelli delle precedenti risposte La risposta è alla pagina successiva. 20
21 Esercizio log log 10 3 = A) log 10 (4 3) B) log 10 (4 + 3) ( C) log 4 ) 10 3 D) log 10 (4 3 ) E) è un numero diverso da quelli delle precedenti risposte A) RISULTATO 21
22 Esercizio Calcolare log log log log 10 0, 1 La risposta è alla pagina successiva. 22
23 Esercizio Calcolare log log log log 10 0, 1 RISULTATO log log log log 10 0, 1 = log log log log = = 2 [ = log10 ( ) = log = 2 ] 23
24 Esercizio Se è log n 11 = 0, 5, calcolare il valore di n La risposta è alla pagina successiva. 24
25 Esercizio Se è log n 11 = 0, 5, calcolare il valore di n SOLUZIONE n 0,5 = 11 n 5 10 = 11 n 1 2 = 11 n = 11 2 =
26 Esercizio Quante cifre ha il numero nella rappresentazione decimale? (si tenga conto che log 10 3 = 0, ) La risposta è alla pagina successiva. 26
27 Esercizio Quante cifre ha il numero nella rappresentazione decimale? (si tenga conto che log 10 3 = 0, ) SOLUZIONE Il numero sarà un intero che avrà n cifre decimali. Allora: 10 n < 10 n (n 1) log log 10 3 < n log (n 1) 100 0, < n (n 1) 47, 77.. < n n = 48 27
Le proprietà che seguono valgono x, y > 0, a > 0 a 1, e b qualsiasi. Da queste si possono anche dedurre le seguenti uguaglianze log a 1 = 0
Corso di Potenziamento a.a. 009/00 I Logaritmi Fissiamo un numero a > 0, a. Dato un numero positivo t, l equazione a x = t ammette un unica soluzione x che si chiama logaritmo in base a di t e si scrive
PreCorso di Matematica - PCM Corso A
PreCorso di Matematica - PCM Corso A DOCENTE: M. Auteri Numeri positi e negativi..... 6 5 4 3 2 1 0 1 2 3 4 5 6..... 0 2, 4, 5 2.14, 3.76, 21.9351-2, -4, -5-2.43, -12.54, -17.9136 Docente: Auteri, PreCorso
Potenze reali, esponenziali e logaritmi
Potenze reali, esponenziali e logaritmi Lezione per Studenti di Agraria Università di Bologna (Università di Bologna) Potenze reali, esponenziali e logaritmi 1 / 14 Potenza ad esponente intero positivo
Funzione Esponenziale
Funzione Esponenziale y y O f : R (0,+ ), f(x) = a x con a > a 0 =, a = a a x > 0 x R strettamente crescente: x < x 2 a x < ax 2 se x tende a +, a x tende a + se x tende a, a x tende a 0 x O f : R (0,+
Equazioni esponenziali e logaritmi
Copyright c 2008 Pasquale Terrecuso Tutti i diritti sono riservati. Equazioni esponenziali e logaritmi 2 equazioni esponenziali..................................................... 3 casi particolari............................................................
