Esercizi Teoria della Probabilità
|
|
|
- Pasquale Cara
- 9 anni fa
- Visualizzazioni
Transcript
1 Esercizi Teoria della Probabilità Esercizio 1 Durante un corso universitario, uno studente prova a svolgere una serie di esercizi. La risposta agli esercizi è di tipo binario (SI/NO). Supponendo la completa ignoranza dello studente sull argomento, la probabilità che indovini per caso la risposta è del 50%. Si supponga inoltre che l eventuale successo nell indovinare la risposta esatta non condizioni le probabilità future di indovinare le altre risposte (eventi indipendenti). a. Calcolare la probabilità che ha lo studente di svolgere in maniera corretta due esercizi di fila b. Calcolare la probabilità di svolgerne almeno uno bene c. Calcolare la probabilità di sbagliarli tutti e due d. Si supponga invece che lo studente sia preparato sull argomento, per cui si assume che la probabilità di svolgere bene un esercizio è pari al 75%. Ripetere il calcolo ai punti a), b) e c) con la nuova probabilità. Esercizio 2 In un azienda, la probabilità che l estintore automatico di sicurezza sia in panne è pari al 20%, la probabilità che il sistema d allarme non funzioni è pari al 10% e la probabilità che entrambi siano rotti è pari al 4% a. Calcolare quale è la probabilità che almeno uno dei due funzioni b. Calcolare la probabilità che entrambi funzionino Esercizio 3 Un rappresentante di commercio effettua 12 visite al giorno. Per ciascuna visita c è il 20% di probabilità di realizzare una vendita. a. Quale è la probabilità che non realizzi nessuna vendita in un giorno? b. Quale è la probabilità che realizzi almeno una vendita? c. Il rappresentante lavora 200 giorni all anno. Qual è, approssimativamente, il numero di giorni all anno in cui non realizza nessuna vendita? Esercizio 4 Siano E ed F due eventi mutuamente incompatibili. Essi sono indipendenti? Siano A e B due eventi indipendenti, P(A) = 0.6, P(B)=0.2. Calcolare, se possibile: a. P(A B) b. P(A»B) c. P(A B) d. Ripetere l esercizio nel caso gli eventi A e B siano mutuamente incompatibili Siano A e B due eventi mutuamente esclusivi, con P(A) = 0.5 e P(A» B)=0.7. Calcolare, se possibile P(B). Esercizio 6 Nella tabella seguente è riportata la popolazione degli Stati Uniti (secondo una statistica del 1984) secondo lo stato di occupazione ed il sesso
2 Maschio (M) Femmina (F) Attivo (A) 51.9% 40.9% Disoccupato (D) 3.9% 3.3% Totale 55.8% 44.2% Totale 92.8% 7.2% 100% a. Quanto è il tasso di disoccupazione? Ovvero, valutare la probabilità P(D) che un individuo scelto a caso nella popolazione sia disoccupato. b. Calcolare la P(D M). Che cosa rappresenta questa probabilità? c. Calcolare la P(D F). Che cosa rappresenta questa probabilità? d. Il tasso di disoccupazione dipende dal sesso? Esercizio 8 Un censimento sulla popolazione americana (115 milioni di abitanti) analogo al caso precedente, condotto nel 1985 si è invece focalizzato sulla relazione tra tasso di disoccupazione e età della popolazione, fornendo i seguenti risultati Meno di 25 anni (G) Più di 25 anni (V) Totale Attivo (A) Disoccupato (D) Totale a) Quale è la probabilità P(D) che un individuo scelto a caso nella popolazione sia disoccupato? b) Calcolare la probabilita P(D G) ed enunciare che cosa rappresenta c) Il tasso di disoccupazione è indipendente dall età? Variabili aleatorie scalari Esercizi Esercizio 1 Si consideri l esperienza costituita dal lancio di una moneta per tre volte. Ciascun lancio avrà come possibili esiti Testa (T) o Croce (C) 1. Definire l insieme di tutti i possibili eventi elementari di cui è costituita l esperienza: tre lanci della moneta 2. Definire una variabile aleatoria che conti il numero di teste ottenute nella singola esperienza 3. Definire la funzione di distribuzione e la funzione densità di probabilità per la variabile aleatoria. Esercizio 2 Si consideri la variabile aleatoria discreta X definita come il numero ottenuto dal lancio del dado.
