PreCorso di Matematica - PCM Corso A
|
|
|
- Eleonora Fortunato
- 9 anni fa
- Visualizzazioni
Transcript
1 PreCorso di Matematica - PCM Corso A DOCENTE: M. Auteri
2 Numeri positi e negativi , 4, , 3.76, , -4, , , Docente: Auteri, PreCorso di Matematica,
3 addizionare e sottrarre segni opposti +( ) oppure (+) 3 + ( 5) = 3 5 = 2 stesso segno ( ) o +(+) + ( 3) 7 = ( 3.1) = = Docente: Auteri, PreCorso di Matematica,
4 Moltiplicare stesso segno + segni differenti + + = = 6 + = 2 (-3) = 6 + = (-2) 3 = 6 = + (-2) (-3) = 6 Docente: Auteri, PreCorso di Matematica,
5 Dividere stesso segno + segni differenti + + = = = 6 (-3) = = (-6) 3 = = 2 = + (-6) (-3) = = 2 Docente: Auteri, PreCorso di Matematica,
6 Ordine delle precedenze.. Nell ordine: 1. Operazioni all interno delle parentesi 2. Moltiplicazioni e divisioni 3. Addizioni e sottrazioni 2 2 (27 3) + (1 20) = 2 2 (9) + ( 19) = = 17 Docente: Auteri, PreCorso di Matematica,
7 Notazione scientifica a 10 b dove 1 a < 10 B è un numero intero = = Docente: Auteri, PreCorso di Matematica,
8 numeri, lettere e simboli numeri, lettere, stesse regole ( a) = a, (+a) = a, etc a ( b) = ab, ( a) ( b) = ab, etc a = a b b e a b b ricordate: 2a = 2 a ed inoltre 2pq + pq 5pq = 2pq s/2r + 4s/2r = 5s/2r Docente: Auteri, PreCorso di Matematica,
9 FRAZIONI semplificare numeratore e denominatore = = 5 12 or = = = = = 1 4 a b + a 2b = 2a 2b + a 2b = 3a 2b Docente: Auteri, PreCorso di Matematica,
10 Moltiplicare e dividere Moltiplicare 2 4 = 8 and 9 4 = a c = ac b d bd Dividere = 18 = and 5 = = = = = 5 21 a b c d = a b d c = ad bc Docente: Auteri, PreCorso di Matematica,
11 Percentuali Percentuali ( = 50%) 5% = % = % of 300 = = = = 6.25% Docente: Auteri, PreCorso di Matematica,
12 Parentesi e moltiplicazioni a(b + c) = ab + ac x(y + z) xy = xy +xz xy = xz (b + c)/a [or (b+c) a ] = b a + c a (a + b)(c + d) = ac + ad + bc + bd (x 2)(y + 1) = xy 2y + x - 2 Docente: Auteri, PreCorso di Matematica,
13 Operazioni con Monomi e Polinomi 5ma + 15m = 5m(a + 3) y 2 + 4y 5 = (y + 5)(y 1) a 2 + 2ac + c 2 = (a + c) 2 ALCUNE REGOLE: a 2 + 2ab +b 2 = (a + b) 2 a 2-2ab +b 2 = (a b) 2 a 2 b 2 = (a + b)(a b) Docente: Auteri, PreCorso di Matematica,
14 Potenze a a = a = 2 3 = 8 - ( 2) 4 = 16 ( 2 3 )5 = NB: a 1 = a a 0 = 1 Alcune regole: b m = ( 1 b )m 2 2 = ( 1 2 )2 = = ( 1 3 )4 = 1/81 (1 + a) 2 = ( 1 1+a )2, Docente: Auteri, PreCorso di Matematica,
15 Potenze, cont. Prodotto di potenze che hanno la stessa base: b m b n = b m+n = = 2 1 = 1 2 Divisione tra due potenze con la stessa base: bm b n = b m n = = 2 9 = 512 Docente: Auteri, PreCorso di Matematica,
16 Potenze, cont. Potenza di potenza: (b m ) n = b mn (3 2 ) 3 = 3 6 = 729 Potenza di un prodotto (a b) n = a n b n (3 4) 3 = = = 1728 (2ab) m = 2 m a m b m E poi: ( a b )n = an b n ( 5 2 )3 = = 125/8 Docente: Auteri, PreCorso di Matematica,
17 Potenze ad esponente frazionario o razionale a = a 1/2 64 1/3 = 4 q a = a 1/q In maniera analoga si ha: b n/q = (b 1/q ) n (27) 2/3 = (27 1/3 ) 2 = 3 2 = /4 = (16 1/4 ) 3 = 2 3 =8 Docente: Auteri, PreCorso di Matematica,
18 Concetto di esponenziale Si chiama esponenziale un termine del tipo: in cui l incognita x compare come esponente mentre la base a è fissata. a x Caratteristiche principali dell esponenziale a x : 1. è definito per ogni valore di x; 2. è definito solo per a > 0, a 1; 3. è sempre positivo; 4. vale 1 per x = 0. Docente: Auteri, PreCorso di Matematica,