FUNZIONI LOGARITMICHE
La funzione f: R R + dove f(x) = b x b>0, b 1, è invertibile. La funzione inversa si chiama logaritmo in base b log b : R + R, essendo la funzione inversa si ha log b (b x ) = x b log b x = x In particolare
MATEMATICA DI BASE 1
MATEMATICA DI BASE 1 Francesco Oliveri Dipartimento di Matematica, Università di Messina 30 Agosto 2010 MATEMATICA DI BASE MODULO 1 Insiemi Logica Numeri Insiemi Intuitivamente, con il termine insieme
1.3. Logaritmi ed esponenziali
1.3. Logaritmi ed esponenziali 1. Rappresentazione sugli assi cartesiani 2. Relazione 3. Definizione di funzione 4. La funzione esponenziale 5. Il logaritmo 6. La funzione logaritma 1-3 1 Rappresentazione
Potenze, esponenziali e logaritmi 1 / 34
Potenze, esponenziali e logaritmi / 34 Grafico della funzione x 2 e x 2 / 34 y f(x)=x 2 y=x f (x)= x x Le funzioni potenza 3 / 34 Più in generale, si può considerare, per n N, n>0, n pari, la funzione
ESERCITAZIONE: ESPONENZIALI E LOGARITMI
ESERCITAZIONE: ESPONENZIALI E LOGARITMI e-mail: [email protected] web: www.dm.unipi.it/ tommei Esercizio 1 In una coltura batterica, il numero di batteri triplica ogni ora. Se all inizio dell osservazione
Equazione esponenziale a x = b con 0<a<1 oppure a>1; x R; b>0
Equazione esponenziale a x = b con 00 Proprietà delle potenze: a n. b n = ( a. b ) n a n : b n = ( a : b ) n a n. a m = a n+m a n : a m = a n-m ( a n ) m = a n a n/m n a = a -n/m
( x) Definizione: si definisce dominio (o campo di esistenza) di una funzione f ( x) l insieme dei valori
Definizione: si definisce dominio (o campo di esistenza) di una funzione f ( ) l insieme dei valori che la variabile può assumere affinché la funzione f ( ) abbia significato. Vediamo di individuare alcune
FUNZIONE LOGARITMO. =log,, >0, 1 : 0,+ log
FUNZIONE LOGARITMO =log,,>0, 1 : 0,+ log a è la base della funzione logaritmo ed è una costante positiva fissata e diversa da 1 x è l argomento della funzione logaritmo e varia nel dominio Funzione logaritmo
2 Logaritmi Definizione di logaritmo Proprietà dei logaritmi Soluzioni degli esercizi 10
POTENZE E RADICALI Potenze, Radicali e Logaritmi Indice Potenze e Radicali. Potenze con esponente naturale......................................... Potenze con esponente intero..........................................
LOGARITMI. Corso di laurea: BIOLOGIA Tutor: Floris Marta; Max Artizzu PRECORSI DI MATEMATICA. L uguaglianza: a x = b
Corso di laurea: BIOLOGIA Tutor: Floris Marta; Max Artizzu PRECORSI DI MATEMATICA LOGARITMI L uguaglianza: a x = b nella quale a e b rappresentano due numeri reali noti ed x un incognita, è un equazione
Nel Sistema Internazionale l unità di misura dell angolo è il radiante
Scienze Motorie Grandezze fisiche Il Sistema Internazionale di Unità di Misura 1) Nel Sistema Internazionale il prefisso Giga equivale a a) 10 15 b) 10 12 c) 10 9 d) 10 6 e) 10 3 Nel Sistema Internazionale
COMPENDIO ESPONENZIALI LOGARITMI
TORINO SETTEMBRE 2010 COMPENDIO DI ESPONENZIALI E LOGARITMI di Bart VEGLIA 1 ESPONENZIALi 1 Equazioni esponenziali Un espressione in cui l incognita compare all esponente di una o più potenze si chiama
In altri termini, il logaritmo in base a di b è quel numero c tale per cui a elevato a c è uguale a b. In simboli
LOGARITMO Il logaritmo è un operatore matematico indicato generalmente con loga(b); detta a la base e b l'argomento, il logaritmo in base a di b è definito come l'esponente a cui elevare la base per ottenere
Proprietà dei logaritmi e problemi. Daniela Valenti, Treccani Scuola 1
Proprietà dei logaritmi e problemi 1 Attività 2. Proprietà dei logaritmi e problemi Manca un problema da risolvere: calcolare i logaritmi in una base diversa da 10. È il primo problema che risolverete
Funzioni Pari e Dispari
Una funzione f : R R si dice Funzioni Pari e Dispari PARI: se f( ) = f() R In questo caso il grafico della funzione è simmetrico rispetto all asse DISPARI: se f( ) = f() R In questo caso il grafico della
Concentrazioni. concentrazione peso della soluzione
Concentrazioni Una soluzione è un sistema omogeneo prodotto dallo scioglimento di una sostanza solida, liquida o gassosa (soluto), in un opportuno liquido (solvente). Definiamo concentrazione di una soluzione
Funzioni Esponenziale e Logaritmica. Prof. Simone Sbaraglia
Funzioni Esponenziale e Logaritmica Prof. Simone Sbaraglia Funzione Esponenziale Vogliamo definire propriamente le funzioni esponenziali e logaritmiche che abbiamo introdotto in precedenza. Qual e` il
Primo modulo: Aritmetica
Primo modulo: Aritmetica Obiettivi 1. ordinamento e confronto di numeri;. riconoscere la rappresentazione di un numero in base diversa dalla base 10; 3. conoscere differenza tra numeri razionali e irrazionali;