3 1. Se ne rappresenti la funzione densità di probabilità 2. Si calcolino le probabilità dei seguenti eventi a. sqrt(2) < X < π b. X > 3 c. 2 X < 3 d. 2 < X < 3 Esercizio 3 Un rappresentante di una casa farmaceutica telefona ad una farmacia tre volte all anno. Ad ogni chiamata, c è l 80% di probabilità di realizzare una vendita. Sia X il numero totale di vendite per anno (0,1,2,3) a. Rappresentare in forma di tabella la distribuzione di probabilità p(x) b. Quale è la probabilità di realizzare almeno due vendite? Esercizio 4 Un rivenditore di biciclette, grazie all esperienza acquisita negli anni, ha stabilito che la domanda annuale di biciclette è una variabile aleatoria con la seguente distribuzione: Numero di biciclette vendute x Probabilità p(x) a. Qual è la domanda media prevista? Qual è la varianza? b. Se il rivenditore ordina 60 biciclette, qual è la probabilità che esse siano tutte vendute? Qual è la probabilità che ne rimangano di invendute? c. Per essere abbastanza sicuro (al 95%) di avere abbastanza biciclette da poter rivendere, quante ne deve ordinare? Sia data la seguente funzione densità di probabilità per la variabile aleatoria X:
4 1. verificare che f(x) è una funzione densità di probabilità valida (ovvero rispetta le proprietà fondamentali delle funzioni densità di probabilità). 2. Calcolare inoltre le seguenti probabilità: a. X < 2 b. 1 < X <3 c. X = 3 d. 3 < X <5 3. Determinare inoltre (se esiste) il valore atteso della VA X. 4. Determinare inoltre moda e mediana 5. Calcolare infine la varianza della VA Esercizio 6 Si consideri la variabile aleatoria Y caratterizzata dalla seguente funzione densità di probabilità: verificare che f(x) è una funzione densità di probabilità valida (ovvero rispetta le proprietà fondamentali delle funzioni densità di probabilità). 2. Calcolare inoltre le seguenti probabilità: a. 0.2 < Y < 0.8 b. 0.6 < Y < 1.2 c. Y > Determinare inoltre (se esiste) il valore atteso e la varianza della VA Y 4. Determinare inoltre il 25mo percentile ed il 75mo percentile. Esercizio 7 Si consideri variabile aleatoria Y caratterizzata dalla seguente funzione densità di probabilità: Calcolare la costante A tale che la funzione densità di probabilità rispetti la condizione di normalizzazione 2. Determinare la funzione di distribuzione F Y (y) 3. Calcolare media, mediana e moda della variabile aleatoria Y 4. Calcolare varianza e deviazione standard 5. Calcolare le probabilità per i seguenti eventi: a. 3 b. 3 1 Esercizio 8 Si consideri l esperienza aleatoria X lancio del dado: un giocatore vince o perde a seconda degli esiti secondo la seguente tabella:
5 X Esito 1 Vincita 10 3 Vincita 20 5 Perdita 30 Numero pari Nessun guadagno/perdita Calcolare il valore medio della variabile aleatoria vincite del gioco Esercizio 9 Una variabile aleatoria discreta X ha la seguente funzione densità di probabilità: x f(x) Calcolare la media e la varianza della Variabile Aleatoria Y = 2 X 1 Esercizio 10 Il numero di articoli prodotti da una fabbrica in una settimana è una variabile aleatoria Y di media μ Y = 500 e varianza σ 2 Y=100. Calcolare la probabilità (un valore approssimativo) che in una settimana la produzione sia compresa tra 400 e 600 articoli (Suggerimento: Sfruttare il Teorema di Chebyshev) Esercizio 11 Una variabile aleatoria Y ha densità di probabilità: Calcolare media e varianza per la variabile aleatoria in questione 2. Calcolare: a Trovare una stima per la probabilità precedente sfruttando il teorema di Chebyshev. a. È rispettato il teorema? b. Il risultato fornito è confrontabile oppure no con il risultato esatto fornito dalla conoscenza della funzione densità di probabilità?