19 I logaritmi Posto che: a > 0 a 1 k > 0 si chiama logaritmo in base a di k quel numero y cui bisogna elevare a per ottenere k: a y = k y = log a k dove k si chiama argomento del logaritmo. es: log 2 8 = 3 I logaritmi più comuni sono log, logaritmo a base 10, log, (logaritmo decimale o volgare o di Briggs ln, logaritmo naturale o neperiano, a base e, un numero irrazionale il cui valore approssimato per difetto è 2, Docente: Auteri, PreCorso di Matematica,
20 Proprietà dei logaritmi: 1. se a > 0, a 1, k > 0, log a k esiste sempre ed è unico; 2. se a > 1 e k > 1 = loga k > 0 0 < k < 1 = loga k < 0 3. se 0 < a < 1 e k > 1 = loga k < 0 0 < k < 1 = loga k < 0 4. non si può parlare di logaritmo di un numero rispetto alla base 1 o rispetto a una base negativa o nulla, e non esiste il logaritmo di un numero negativo; 5. Il logaritmo del numero 1 è 0: log a 1 = 0; 6. Il logaritmo della base a è 1: log a a = 1. Docente: Auteri, PreCorso di Matematica,
21 Proprietà dei logaritmi, cont.: 7. log a (b c) = log a b + log a c; 8. log a b c = log a b log a c; 9. log a b c = c log a b; 10. log a n b = log a b n ; 11. valgono le relazioni inverse delle 7, 8, 9 e 10. Docente: Auteri, PreCorso di Matematica,
22 Regole ed esempi Date le regole: log pq = log p + log q log p q = log p log q log p n = n log p log 1 = 0 log 0 indefinito log b b = 1 Esempi log4 (16 64) = log log 4 64 = = 5 log = log 3 27 log = 3 5 = 2 Docente: Auteri, PreCorso di Matematica,
23 Relazione con l esponenziale: esempi Esempio 1: calcoliamo il logaritmo in entrambi i lati dell equazione: 1. 2 x = log 2 x = log x log 2 = log x = log 64 / log 2 Esempio 2: la base è ininfluente sul risultato che è sempre 6: 1. x = log 1064 log 10 2 = = 6 2. x = log 264 log 2 2 = 6 1 = 6 Docente: Auteri, PreCorso di Matematica,
24 Esempi, cont. Esempio 3: 3 x = 10 x+1 log 3 x = log 10 x+1 x log 3 = (x+1) log 10 x log 3 = x log 10 + log 10 x (log 3 log 10) = log 10 x = log 10 / (log 3 log 10) con qualsiasi base si ha: x = Docente: Auteri, PreCorso di Matematica,
25 Esempi, cont. Esempio 4: 7 = 3 4 x log 7 = log 3 + log 4 x log 7 = log 3 x log 4 x log 4 = log 3 log 7 x = (log 3 log 7) / log 4 x = Docente: Auteri, PreCorso di Matematica,
Appunti di matematica per le Scienze Sociali Parte 1
Appunti di matematica per le Scienze Sociali Parte 1 1 Equazioni 1.1 Definizioni preliminari 1.1.1 Monomi Si definisce monomio ogni prodotto indicato di fattori qualsiasi, cioè uguali o diseguali, numerici
Il calcolo letterale
Il calcolo letterale Si dice ESPRESSIONE ALGEBRICA LETTERALE (o semplicemente espressione algebrica) un espressione in cui compaiono lettere che rappresentano numeri. Esempio: 5ab 4a b 3 + b 5a 1 ab 3
Prof. Emanuele ANDRISANI
Potenze con esponente razionale Sia a > 0 e a 1. Abbiamo definito a x quando x N. Poniamo a 0 = 1 a x = a m n = n a m se x = m n Q, x > 0, m, n N a x = 1 a x se x Q, x > 0. È così definita la potenza a
1 Le espressioni algebriche letterali
1 Le espressioni algebriche letterali DEFINIZIONE. Chiamiamo espressione algebrica letterale un insieme di numeri, rappresentati anche da lettere, legati uno all altro da segni di operazione. ESEMPI 2a
Funzione esponenziale Equazioni esponenziali RIPASSO SULLE POTENZE
RIPASSO SULLE POTENZE Proprietà delle potenze La formula a n indica l operazione chiamata potenza, ( a è la base ed n l esponente) che consiste nel moltiplicare la base a per se stessa n volte. Per le
Frazioni algebriche. Osserviamo che un espressione di questo tipo si ottiene talvolta quando ci si propone di ottenere il quoziente di due monomi.
