Distribuzione di Probabilità
|
|
|
- Vito Bonelli
- 9 anni fa
- Visualizzazioni
Transcript
1 Distribuzione di Probabilità Sia X variabile con valori discreti X 1, X 2,..., X N aventi probabilità p 1, p 2,..., p N ( i p i = 1) (X variabile discreta aleatoria, o stocastica, o casuale, random) Funzione di probabilità di X: P (X) tale che P (X = X i ) = p i Esempio: Lanciamo due dadi e denotiamo con X la somma di punti ottenuta. Allora si ha X P (X = X i )
2 Valore atteso (expected value) Valore atteso (Speranza Matematica) di una variabile X: E[X] = p 1 X 1 + p 2 X , +p N X N µ = E[X] si dice anche media della variabile X Esempio: Ogni settimana un padre dà al proprio figlio dei soldi come segue: lancia 3 monete da 2 Euro, e consegna al figlio quelle che cadono con il numero rivolto verso l alto. Quante monete il figlio si aspetta di avere? Sol. Si può definire X i = {i monete da 2 Euro ottenute }. Quindi E[X] = X 0 p 0 + X 1 p 1 + X 2 p 2 + X 3 p 3. Casi possibili (8 = 2 3 ): HTT, HTH, HHT, HHH, TTT, THT, TTH, THH Casi favorevoli: che venga 1 volta il numero sono C 3,1 = 3 e i casi per cui vengano 2 volte il numero sono C 3,2 = 3 37
3 p 0 = P (0 monete) = 1 8, p 1 = P (1 moneta) = 3 8, p 2 = P (2 monete) = 3 8, p 3 = P (3 monete) = 1 8 E[X] = = 6 8 = 3 4 Il ragazzo spera di ottenere 3 4 di moneta da due Euro (1.50 Euro) 38
4 Il valore atteso è una funzione Proprietà: Linearità. E[aX + b] = a E[X] + b, a, b costanti Valore atteso di funzioni di variabili: E[g(X)] = i g(x i )p i 39
5 Esempio: La variabile casuale X ha la distribuzione x P(X=x) Calcolare (a) E[X], (b) E[X 2 ] e (c) E[(X 1) 2 ]. Soluzione: (a) E[X] = ( 1) (0) (1) 0.2 = 0; (b) E[X 2 ] = (1) (0) (1) 0.2 = 0.4; (c) E[(X 1) 2 ] = ( 1 1) (0 1) (1 1) =
6 Varianza e Valore atteso La varianza è : σ 2 = V ar[x] = i p i (x i µ) 2 Osservazione. V ar[x] = E[(X µ) 2 ] V ar[x] = E[(X E[X]) 2 ) V ar[x] = E[(X µ) 2 ] = E[X 2 + µ 2 2µX] = E[X 2 ] + E[µ 2 ] 2µE[X] = E[X 2 ] + µ 2 2µ 2 = E[X 2 ] µ 2. 41
7 σ: deviazione standard Standardizzazione Trasformiamo una variabile casuale con media µ e varianza σ 2 in una variabile U con media 0 e varianza 1: Infatti si ottiene U = X µ σ E[U] = 1 σ E[X µ] = 1 σ (E[X] E[µ]) = 0 = µ U V ar[u] = E[(U µ U ) 2 ] = E[U 2 ] = 1 σ 2 E[(X µ)2 ] = 1 σ 2 V ar[x] = 1 42
8 Distribuzioni discrete di variabili casuali Distribuzioni: curve ipotetiche rappresentanti (approssimanti) il fenomeno Variabile: dati, probabilità,... X : variabile casuale P (X = r) : probabilità che l evento abbia valore r Distribuzione cumulativa: F (b) = P (X b) = b P (X = r) r=1 Mediana: M tale che P (X M) 1 2 e P (X M)
9 Distribuzione uniforme Contesto: tutti i valori X 1,..., X N hanno la stessa probabilità. Def. Una variabile casuale discreta X che prende i valori 1, 2,..., k e tale che P (X = r) = segue una distribuzione discreta uniforme. 1 k 0 r = 1,..., k 44
10 Media (Valore atteso): Distribuzione uniforme E[X] = k r 1 k = 1 k r=1 k r = 1 k r=1 k(k + 1) 2 = k