Statistica. Alfonso Iodice D Enza
Statistica Alfonso Iodice D Enza [email protected] Università degli studi di Cassino () Statistica 1 / 27 Outline 1 () Statistica 2 / 27 Outline 1 2 () Statistica 2 / 27 Outline 1 2 3 () Statistica 2 /
STATISTICA A K (63 ore) Marco Riani
STATISTICA A K (63 ore) Marco Riani [email protected] http://www.riani.it Esempio totocalcio Gioco la schedina mettendo a caso i segni 1 X 2 Qual è la prob. di fare 14? Esempio Gioco la schedina mettendo
Lezione 3 Calcolo delle probabilità
Lezione 3 Calcolo delle probabilità Definizione di probabilità La probabilità è lo studio degli esperimenti casuali e non deterministici Se lanciamo un dado sappiamo che cadrà ma non è certo che esca il
Esercizi di Calcolo delle Probabilità
Esercizi di Calcolo delle Probabilità Versione del 1/05/005 Corso di Statistica Anno Accademico 00/05 Antonio Giannitrapani, Simone Paoletti Calcolo delle probabilità Esercizio 1. Un dado viene lanciato
PROVE SCRITTE DI MATEMATICA APPLICATA, ANNO 2006/07
PROVE SCRITTE DI MATEMATICA APPLICATA, ANNO 006/07 Esercizio 1 Prova scritta del 16/1/006 In un ufficio postale lavorano due impiegati che svolgono lo stesso compito in maniera indipendente, sbrigando
ESERCIZI DI CALCOLO PROBABILITÀ DISTRIBUZIONI DOPPIE E NOTEVOLI
Variabili bidimensionali ESERCIZI DI CALCOLO PROBABILITÀ DISTRIBUZIONI DOPPIE E NOTEVOLI 1) Siano X 1 e X 2 due variabili casuali indipendenti che possono assumere valori 0, 1 e 3 rispettivamente con probabilità
Corso di Fondamenti di TLC Esercizi di Probabilitá
Corso di Fondamenti di TLC Esercizi di Probabilitá Exercise 0.1 Unurna contiene 2 biglie bianche e 5 nere. Estraiamo una prima biglia: se nera la rimettiamo dentro con altre due dello stesso colore, se
STATISTICA: esercizi svolti sulle VARIABILI CASUALI
STATISTICA: esercizi svolti sulle VARIABILI CASUALI VARIABILI CASUALI 2 VARIABILI CASUALI. Variabili casuali generiche. Si supponga che un dado truccato, formato da sei facce contrassegnate dai numeri
Variabili aleatorie gaussiane
Variabili aleatorie gaussiane La distribuzione normale (riconoscibile dalla curva a forma di campana) è la più usata tra tutte le distribuzioni, perché molte distribuzioni che ricorrono naturalmente sono
Esercitazione n. 3 - Corso di STATISTICA - Università della Basilicata - a.a. 2011/12 Prof. Roberta Siciliano
Esercitazione n. 3 - Corso di STATISTICA - Università della Basilicata - a.a. 2011/12 Prof. Roberta Siciliano Esercizio 1 Una moneta viene lanciata 6 volte. Calcolare a) La probabilità che escano esattamente
Probabilità classica. Distribuzioni e leggi di probabilità. Probabilità frequentista. Probabilità soggettiva
Probabilità classica Distribuzioni e leggi di probabilità La probabilità di un evento casuale è il rapporto tra il numero dei casi favorevoli ed il numero dei casi possibili, purchè siano tutti equiprobabili.