Frazioni algebriche 14 14.1 Definizione di frazione algebrica Diamo la seguente definizione: Definizione 14.1. Si definisce frazione algebrica un espressione del tipo A B polinomi. dove A e B sono Osserviamo
Università degli Studi di Palermo Facoltà di Medicina e Chirurgia Anno Accademico 2011/12. Corso di Fisica(0) per il recupero dell OFA
Università degli Studi di Palermo Facoltà di Medicina e Chirurgia Anno Accademico 2011/12 Corso di Fisica(0) per il recupero dell OFA Tutor: Dott. Stefano Panepinto Simbologia matematica Simbologia matematica
Dott. Marta Ruspa 0321/ /
FISICA APPLICATA Dott. Marta Ruspa [email protected] 0321/660669 011/6707310 Lezione I 1 CORSO INTEGRATO DI SCIENZE FISICHE e STATISTICHE Discipline: FISICA APPLICATA STATISTICA INFORMATICA Lezione I
CLASSE 1 SEZIONE A PROGRAMMA DI MATEMATICA DOCENTE ENRICO PILI
ISTITUTO D ISTRUZIONE SECONDARIA SUPERIORE I.T.C.G. L. EINAUDI LICEO SCIENTIFICO G. BRUNO CLASSE 1 SEZIONE A PROGRAMMA DI MATEMATICA DOCENTE ENRICO PILI ANNO SCOLASTICO 2016/2017 RICHIAMI DI ARITMETICA
Numeri e operazioni su di essi
Numeri e operazioni su di essi Paolo Montanari Appunti di Matematica Numeri 1 Classificazione dei numeri Il primo obiettivo che ci si pone è quello di classificare i numeri, cioè conoscere i differenti
Le quattro operazioni
Le quattro operazioni 1. Addizione a + b = c addendi somma Proprietà commutativa Cambiando l ordine degli addendi, la somma non cambia. a + b = b + a Proprietà associativa La somma di tre numeri non cambia,
Precorso di Matematica
Precorso di Matematica Maria Margherita Obertino [email protected] Davide Ricauda [email protected] Obiettivi del precorso: rapido ripasso degli argomenti di base, già trattati nelle
Potenze - Monomi - Polinomi - Operazioni tra Polinomi - Quadrato e Cubo del Binomio - Quadrato del Trinomio
Potenze - Monomi - Polinomi - Operazioni tra Polinomi - Quadrato e Cubo del Binomio - Quadrato del Trinomio Francesco Zumbo www.francescozumbo.it http://it.geocities.com/zumbof/ Questi appunti vogliono
ESERCIZIARIO DI MATEMATICA
Dipartimento di rete matematica ESERCIZIARIO DI MATEMATICA PER PREPARARSI ALLA SCUOLA SUPERIORE progetto Continuità SCUOLA SECONDARIA DI I GRADO Istituti comprensivi: Riva Riva Arco Dro Valle dei Laghi