Breve formulario di matematica
Luciano Battaia a 2 = a ; lim sin = 1, se 0; sin(α + β) = sin α cos β + cos α sin β; f() = e 2 f () = 2e 2 ; sin d = cos + k; 1,2 = b± ; a m a n = 2a a n+m ; log a 2 = ; = a 2 + b + c; 2 + 2 = r 2 ; e
35 è congruo a 11 modulo 12
ARITMETICA MODULARE Scegliamo un numero m che chiameremo MODULO Identifichiamo ogni altro numero con il suo resto nella divisione per m Tutti i numeri col medesimo resto si trovano insieme nella classe
Esercizi di matematica della Scuola Secondaria
Esercizi di matematica della Scuola Secondaria 1. Quale é il risultato corretto della seguente operazione aritmetica? (dare la risposta senza eseguire la moltiplicazione) X = 23, 45 0, 0123 (A) X = 0,
Anno 3. Funzioni esponenziali e logaritmi: le 4 operazioni
Anno 3 Funzioni esponenziali e logaritmi: le 4 operazioni 1 Introduzione In questa lezione impareremo a conoscere le funzioni esponenziali e i logaritmi; ne descriveremo le principali caratteristiche e
Esponenziali elogaritmi
Esponenziali elogaritmi Potenze ad esponente reale Ricordiamo che per un qualsiasi numero razionale m n prendere n>0) si pone a m n = n a m (in cui si può sempre a patto che a sia un numero reale positivo.
R. Capone Analisi Matematica Limiti di una funzione reale di variabile reale ESERCIZI SUI LIMITI DI FUNZIONE ( )
Esercizio proposto N 1 Verificare che ESERCIZI SUI LIMITI DI FUNZIONE Si ricordi la definizione di ite finito in un punto: Pertanto, applicando la definizione al caso concreto, si ha: o, ciò che è lo stesso:
Campo di Esistenza. Il campo di esistenza di una funzione f è il dominio più grande su cui ha significato la legge f.
Campo di Esistenza Il campo di esistenza di una funzione f è il dominio più grande su cui ha significato la legge f. ESERCIZIO. Determinare il campo di esistenza della funzione f(x) = 9+2x. Soluzione:
Le Funzioni. Modulo Esponenziali Logaritmiche. Prof.ssa Maddalena Dominijanni
Le Funzioni Modulo Esponenziali Logaritmiche Definizione di modulo o valore assoluto Se x è un generico numero reale, il suo modulo o valore assoluto è: x = x se x 0 -x se x
Esercitazioni di Matematica
Università degli Studi di Udine Anno Accademico 009/00 Facoltà di Agraria Corsi di Laurea in VIT e STAL Esercitazioni di Matematica novembre 009 Trovare le soluzioni della seguente disequazione: x + +
CORSO DI AZZERAMENTO DI MATEMATICA
CORSO DI AZZERAMENTO DI MATEMATICA 1 LE BASI FONDAMENTALI INSIEMI INSIEMI NUMERICI (naturali, interi, razionali e reali) CALCOLO LETTERALE RICHIAMI DI TRIGONOMETRIA I NUMERI COMPLESSI ELEMENTI DI GEOMETRIA
Rappresentazione di Dati: Scala lineare Scala logaritmica. Grafici Lin Lin Grafici Lin Log Grafici Log Log
Rappresentazione di Dati: Scala lineare Scala logaritmica Grafici Lin Lin Grafici Lin Log Grafici Log Log Grafici in scala lineare Grafici Lin Lin Nella rappresentazione di dati in un piano cartesiano
Soluzioni Esercizi su rappresentazione binaria dell informazione
Soluzioni Esercizi su rappresentazione binaria dell informazione Mauro Bianco 1 Numeri naturali Esercizi: 1. Si calcoli 323 4 + 102 4. Partendo da destra a sinistra 2 4 + 3 4 5 10 4 + 1 10 11 4. La cifra
Sezione Prima Derivate di funzioni elementari: quadro riassuntivo e regole di derivazione. = ( n) lim x
Capitolo USO DELLE DERIVATE IN ECONOMIA Sezione Prima Derivate di funzioni elementari: quadro riassuntivo e regole di derivazione Si definisce derivata della funzione y f() nel punto 0 del suo insieme
Coordinate Cartesiane nel Piano
Coordinate Cartesiane nel Piano O = (0,0) origine degli assi x ascissa, y ordinata sistemi monometrici: stessa unità di misura sui due assi x, y sistemi dimetrici: unità di misura diverse sui due assi
I numeri relativi. Definizioni Rappresentazione Operazioni Espressioni Esercizi. Materia: Matematica Autore: Mario De Leo
I numeri relativi Definizioni Rappresentazione Operazioni Espressioni Esercizi Materia Matematica Autore Mario De Leo Definizioni I numeri relativi sono i numeri preceduti dal simbolo (positivi) o dal
I logaritmi. Cenni storici
1 I logaritmi by Caterina Vespia "Poiché non vi è nulla di più ostico nell applicazione matematica, né che reca maggiori difficoltà nei calcoli, che la moltiplicazione, la divisione, l estrazione di radici
Conversione binario-decimale. Interi unsigned in base 2. Esercitazioni su rappresentazione. dei numeri e aritmetica
Esercitazioni su rappresentazione dei numeri e aritmetica Salvatore Orlando & Marta Simeoni Interi unsigned in base 2 I seguenti numeri naturali sono rappresentabili usando il numero di bit specificato?