NOZIONI DI CALCOLO DELLE PROBABILITÀ
NOZIONI DI CALCOLO DELLE PROBABILITÀ ESPERIMENTO CASUALE: un esperimento si dice casuale quando gli esiti (manifestazioni o eventi) non possono essere previsti con certezza. PROVA: le ripetizioni, o occasioni
Esercizi di Probabilità e Statistica
Esercizi di Probabilità e Statistica Samuel Rota Bulò 6 giugno 26 Statistica Esercizio Sia {X n } n una famiglia di v.a. di media µ e varianza σ 2. Verificare che X = n n X i σ 2 = n (X i µ) 2 S 2 = n
FENOMENI CASUALI. fenomeni casuali
PROBABILITÀ 94 FENOMENI CASUALI La probabilità si occupa di fenomeni casuali fenomeni di cui, a priori, non si sa quale esito si verificherà. Esempio Lancio di una moneta Testa o Croce? 95 DEFINIZIONI
UNIVERSITÀ di ROMA TOR VERGATA
UNIVERSITÀ di ROMA TOR VERGATA Corso di Statistica, anno 2010-11 P.Baldi Lista di esercizi 3. Corso di Laurea in Biotecnologie Esercizio 1 Una v.a. X segue una legge N(2, ). Calcolare a1) P(X 1) a2) P(2
b) E necessario formulare delle ipotesi per calcolare l intervallo di confidenza ottenuto al punto a? (motivare brevemente la risposta):
ESERCIZIO 1 Una grande banca vuole stimare l ammontare medio di denaro che deve essere corrisposto dai correntisti che hanno il conto scoperto. Si seleziona un campione di 100 clienti su cui si osserva
esperimento casuale: è un esperimento condotto sotto l effetto del caso; evento elementare: ciascuno dei possibili esiti di un esperimento casuale;
Capitolo 15 Suggerimenti agli esercizi a cura di Elena Siletti Esercizio 15.1: Suggerimento Si ricordi che: esperimento casuale: è un esperimento condotto sotto l effetto del caso; evento elementare: ciascuno
Distribuzione di Probabilità
Distribuzione di Probabilità Sia X variabile con valori discreti X 1, X 2,..., X N aventi probabilità p 1, p 2,..., p N ( i p i = 1) (X variabile discreta aleatoria, o stocastica, o casuale, random) Funzione
STATISTICA A-K (2014) Soluzione esercizi da svolgere prima settimana
STATISTICA A-K (2014) Soluzione esercizi da svolgere prima settimana Classificazione di 80 aziende in base a: X = numero di dipendenti Y = fatturato (in milioni di euro) X \ Y 0,5 1 1 2 2 4 4 20 Totale
Il Corso di Fisica per Scienze Biologiche
Il Corso di Fisica per Scienze Biologiche Ø Prof. Attilio Santocchia Ø Ufficio presso il Dipartimento di Fisica (Quinto Piano) Tel. 75-585 278 Ø E-mail: [email protected] Ø Web: http://www.fisica.unipg.it/~attilio.santocchia/
STATISTICA ESERCITAZIONE. 1) Specificare la distribuzione di probabilità della variabile e rappresentarla graficamente;
0.00 0.05 0.10 0.15 0.20 STATISTICA ESERCITAZIONE Dott. Giuseppe Pandolfo 4 Maggio 2015 Esercizio 1 (Uniforme discreta) Si consideri l esperimento lancio di un dado non truccato. Sia X la variabile casuale
CALCOLO DELLE PROBABILITA - 24 Giugno 2015 CdL in STAD, SIGAD Compito intero Seconda prova in itinere: esercizi 4,5,6.
Cognome e Nome: Matricola CdS CALCOLO DELLE PROBABILITA - 4 Giugno 5 CdL in STAD, SIGAD Compito intero Seconda prova in itinere: esercizi 4,5, Motivare dettagliatamente le risposte su fogli allegati e
Variabile casuale Normale
Variabile casuale Normale La var. casuale Normale (o Gaussiana) è considerata la più importante distribuzione Statistica per le innumerevoli Applicazioni e per le rilevanti proprietà di cui gode L'importanza
DISTRIBUZIONI DI PROBABILITA
DISTRIBUZIONI DI PROBABILITA Nell associare ai risultati di un esperimento un valore numerico si costruisce una variabile casuale (o aleatoria, o stocastica). Ogni variabile casuale ha una corrispondente
Variabili aleatorie continue
Variabili aleatorie continue Per descrivere la distribuzione di una variabile aleatoria continua, non si può più assegnare una probabilità positiva ad ogni valore possibile. Si assume allora di poter specificare
1 Esercizi per l esame finale