1. ESPRESSIONE LETTERALE Si dice espressione letterale una espressione formata da numeri, lettere e segni.
1. ESPRESSIONE LETTERALE Si dice espressione letterale una espressione formata da numeri, lettere e segni. 2. MONOMIO 2a + b -3 due a più b meno tre 3x 2 x + 5 3 ics al quadrato ics + 5 MONOMI Si dice
Potenziamento formativo, Infermieristica, M. Ruspa RIPASSO DI MATEMATICA
RIPASSO DI MATEMATICA MATEMATICA DI BASE CHE OCCORRE CONOSCERE Numeri relativi ed operazioni con i medesimi Frazioni Potenze e relative proprieta Monomi, polinomi, espressioni algebriche Potenze di dieci
AREE. Area = lato * lato. Area = diagonale * diagonale diagonale = Area : 2 2. altezza = area : base
AREE QUADRATO Area = lato * lato lato = Area Area = diagonale * diagonale diagonale = Area : 2 2 RETTANGOLO Area = base * altezza base = area : altezza altezza = area : base TRIANGOLO Area = base * altezza
NUMERO RELATIVO. È caratterizzato da: segno positivo (+) o negativo (-) parte numerica che è detta valore assoluto
NUMERI RELATIVI NUMERO RELATIVO È caratterizzato da: segno positivo (+) o negativo (-) 2 3 2 parte numerica che è detta valore assoluto 3 NUMERI RELATIVI Numeri interi relativi (N) Numeri razionali relativi
NUMERI INTERI, RAZIONALI E IRRAZIONALI DOTATI DI SEGNO (POSITIVO O NEGATIVO)
NUMERI RELATIVI NUMERI INTERI, RAZIONALI E IRRAZIONALI DOTATI DI SEGNO (POSITIVO O NEGATIVO) L INSIEME DEI NUMERI RELATIVI Z COMPRENDE I NUMERI INTERI POSITIVI E NEGATIVI RAPPRESENTAZIONE SULLA RETTA DEI
Calcolo algebrico. Maria Simonetta Bernabei & Horst Thaler
Calcolo algebrico Maria Simonetta Bernabei & Horst Thaler CALCOLO LETTERALE Perché? E opportuno rappresentare i numeri con lettere dell alfabeto per fare affermazioni che valgono indipendentemente dal
Gli insiemi numerici RIPASSIAMO INSIEME OPERAZIONI FRA NUMERI RELATIVI INSIEME N INSIEME Z ELEVAMENTO A POTENZA
Gli insiemi numerici RIPASSIAMO INSIEME INSIEME N L insieme N (numeri naturali) è costituito dai numeri interi privi di segno: N {,,,,, } L insieme N presenta le seguenti caratteristiche: è un insieme
TORINO, FEBBRAIO 2012 COMPENDIO ALGEBRA. di BART VEGLIA
TORINO, FEBBRAIO 2012 COMPENDIO DI ALGEBRA di BART VEGLIA 1 2 1.1 I NUMERI E LE OPERAZIONI CON ESSI Comprendono i numeri assoluti, i frazionari, i relativi, i razionali, gli irrazionali, i reali, gli immaginari,
Esercizi di matematica della Scuola Secondaria
Esercizi di matematica della Scuola Secondaria 1. Quale é il risultato corretto della seguente operazione aritmetica? (dare la risposta senza eseguire la moltiplicazione) X = 23, 45 0, 0123 (A) X = 0,
Potenze reali, esponenziali e logaritmi
Potenze reali, esponenziali e logaritmi Lezione per Studenti di Agraria Università di Bologna (Università di Bologna) Potenze reali, esponenziali e logaritmi 1 / 14 Potenza ad esponente intero positivo
RICHIAMI di MATEMATICA ESERCIZI: equazioni e disequazioni esponenziali e logaritmiche
RICHIAMI di MATEMATICA ESERCIZI: equazioni e disequazioni esponenziali e logaritmiche Linguaggio e notazioni: a x esponenziale di base a, a > 0, e di esponente x R. log a x logaritmo in base a, a > 0 e
3 Dispense di Matematica per il primo anno dell Istituto I.S.I.S. Gaetano Filangieri di Frattamaggiore Frazioni Algebriche
3 Dispense di Matematica per il primo anno dell Istituto I.S.I.S. Gaetano Filangieri di Frattamaggiore Frazioni Algebriche 100 Per l esercitazioni on-line visita le pagine : www.chihapauradellamatematica.org
Insiemi numerici. Teoria in sintesi NUMERI NATURALI
Insiemi numerici Teoria in sintesi NUMERI NATURALI Una delle prime attività matematiche che viene esercitata è il contare gli elementi di un dato insieme. I numeri con cui si conta 0,,,. sono i numeri
Calcolo algebrico. Maria Simonetta Bernabei & Horst Thaler
Calcolo algebrico Maria Simonetta Bernabei & Horst Thaler CALCOLO LETTERALE Perché? E opportuno rappresentare i numeri con lettere dell alfabeto per fare affermazioni che valgono indipendentemente dal
I POLINOMI. La forma normale di un polinomio. Un polinomio è detto in FORMA NORMALE se in esso non compaiono monomi simili.