Lezione 4. Sommario. L artimetica binaria: I numeri relativi e frazionari. I numeri relativi I numeri frazionari
Lezione 4 L artimetica binaria: I numeri relativi e frazionari Sommario I numeri relativi I numeri frazionari I numeri in virgola fissa I numeri in virgola mobile 1 Cosa sono inumeri relativi? I numeri
Logaritmi (progressione aritmetica di ragione 1)
Logaritmi Dal greco logos = discorso, ragionamento e arithmos = numero. I logaritmi vennero scoperti dallo scozzese di nobile famiglia, John Napier, meglio conosciuto con il nome latinizzato di Nepero.
Rappresentazione di numeri relativi (interi con segno) Rappresentazione di numeri interi relativi (con N bit) Segno e Valore Assoluto
Rappresentazione di numeri relativi (interi con segno) E possibile estendere in modo naturale la rappresentazione dei numeri naturali ai numeri relativi. I numeri relativi sono numeri naturali preceduti
4 FUNZIONE ESPONENZIALE E FUNZIONE LOGARITMO
4 FUNZIONE ESPONENZIALE E FUNZIONE LOGARITMO 4.0. Esponenziale. Nella prima sezione abbiamo definito le potenze con esponente reale. Vediamo ora in dettaglio le proprietà della funzione esponenziale a,
1 Funzioni reali di una variabile reale
1 Funzioni reali di una variabile reale Qualche definizione e qualche esempio che risulteranno utili più avanti Durante tutto questo corso studieremo funzioni reali di una variabile reale, cioè Si ha f
Concentrazioni. concentrazione quantità di soluzione
Concentrazioni Una soluzione è un sistema omogeneo prodotto dallo scioglimento di una sostanza solida, liquida o gassosa (soluto), in un opportuno liquido (solvente). Definiamo concentrazione di una soluzione
Coordinate cartesiane nel piano
Coordinate cartesiane nel piano O = (0, 0) origine degli assi x ascissa, y ordinata sistemi monometrici: stessa unità di misura sui due assi x, y sistemi dimetrici: unità di misura diverse sui due assi
LA FUNZIONE LOGARITMO
LA FUNZIONE LOGARITMO In una popolazione la cui numerosita varia con la legge N(t)=N(0)R t, con R=1+n-m, formata inizialmente da 10 5 individui, ad ogni generazione muore il 15% e il tasso di natalità
ESPONENZIALI E LOGARITMI. chiameremo logaritmica (e si legge il logaritmo in base a di c è uguale a b ).
ESPONENZIALI E LOGARITMI Data una espressione del tipo a b = c, che chiameremo notazione esponenziale (e dove a>0), stabiliamo di scriverla anche in un modo diverso: log a c = b che chiameremo logaritmica
Corso di Analisi Matematica Successioni e loro limiti
Corso di Analisi Matematica Successioni e loro limiti Laurea in Informatica e Comunicazione Digitale A.A. 2013/2014 Università di Bari ICD (Bari) Analisi Matematica 1 / 30 1 Definizione di successione
LOGARITMI. log = = con >0, 1; >0 = >0, 1, >0. log =1 >0, 1. notebookitalia.altervista.org
LOGARITMI Sia un numero reale positivo ed un numero reale, positivo, diverso da 1; si dice logaritmo di in base il valore da attribuire come esponente alla base per ottenere una potenza uguale all argomento.