1 Esercizi per l esame finale 1 1 Esercizi per l esame finale 1.1 Stima puntuale 1 Sia (X 1,..., X n ) un campione casuale estratto da una distribuzione U[0, θ], θ > 0. (a) Scrivere la funzione di verosimiglianza
Esercizi su variabili aleatorie discrete
Esercizi su variabili aleatorie discrete Esercizio 1. Data la variabile aleatoria discreta X, caratterizzata dalla seguente rappresentazione nello spazio degli stati: 1 0,25 X = { 0 0,50 1 0,25 calcolare
LABORATORIO DI PROBABILITA E STATISTICA Docente: Bruno Gobbi
UNIVERSITA DEGLI STUDI DI VERONA LABORATORIO DI PROBABILITA E STATISTICA Docente: Bruno Gobbi 5 VARIABILI CASUALI DISCRETE LA VARIABILE BINOMIALE Sia n N e sia k n. La probabilità di osservare k successi
P(A B C) = P(A)+P(B)+P(C) P(A B) P(A C) P(C B)+P(A B C). (E.2)
QUALCHE ESERCIZIO di PROBABILITÀ E 1 Dimostrare che: P(A B) = P(A) + P(B) P(A B) (E.1) P(A B C) = P(A)+P(B)+P(C) P(A B) P(A C) P(C B)+P(A B C). (E.2) E 2 Dati due eventi A e B tali che P(A) = 3/4 e P(B)
Due variabili aleatorie X ed Y si dicono indipendenti se comunque dati due numeri reali a e b si ha. P {X = a, Y = b} = P {X = a}p {Y = b}
Due variabili aleatorie X ed Y si dicono indipendenti se comunque dati due numeri reali a e b si ha P {X = a, Y = b} = P {X = a}p {Y = b} Una variabile aleatoria χ che assume i soli valori 1, 2,..., n
ESERCIZI SU EVENTI E VARIABILI ALEATORIE DISCRETE
ESERCIZI SU EVENTI E VARIABILI ALEATORIE DISCRETE Docente titolare: Irene Crimaldi 26 novembre 2009 Es.1 Supponendo che la probabilità di nascita maschile e femminile sia la stessa, calcolare la probabilità
3 CERTAMEN NAZIONALE DI PROBABILITA E STATISTICA FELICE FUSATO Fase di Istituto 7 febbraio 2012
3 CERTAMEN NAZIONALE DI PROBABILITA E STATISTICA FELICE FUSATO Fase di Istituto 7 febbraio 2012 1) Non sfogliare questo fascicolo finché l insegnante non ti dice di farlo. 2) E ammesso l utilizzo di calcolatrici
Statistica Inferenziale
Statistica Inferenziale a) L Intervallo di Confidenza b) La distribuzione t di Student c) La differenza delle medie d) L intervallo di confidenza della differenza Prof Paolo Chiodini Dalla Popolazione
Modelli descrittivi, statistica e simulazione
Modelli descrittivi, statistica e simulazione Master per Smart Logistics specialist Roberto Cordone ([email protected]) Statistica inferenziale Cernusco S.N., giovedì 18 febbraio 2016 (9.00/13.00)
Vedi: Probabilità e cenni di statistica
Vedi: http://www.df.unipi.it/~andreozz/labcia.html Probabilità e cenni di statistica Funzione di distribuzione discreta Istogrammi e normalizzazione Distribuzioni continue Nel caso continuo la probabilità
STATISTICA AZIENDALE Modulo Controllo di Qualità
STATISTICA AZIENDALE Modulo Controllo di Qualità A.A. 009/10 - Sottoperiodo PROA DEL 14 MAGGIO 010 Cognome:.. Nome: Matricola:.. AERTENZE: Negli esercizi in cui sono richiesti calcoli riportare tutte la
LEZIONI DI STATISTICA MEDICA
LEZIONI DI STATISTICA MEDICA A.A. 2010/2011 - Distribuzione binomiale - Distribuzione Normale Sezione di Epidemiologia & Statistica Medica Università degli Studi di Verona DISTRIBUZIONI TEORICHE DI PROBABILITA
P(X > 0) = P(X 1 = 1) + P(X 1 = 1, X 2 = 1, X 3 = 1) =
1 Esercizi settimana 3 Esercizio 1. Un urna contiene 8 palline bianche, 4 nere e rosse. Si assuma di vincere e ogni volta che si estragga una pallina nera, si perda 1e per ogni pallina bianca e non succeda
Alcuni esercizi di probabilità (aggiornato al )
COMPL. DI ANALISI MATEMATICA ED ELEMENTI DI PROBABILITA (L-Z) C.d.L. Ing. Civile - Università di Bologna A.A.2009-200 - Prof. G.Cupini Alcuni esercizi di probabilità (aggiornato al 2-7-200) (Grazie agli
DISTRIBUZIONE NORMALE (1)
DISTRIBUZIONE NORMALE (1) Nella popolazione generale molte variabili presentano una distribuzione a forma di campana, bene caratterizzata da un punto di vista matematico, chiamata distribuzione normale
Distribuzioni di probabilità