I POLINOMI Un polinomio è una somma algebrica tra monomi Sono polinomi le seguenti espressioni 2ab + 4bc -5a 2 b + 2ab - 5c 5x + 2y + 8x in esse infatti troviamo somme o differenze tra monomi La forma
Prontuario degli argomenti di Algebra
Prontuario degli argomenti di Algebra NUMERI RELATIVI Un numero relativo è un numero preceduto da un segno + o - indicante la posizione rispetto ad un punto di riferimento a cui si associa il valore 0.
ESERCITAZIONE: ESPONENZIALI E LOGARITMI
ESERCITAZIONE: ESPONENZIALI E LOGARITMI e-mail: [email protected] web: www.dm.unipi.it/ tommei Esercizio 1 In una coltura batterica, il numero di batteri triplica ogni ora. Se all inizio dell osservazione
espressione letterale valore numerico Monomio: forma normale coefficiente parte letterale Monomi simili: Monomi opposti: Grado di un monomio:
Calcolo letterale Espressione letterale Un espressione letterale è un insieme di numeri e lettere legati dai simboli delle operazioni. Il valore numerico di un espressione letterale è il risultato numerico
I numeri relativi. Definizioni Rappresentazione Operazioni Espressioni Esercizi. Materia: Matematica Autore: Mario De Leo
I numeri relativi Definizioni Rappresentazione Operazioni Espressioni Esercizi Materia Matematica Autore Mario De Leo Definizioni I numeri relativi sono i numeri preceduti dal simbolo (positivi) o dal
CALCOLO LETTERALE I MONOMI. Il primo tipo di oggetto che incontriamo nel calcolo letterale è il MONOMIO.
CALCOLO LETTERALE Il calcolo letterale è importante perchè ci consente di realizzare un meccanismo di astrazione fondamentale per l'apprendimento in generale. Scrivere, ad esempio, che l'area di un rettangolo
Notazione scientifica e inversione di formule
Notazione scientifica e inversione di formule M. Spezziga Liceo Margherita di Castelvì Sassari Indice 1 Calcoli in notazione scientifica 2 1.1 Moltiplicazioni per potenze di dieci.......................................
MATEMATICA SCOMPOSIZIONE E FRAZIONE ALGEBRICHE GSCATULLO
MATEMATICA SCOMPOSIZIONE E FRAZIONE ALGEBRICHE GSCATULLO 1 Scomposizione e frazioni algebriche Scomposizione in Fattori Scomporre in fattori un polinomio significa scriverlo sotto forma di un prodotto
IL CALCOLO LETTERALE. La «traduzione» del linguaggio comune in linguaggio matematico
IL CALCOLO LETTERALE La «traduzione» del linguaggio comune in linguaggio matematico BREVE STORIA DELL ALGEBRA Dall algebra sincopata all algebra simbolica L algebra è una disciplina antichissima ma il
U.D. N 04 I polinomi
Unità Didattica N 0 I polinomi U.D. N 0 I polinomi 0) Monomi 0) Somma algebrica di monomi simili 0) Prodotto di due i più monomi 0) Quoziente di due monomi 05) Potenza di un monomio 06) Massimo comune
Matematica per le scienze sociali Elementi di base. Francesco Lagona
Matematica per le scienze sociali Elementi di base Francesco Lagona University of Roma Tre F. Lagona ([email protected]) 1 / 24 Outline 1 Struttura del corso 2 Algebra booleana 3 Algebra degli
Definizione: Due monomi si dicono simili se hanno la stessa parte letterale.