7 2 =7 2=3,5. Casi particolari. Definizione. propria se < impropria se > e non è multiplo di b. apparente se è un multiplo di. Esempi.
NUMERI RAZIONALI Q Nell insieme dei numeri naturali e nell insieme dei numeri interi relativi non è sempre possibile effettuare l operazione di divisione. Infatti, eseguendo la divisione 7 2 si ottiene
Sviluppi e derivate delle funzioni elementari
Sviluppi e derivate delle funzioni elementari In queste pagine dimostriamo gli sviluppi del prim ordine e le formule di derivazioni delle principali funzioni elementari. Utilizzeremo le uguaglianze lim
Capitolo 1 ANALISI COMPLESSA
Capitolo 1 ANALISI COMPLESSA 1 1.2 Funzioni Complesse Una funzione complessa di variabile complessa f : E C, E C è un applicazione ce associa un numero complesso f(z) ad ogni z E, con E sottoinsieme del
210 Limiti. (g) lim. (h) lim. x 3 + ln ; x 3 3. (i) lim. x 2 + ln(x + 2)(x 2) ; (j) lim. 6 (Prodotti di limiti non necessariamente finiti).
0 Limiti Diamoci da fare... (Soluzioni a pagina 47) Sia f () =, determinare δ affinché perogni + nell intervallo ( δ, + δ) f () 3 < oppure 0 f () 3 < 000. Dimostrare quindi che + = 3. Dimostrare, utilizzando
FUNZIONI. y Y. Def. L insieme Y è detto codominio di f. Es. Siano X = R, Y = R e f : x y = 1 x associo il suo inverso). (ad un numero reale
FUNZIONI Siano X e Y due insiemi. Def. Una funzione f definita in X a valori in Y è una corrispondenza (una legge) che associa ad ogni elemento X al piú un elemento in Y. X Y Def. L insieme Y è detto codominio
i) la somma e il prodotto godano delle proprietà associativa, commutativa e distributiva;
1 Spazi vettoriali 11 Definizioni ed assiomi Definizione 11 Un campo è un insieme K dotato di una operazione somma K K K, (x, y) x + y e di una operazione prodotto K K K, (x, y) xy tali che i) la somma
LIMITI - ESERCIZI SVOLTI
LIMITI - ESERCIZI SVOLTI ) Verificare mediante la definizione di ite che a) 3 5) = b) = + ) c) 3n n + n+ = + d) 3+ = 3. ) Calcolare utilizzando i teoremi sull algebra dei iti a) 3 + ) b) + c) 0 + d) ±
Esercitazione di Matematica Argomento: esponenziali e logaritmi
Esercitazione di Matematica Argomento: esponenziali e logaritmi Risolvere le seguenti equazioni esponenziali e logaritmiche:. x = 4;. ( ) x+ ( = 3. 00 x 0 4x+ = 0; 4. 3 4 x > 9x ;. e x = ;. 7 x = 0(x+)
Algebra. I numeri relativi
I numeri relativi I numeri relativi sono quelli preceduti dal segno > o dal segno . I numeri positivi sono quelli preceduti dal segno + (zero escluso). I numeri negativi sono quelli preceduti
Esempio 1: virgola mobile
Esempio 1: virgola mobile Rappresentazione binaria in virgola mobile a 16 bit: 1 bit per il (0=positivo) 8 bit per l'esponente, in eccesso 128 7 bit per la parte frazionaria della mantissa normalizzata
Esercizi proposti - Gruppo 7
Argomenti di Matematica er l Ingegneria - Volume I - Esercizi roosti Esercizi roosti - Gruo 7 1) Verificare che ognuina delle seguenti coie di numeri razionali ( ) r + 1, r + 1, r Q {0} r ha la rorietà
1 Insiemi. 1.1 Operazioni sugli insiemi. Domande Debito Formativo di MATEMATICA. Sommario
Domande Debito Formativo di MATEMATICA Sommario Insiemi.... Operazioni sugli insiemi... Strutture numeriche, aritmetiche.... Ordinamento numeri reali, razionali, interi.... Il m.c.m. e M.C.D. tra numeri....