Distribuzioni di probabilità Distribuzioni di probabilità L analisi statistica spesso studia i fenomeni collettivi confrontandoli con modelli teorici di riferimento. Tra di essi, vedremo: la distribuzione
Variabili aleatorie Parte I
Variabili aleatorie Parte I Variabili aleatorie Scalari - Definizione Funzioni di distribuzione di una VA Funzioni densità di probabilità di una VA Indici di posizione di una distribuzione Indici di dispersione
STATISTICA SERALE (NOF) Appello del 12/07/12 Effettuare i calcoli arrotondando alla seconda cifra decimale A PARTE PRIMA
Appello del 12/07/12 A PARTE PRIMA 1) Enunciare e dimostrare le due proprietà della media aritmetica. 2) Il prospetto che segue si riferisce ad una parte della distribuzione per età delle donne italiane
ESERCIZI STATISTICA DESCRITTIVA
ESERCIZI STATISTICA DESCRITTIVA Frequenze assolute e relative Titolo di studio Frequenze assolute Frequenze relative Proporzioni Percentuali Senza titolo 30 0,025 2,5 Lic. elementare 509 0,424 42,4 Licenza
Istituzioni di Statistica e Statistica Economica
Istituzioni di Statistica e Statistica Economica Università degli Studi di Perugia Facoltà di Economia, Assisi, a.a. 2013/14 Esercitazione n. 1 A. I dati riportati nella seguente tabella si riferiscono
MATEMATICA FINANZIARIA RISCHI: RAPPRESENTAZIONE E GESTIONE (CENNI)
Matematica Finanziaria, a.a. 2011/2012 p. 1/315 UNIVERSITA DEGLI STUDI DI PARMA FACOLTA DI ECONOMIA MATEMATICA FINANZIARIA RISCHI: RAPPRESENTAZIONE E GESTIONE (CENNI) ANNAMARIA OLIVIERI a.a. 2011/2012
Esercitazione del 31/01/2012 Istituzioni di Calcolo delle Probabilità
Esercitazione del 1/01/2012 Istituzioni di Calcolo delle Probabilità Esercizio 1 Vengono lanciati due dadi regolari a 6 facce. (a) Calcolare la probabilità che la somma dei valori ottenuti sia 9? (b) Calcolare
Intervalli di confidenza
Probabilità e Statistica Esercitazioni a.a. 2006/2007 C.d.L.: Ingegneria per l Ambiente ed il Territorio, Ingegneria Civile, Ingegneria Gestionale, Ingegneria dell Informazione C.d.L.S.: Ingegneria Civile
1 4 Esempio 2. Si determini la distribuzione di probabilità della variabile casuale X = punteggio ottenuto lanciando un dado. Si ha immediatamente:
CAPITOLO TERZO VARIABILI CASUALI. Le variabili casuali e la loro distribuzione di probabilità In molte situazioni, dato uno spazio di probabilità S, si è interessati non tanto agli eventi elementari (o
UNIVERSITÀ DEGLI STUDI DI PERUGIA
SIGI, Statistica II, esercitazione n. 3 1 UNIVERSITÀ DEGLI STUDI DI PERUGIA FACOLTÀ DI ECONOMIA CORSO DI LAUREA S.I.G.I. STATISTICA II Esercitazione n. 3 Esercizio 1 Una v.c. X si dice v.c. esponenziale
Il campionamento e l inferenza. Il campionamento e l inferenza
Il campionamento e l inferenza Popolazione Campione Dai dati osservati mediante scelta campionaria si giunge ad affermazioni che riguardano la popolazione da cui essi sono stati prescelti Il campionamento
Variabili casuali ad una dimensione Testi degli esercizi. Variabili casuali ad una dimensione a.a. 2012/2013 1
Variabili casuali ad una dimensione Testi degli esercizi 1 Costruzione di variabile casuale discreta Esercizio 1. Sia data un urna contenente 3 biglie rosse, 2 biglie bianche ed una biglia nera. Ad ogni
Teoria della probabilità Variabili casuali
Corso di Laurea a Distanza in Ingegneria Elettrica Corso di Comunicazioni Elettriche Teoria della probabilità Variabili casuali A.A. 2008-09 Alberto Perotti DELEN-DAUIN Variabile casuale Una variabile
Esame di Statistica (10 o 12 CFU) CLEF 11 febbraio 2016
Esame di Statistica 0 o CFU) CLEF febbraio 06 Esercizio Si considerino i seguenti dati, relativi a 00 clienti di una banca a cui è stato concesso un prestito, classificati per età e per esito dell operazione
PROVA SCRITTA DI STATISTICA. cod CLEA-CLAPI-CLEFIN-CLELI cod CLEA-CLAPI-CLEFIN-CLEMIT. 5 Novembre 2003 SOLUZIONI MOD.