CALCOLO LETTERALE Definizione: Data una formula si dicono variabili le lettere alle quali può essere sostituito qualsiasi valore numerico; i numeri si dicono, invece, costanti. Nella formula per il calcolo
LA FRAZIONE. apparente: se il numeratore è multiplo o uguale al denominatore e il valore della frazione è un numero intero.
LA FRAZIONE Una frazione è un modo per esprimere una quantità basandosi sulla divisione di un oggetto in un certo numero di parti della stessa dimensione. ES: Il denominatore: indica il numero totale di
Corso Integrato: Matematica e Statistica. Corso di Matematica (6 CFU)
Corso di Laurea in Scienze e Tecnologie Agrarie Corso Integrato: Matematica e Statistica Modulo: Matematica (6 CFU) (4 CFU Lezioni + CFU Esercitazioni) Corso di Laurea in Tutela e Gestione del territorio
CONOSCENZE 1. espressioni letterali e monomi. 2. le operazioni con i monomi 3. i polinomi 4. le operazioni con i polinomi. 5. i prodotti notevoli
ALGEBRA IL CALCOLO LETTERALE PREREQUISITI l l l conoscere e operare con tutte le operazioni nell'insieme R conoscere e utilizzare le proprietaá delle operazioni conoscere e utilizzare le proprietaá delle
Insiemi numerici. Alcune definizioni. La retta dei numeri
Insiemi numerici Q Z N 0 1 1 1 4 4 N = 0,1,,,4, = insieme dei numeri naturali Z = insieme dei numeri interi (formato dall unione dei numeri naturali e dei numeri interi negativi) Q = insieme dei numeri
Il calcolo letterale algebrico. (NLM teoria pag ; esercizi pag )
Il calcolo letterale algebrico. (NLM teoria pag. 7 86; esercizi pag. 11 5) Il calcolo letterale, o algebrico, è quella parte della matematica che generalizza il calcolo numerico utilizzando delle lettere
L INSIEME DEI NUMERI RELATIVI (prova di verifica delle conoscenze)
Scegli il completamento corretto. L INSIEME DEI NUMERI RELATIVI (prova di verifica delle conoscenze). L insieme dei numeri reali R si indica con : a. R = Q I b. R = Q I c. R = Q Z I. L insieme Z: a. è
ESERCIZI IN PIÙ I NUMERI COMPLESSI
ESERCIZI IN PIÙ I NUMERI COMPLESSI L equazione x x 0 non ha soluzioni nell insieme dei numeri reali; infatti, applicando la formula ridotta, si ottiene x, 3. Interpretando come numero immaginario, cioè
ISTITUTO PROFESSIONALE PER I SERVIZI ALBERGHIERI E DELLA RISTORAZIONE B.BUONTALENTI,V. DE BRUNI, FIRENZE ANNO SCOLASTICO 2015/2016.