Codifica binaria. Rappresentazioni medianti basi diverse
Codifica binaria Rappresentazione di numeri Notazione di tipo posizionale (come la notazione decimale). Ogni numero è rappresentato da una sequenza di simboli Il valore del numero dipende non solo dalla
DISPENSE SU TEORIA DEGLI INSIEMI E NUMERI
FACOLTA' DI ECONOMIA UNIVERSITA DELLA CALABRIA Corso di Modelli Matematici per l Azienda a.a. 2011-2012 DISPENSE SU TEORIA DEGLI INSIEMI E NUMERI Prof. Fabio Lamantia INSIEMI INSIEME= gruppo di oggetti
Sistemi numerici: numeri in virgola mobile Esercizi risolti
Esercizi risolti 1 Esercizio Un numero relativo è rappresentato in virgola mobile secondo lo standard IEEE 754 su 32 bit nel seguente modo: s = 1 e = 10000111 m = 11011000000000000000000 Ricavare il corrispondente
Funzioni e grafici. prof. Andres Manzini
Università degli studi di Modena e Reggio Emilia Dipartimento di Scienze e Metodi dell Ingegneria Corso MOOC Iscriversi a Ingegneria Reggio Emilia Introduzione Definizione Si dice funzione (o applicazione)
1. FUNZIONI IN UNA VARIABILE
1. FUNZIONI IN UNA VARIABILE Definizione: Dati due insiemi A, B chiamiamo funzione da A in B ogni, f, applicazione (legge, corrispondenza) che associa ad ogni elemento di A uno ed uno solo elemento di
FUNZIONI ESPONENZIALE E LOGARITMICA
FUNZIONI ESPONENZIALE E LOGARITMICA Le potenze con esponente reale La potenza a x di un numero reale a è definita se a>0 per ogni x R se a=0 per tutti e soli i numeri reali positivi ( x R + ) se a
Concentrazioni. concentrazione quantità di soluzione. Matematica con Elementi di Statistica a.a. 2017/18
Concentrazioni Una soluzione è un sistema omogeneo prodotto dallo scioglimento di una sostanza solida, liquida o gassosa (il soluto), in un opportuno liquido (il solvente). Definiamo concentrazione di
Funzioni esponenziali e logaritmiche Indice
Funzioni esponenziali e logaritmiche Indice Funzioni esponenziali...1 Funzioni logaritmiche...3 Funzioni esponenziali Definizione: Si definisce funzione esponenziale di base a > 0 la funzione reale y =
Limiti di successioni
Capitolo 5 Limiti di successioni 5.1 Successioni Quando l insieme di definizione di una funzione coincide con l insieme N costituito dagli infiniti numeri naturali 1, 2, 3,... talvolta si considera anche
Esercizi svolti. 1 Numeri complessi. 1.1 Forma cartesiana. Esercizio 1.1 Dato il numero complesso. z = 4 3 4i,
Numeri complessi Esercizi svolti 1 Numeri complessi 1.1 Forma cartesiana Esercizio 1.1 Dato il numero complesso z = 4 3 4i, a) determinare la parte reale x di z: x = Re z, b) determinare la parte immaginaria
Lezione 3. I numeri relativi
Lezione 3 L artimetcia binaria: i numeri relativi i numeri frazionari I numeri relativi Si possono rappresentare i numeri negativi in due modi con modulo e segno in complemento a 2 1 Modulo e segno Si
1 IL LINGUAGGIO MATEMATICO
1 IL LINGUAGGIO MATEMATICO Il linguaggio matematico moderno è basato su due concetti fondamentali: la teoria degli insiemi e la logica delle proposizioni. La teoria degli insiemi ci assicura che gli oggetti
1 Limiti e continuità per funzioni di una variabile
1 Limiti e continuità per funzioni di una variabile Considerazioni introduttive Consideriamo la funzione f() = sin il cui dominio naturale è R\ {0}. Problema: non è possibile calcolare il valore di f per
Numeri interi (+/-) Alfabeto binario. Modulo e segno
Numeri interi (+/-) Alfabeto binario il segno è rappresentato da 0 (+) oppure 1 (-) è indispensabile indicare il numero k di bit utilizzati Modulo e segno 1 bit di segno (0 positivo, 1 negativo) k 1 bit
Capitolo 5. Funzioni. Grafici.
Capitolo 5 Funzioni. Grafici. Definizione: Una funzione f di una variabile reale,, è una corrispondenza che associa ad ogni numero reale appartenente ad un insieme D f R un unico numero reale, y R, denotato