PROVA SCRITTA DI STATISTICA cod. 4038 CLEA-CLAPI-CLEFIN-CLELI cod. 5047 CLEA-CLAPI-CLEFIN-CLEMIT 5 Novembre 003 SOLUZIONI MOD. A In 8 facoltà di un ateneo italiano vengono rilevati i seguenti dati campionari
Capitolo 6. La distribuzione normale
Levine, Krehbiel, Berenson Statistica II ed. 2006 Apogeo Capitolo 6 La distribuzione normale Insegnamento: Statistica Corso di Laurea Triennale in Ingegneria Gestionale Facoltà di Ingegneria, Università
Esercitazioni di Statistica
Esercitazioni di Statistica Stima Puntuale Prof. Livia De Giovanni [email protected] Esercizio In ciascuno dei casi seguenti determinare quale tra i due stimatori S e T per il parametro θ è distorto
b = 1 2σ 3. La lunghezza di una barra è un numero aleatorio X con densità della forma 0, x 0, 0 < x 1 a = 1 F (x) = 2 2x 1 x2
CALCOLO DELLE PROBABILITÀ E STATISTICA - 0 gennaio 2002 Informatica (N.O.) (Canali 4) esercizi -4 Vecchio Ordinamento esercizi -6. Da un lotto contenente 4 pezzi buoni e 2 difettosi si estraggono senza
Metodi quantitativi per i mercati finanziari
Metodi quantitativi per i mercati finanziari Esercizi di probabilità Spazi di probabilità Ex. 1 Sia Ω = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}. Siano A e B sottoinsiemi di Ω tali che A = {numeri pari},
Capitolo 6 La distribuzione normale
Levine, Krehbiel, Berenson Statistica Casa editrice: Pearson Capitolo 6 La distribuzione normale Insegnamento: Statistica Corso di Laurea Triennale in Economia Dipartimento di Economia e Management, Università
CORSO DI STATISTICA (parte 2) - ESERCITAZIONE 3
CORSO DI STATISTICA (parte 2) - ESERCITAZIONE 3 Dott.ssa Antonella Costanzo [email protected] Esercizio 1. La v.c. Uniforme Continua Secondo alcuni sondaggi sul sito della Apple (technical support site,
DISTRIBUZIONI DI PROBABILITA
DISTRIBUZIONI DI PROBABILITA La distribuzione di probabilità e un modello matematico, uno schema di riferimento, che ha caratteristiche note e che può essere utilizzato per rispondere a delle domande derivate
Un esempio. Ipotesi statistica: supposizione riguardante: un parametro della popolazione. la forma della distribuzione della popolazione
La verifica delle ipotesi In molte circostanze il ricercatore si trova a dover decidere quale, tra le diverse situazioni possibili riferibili alla popolazione, è quella meglio sostenuta dalle evidenze
Esercitazione 4 del corso di Statistica 2 Prof. Domenico Vistocco
Esercitazione 4 del corso di Statistica 2 Prof. Domenico Vistocco Alfonso Iodice D Enza May 23, 2007 1 Esercizio Si consideri un mazzo di carte francesi di 2 carte e si supponga di stare giocando a poker.