B.BUONTALENTI,V. DE BRUNI, 6-50133 FIRENZE Classe 1 A Richiami di matematica: formazione degli insiemi numerici i numeri naturali, interi, razionali, irrazionali i numeri reali proprietà delle quattro
Monomi L insieme dei monomi
Monomi 10 10.1 L insieme dei monomi Definizione 10.1. Un espressione letterale in cui numeri e lettere sono legati dalla sola moltiplicazione si chiama monomio. Esempio 10.1. L espressione nelle due variabili
LA FRAZIONE. Una frazione può essere: propria: se il numeratore è minore del denominatore; Es: 3 5
LA FRAZIONE Una frazione è un modo per esprimere una quantità basandosi sulla divisione di un oggetto in un certo numero di parti della stessa dimensione. ES: Il denominatore: indica il numero totale di
LOGARITMI. Corso di laurea: BIOLOGIA Tutor: Floris Marta; Max Artizzu PRECORSI DI MATEMATICA. L uguaglianza: a x = b
Corso di laurea: BIOLOGIA Tutor: Floris Marta; Max Artizzu PRECORSI DI MATEMATICA LOGARITMI L uguaglianza: a x = b nella quale a e b rappresentano due numeri reali noti ed x un incognita, è un equazione
Programma di Matematica. Classe 1 B odont / d anno scolastico 2009/10 Insegnante: Maria Teresa DI PRIZIO IL CALCOLO NUMERICO IL CALCOLO LETTERALE
Programma di Matematica Classe 1 B odont / d anno scolastico 2009/10 Insegnante: Maria Teresa DI PRIZIO IL CALCOLO NUMERICO I numeri naturali e numeri razionali Definizione di numero naturale e le quattro
OPERAZIONI CON LE FRAZIONI
OPERAZIONI CON LE FRAZIONI ADDIZIONE prima di eseguire l operazione si riducono le frazioni (se è possibile) ai minimi termini. Si riconoscono tre situazioni. Le frazioni hanno lo stesso denominatore si
Algebra. I numeri relativi
I numeri relativi I numeri relativi sono quelli preceduti dal segno > o dal segno . I numeri positivi sono quelli preceduti dal segno + (zero escluso). I numeri negativi sono quelli preceduti
ISTITUTO STATALE DI ISTRUZIONE SUPERIORE VITTORIO FOSSOMBRONI Via Sicilia, GROSSETO
A. S. 2014/2015 INDIRIZZO: LICEO SCIENTIFICO CLASSE I MODULO TITOLO Modulo 1 Modulo 2 I numeri naturali. I numeri interi I numeri razionali ed i numeri reali Contenuti minimi L insieme N, rappresentazione
MONOMI. Donatella Candelo 13/11/2004 1
Donatella Candelo 1/11/00 1 MONOMI Un monomio è una qualunque espressione algebrica intera data dal prodotto di fattori qualsiasi, numerici o letterali. Praticamente in ogni monomio si può distinguere
U.D. N 04 I polinomi
8 U.D. N 04 I polinomi 0) Monomi 0) Somma algebrica di monomi simili 0) prodotto di due i più monomi 04) Quoziente di due monomi 05) Potenza di un monomio 06) Massimo comune divisore di due o più monomi
Curricolo verticale MATEMATICA
Curricolo verticale MATEMATICA Scuola dell Infanzia L alunno è in grado di identificare e nominare i numeri naturali da 0 a 10 L alunno è in grado di comprendere le quantità L alunno è in grado di contare
CORSO DI FISICA. Docente Maria Margherita Obertino. Indirizzo Tel:
CORSO DI FISICA 25 ore di lezione 4 ore di esercitazione divisi per gruppi nelle varie sedi 1 prova d esame a fine gennaio a NOVARA Correzione delle prove d esame a NOVARA Docente Maria Margherita Obertino
CORSO ZERO DI MATEMATICA
UNIVERSITÀ DEGLI STUDI DI PALERMO FACOLTÀ DI ARCHITETTURA CORSO ZERO DI MATEMATICA RADICALI Dr. Erasmo Modica [email protected] LE RADICI Abbiamo visto che l insieme dei numeri reali è costituito da tutti
Scomposizione in fattori di un polinomio. Prof. Walter Pugliese
Scomposizione in fattori di un polinomio Prof. Walter Pugliese La scomposizione in fattori dei polinomi Scomporre in fattori un polinomio significa scriverlo sotto forma di prodotto di polinomi di grado
Calcolo letterale. è impossibile (*) x y. per x = -25; impossibile per y= Impossibile. 15 y
Calcolo letterale Calcolo letterale e operazioni - L uso delle lettere al posto dei numeri si utilizza per scrivere proprietà e regole dandone una valenza più generale rispetto ad un restrittivo esempio
SCHEMI DI MATEMATICA
SCHEMI DI MATEMATICA SCHEMA 1: somme algebriche tra numeri ( ci sono sia somme che sottrazioni) Obiettivo dello schema1: saper risolvere espressioni come : -3-6 Metodo: se il segno dei due numeri è uguale
Le operazioni fondamentali in R
La REGOLA DEI SEGNI: 1. ADDIZIONE Le operazioni fondamentali in R + per + dà + per dà + + per dà per + dà Esempi: (+5) + (+9) = + 5 + 9 = + 14 (+5) + ( 3) = + 5 3 = + 2 ( 5) + ( 9) = 5 9 = 14 ( 5) + (+3)
( ) ( ) 2 + 3( a + b) = ( ) + b( x 1) = ( ) ( ) b( x + y) = ( ) x 2 ( a + b) y 2 + ( a + b) = ( ) + ( a b) = ( ) a( 4x + 7) = ( ) + 3a( 2 5y) =
1 Scomposizione in fattori di un polinomio Scomporre in fattori un polinomio significa trasformare il polinomio, che è una somma algebrica di monomi, nel prodotto di fattori con il grado più basso possibile.
1 (UNO) INDICA LA QUANTITÀ DI ELEMENTI DELL INSIEME UNITARIO B = (CLASSI CHE HANNO LA LIM) SOLO LA 4ª A HA LA LIM QUINDI L INSIEME È UNITARIO.
I NUMERI NATURALI DEFINIAMO NUMERI NATURALI I NUMERI A CUI CORRISPONDE UN INSIEME. 0 (ZERO) INDICA LA QUANTITÀ DI ELEMENTI DELL INSIEME VUOTO. A = (ALUNNI DI 4ª A CON I CAPELLI ROSSI) NESSUN ALUNNO HA
MATEMATICA DI BASE 1
MATEMATICA DI BASE 1 Francesco Oliveri Dipartimento di Matematica, Università di Messina 30 Agosto 2010 MATEMATICA DI BASE MODULO 1 Insiemi Logica Numeri Insiemi Intuitivamente, con il termine insieme
P R O G R A M M A ANNO SCOLASTICO 2016/2017 SEDE: I.T.I. MARCONI. materia: MATEMATICA. classe: 1 elettronici sezione P. professori : Gallo Raffaelina
P R O G R A M M A ANNO SCOLASTICO 2016/2017 SEDE: I.T.I. MARCONI materia: MATEMATICA classe: 1 elettronici sezione P professori : Gallo Raffaelina ALGEBRA DEI NUMERI NOZIONI FONDAMENTALI -nozioni fondamentali
RIPASSO DI MATEMATICA
RIPASSO DI MATEMATICA PER LA FISICA LA MATEMATICA È UNO STRUMENTO CHE PERMETTE LA FORMALIZZAZIONE DELLE SUE LEGGI (tramite le formule si può determinare l evoluzione del fenomeno) I NUMERI I NUMERI POSSONO
Radicali. 2.1 Radici. Il simbolo
Radicali. Radici.. Radici quadrate Ricordiamo che il quadrato di un numero reale a è il numero che si ottiene moltiplicando a per se stesso. Il quadrato di un numero è sempre un numero non negativo; numeri
ISTITUZIONI DI MATEMATICHE E FONDAMENTI DI BIOSTATISTICA. 2. Insiemi numerici A. A
ISTITUZIONI DI MATEMATICHE E FONDAMENTI DI BIOSTATISTICA 2. Insiemi numerici A. A. 2013-2014 1 INSIEMI NUMERICI sono la base su cui la matematica si è sviluppata costituiscono le tappe di uno dei più importanti
Programma di Matematica Classe 1^ C/L Anno scolastico 2014/2015
Programma di Matematica Classe 1^ C/L Anno scolastico 2014/2015 Capitolo 1- I numeri naturali e i numeri interi Che cosa sono i numeri naturali La rappresentazione dei numeri naturali Le quattro operazioni
ESERCIZI DI MATEMATICA
DI MATEMATICA PER GLI STUDENTI IN INGRESSO ALLA CLASSE PRIMA Rev. Luglio 2019 Pag. 1 di 18 NUMERI NATURALI L insieme dei numeri naturali si indica con N. TABELLA DEI NUMERI PRIMI DIVISIBILITÀ E MULTIPLI
Precorso di Matematica A. A. 2017/2018. Algebra
Precorso di Matematica A. A. 017/018 Algebra 1 Monomi Monomio: espressione algebrica ottenuta come prodotto di fattori sia numerici sia letterali. Grado di un monomio rispetto ad una sua lettera: esponente