Distribuzioni e inferenza statistica
Distribuzioni e inferenza statistica Distribuzioni di probabilità L analisi statistica spesso studia i fenomeni collettivi confrontandoli con modelli teorici di riferimento. Tra di essi, vedremo: la distribuzione
LA DISTRIBUZIONE NORMALE o DI GAUSS
p. / LA DISTRIBUZIONE NORMALE o DI GAUSS È una delle più importanti distribuzioni di variabili casuali continue p. / LA DISTRIBUZIONE NORMALE o DI GAUSS È una delle più importanti distribuzioni di variabili
Variabili aleatorie. Variabili aleatorie e variabili statistiche
Variabili aleatorie Variabili aleatorie e variabili statistiche Nelle prime lezioni, abbiamo visto il concetto di variabile statistica : Un oggetto o evento del mondo reale veniva associato a una certa
Ψ PSICOMETRIA. Corso di laurea triennale (classe 34) STATISTICA INFERENZIALE
Ψ PSICOMETRIA Corso di laurea triennale (classe 34) STATISTICA INFERENZIALE STATISTICA INFERENZIALE CAMPIONE caratteristiche conosciute POPOLAZIONE caratteristiche sconosciute STATISTICA INFERENZIALE STIMA
L indagine campionaria Lezione 3
Anno accademico 2007/08 L indagine campionaria Lezione 3 Docente: prof. Maurizio Pisati Variabile casuale Una variabile casuale è una quantità discreta o continua il cui valore è determinato dal risultato
Esercitazioni di Statistica
Esercitazioni di Statistica Variabili casuali Prof. Livia De Giovanni [email protected] Esercizio Determinare se le funzioni seguenti: 0.0 se x < 0. se x = g(x) = 0.5 se x = 0.7 se x = 3 se x =
Alcuni esercizi di probabilità e statistica
Alcuni esercizi di probabilità e statistica 1. Vi sono 2 urne, ciascuna contenente 10 palle. Nella prima urna ci sono 8 palle bianche e 2 nere. Nella seconda ve ne sono 7 bianche e 3 rosse. Qual è la probabilità
Esercitazione 8 del corso di Statistica 2
Esercitazione 8 del corso di Statistica Prof. Domenico Vistocco Dott.ssa Paola Costantini 6 Giugno 8 Decisione vera falsa è respinta Errore di I tipo Decisione corretta non è respinta Probabilità α Decisione
STATISTICA (2) ESERCITAZIONE 2. Dott.ssa Antonella Costanzo
STATISTICA (2) ESERCITAZIONE 2 5.02.2014 Dott.ssa Antonella Costanzo Esercizio 1. La v.c. Normale: uso delle tavole E noto che un certo tipo di dati si distribuiscono secondo una gaussiana di media 10
Catene di Markov - Foglio 1
Catene di Markov - Foglio 1 1. Una pedina si muove su un circuito circolare a 4 vertici, numerati da 1 a 4. La pedina si trova inizialmente nel vertice 1. Ad ogni passo un giocatore lancia un dado equilibrato:
a.a Esercitazioni di Statistica Medica e Biometria Corsi di Laurea triennali Ostetricia / Infermieristica Pediatrica I anno
a.a. 2007-2008 Esercitazioni di Statistica Medica e Biometria Corsi di Laurea triennali Ostetricia / Infermieristica Pediatrica I anno Dott.ssa Daniela Alessi [email protected] 1 Argomenti:
ESERCIZI SULLE CATENE DI MARKOV. Docente titolare: Irene Crimaldi 18/11/2009 P =
ESERCIZI SULLE CATENE DI MARKOV Docente titolare: Irene Crimaldi 8//9 ESERCIZIO Una catena di Markov (X n ) n con insieme degli stati S = {,,} ha matrice di transizione µ() =, µ() =, µ() =. a) Calcolare
Probabilità I Calcolo delle probabilità
Probabilità I Calcolo delle probabilità Nozioni di eventi. Definizioni di probabilità Calcolo di probabilità notevoli Probabilità condizionate Concetto di probabilità Cos'è una probabilità? Idea di massima:
STATISTICA ESERCITAZIONE
STATISTICA ESERCITAZIONE Dott. Giuseppe Pandolfo 1 Giugno 2015 Esercizio 1 Una fabbrica di scatole di cartone evade il 96% degli ordini entro un mese. Estraendo 300 campioni casuali di 300 consegne, in