11 Esempio: Determinare la mediana della distribuzione discreta uniforme, per k = 3 e per k = 6. Sol. Per k = 3, un possibile candidato è 2. Si ha P (X 2) = 2 3 > 1 2 e P (X 2) = 2 3 > 1 2 per cui la mediana è effettivamente 2. Per k = 6, possibili candidati sono 3 e 4. Si ha P (X 3) = 1 2, P (X 3) = 2 3 P (X 4) = 2 3 P (X 4) = 1 2 Prendendo M = 3.5 (media di 3 e 4): P (X M) = 1 2 e P (X M) =
12 Sia X l evento con probabilità p Distribuzione binomiale La probabilità che X si verifichi esattamente r volte su N prove è ( ) N P (r) = p r (1 p) N r (7) r Def. Una variabile discreta casuale X si dice che segue una distribuzione binomiale se vale (7) Condizioni: 1. Un numero fisso N di prove 2. Due probabilità: p (successo) e (1 p) (insuccesso) 3. Prove indipendenti 4. La probabilità rimane costante durante tutte le prove 5. La variabile è il numero totale di successi in N prove. 47
13 Curve di distribuzioni binomiali per p = 1 2 e p = p=1/ p=1/2 P(X=r) numero di successi su N=10 prove 48
14 Distribuzione binomiale cumulativa Esempio: Qual è la probabilità di avere almeno 4 teste in 6 lanci di una moneta? Sol. Si ottiene come P (X 4) = P (teste = 4) + P (teste = 5) + P (teste = 6) = = In generale: F (b) = P (X b) = b P (X = r) r=0 49
15 binomiale perchè per r = 0, 1,..., N ogni P (X = r) corrisponde ai coefficienti dello sviluppo del binomio: (p + q) N = q N + C N,1 pq N 1 + C N 1,2 p 2 q N p N dove nel nostro caso q = 1 p 50
16 Esempio: In un processo produttivo, vengono ispezionati campioni di 10 elementi per ogni pacchetto, selezionati in modo casuale. Se il numero di elementi danneggiati è inferiore a 2, allora il il pacchetto è accettato, altrimenti il processo viene fermato per registrare la macchina. Determinare la probabilità che il pacchetto sia accettato quando la proporzione effettiva p di trovare elementi danneggiati sull intera produzione è (i) p = 0.04; (ii) p = Sol. La probabilità di trovare pacchetti con un numero di elementi danneggiati inferiore a 2 è dato da (1 p) (1 p) 9 p, quindi nel caso (i) si ottiene e per (ii) si ottiene
17 Alcune proprietà della distribuzione binomiale Media: E[X] = Varianza: N rp (X = r) = r=0 = pn N r=1 N N! r r!(n r)! pr (1 p) N r r=0 (N 1)! (r 1)!(N r)! pr 1 (1 p) N r = pn(p + (1 p)) N 1 = Np. σ 2 V ar[x] = Np(1 p) 52
18 Esempio: Determinare la probabilità che in una famiglia di 4 figli ci siano almeno 0, 1, 2, 3, 4 maschi, sapendo che la probabilità media della nascita di un maschio è p = Sol. Sia X=figli maschi in famiglia. La variabile X può assumere valori 0, 1, 2, 3, 4. Le relative probabilità sono ( ) 4 P (X = r) = C 4,r p r (1 p) 4 r, r = 0,..., 4 r per cui P (X = 0) = 0.05, P (X = 1) = 0.23, P (X = 2) = 0.37, P (X = 3) = 0.28 e P (X = 4) = Nota: La somma delle probabilità deve dare 1 se tutti i casi possibili sono considerati. 53
19 Esempio: Un pacchetto di 20 caramelle viene confezionato scegliendo casualmente da un grande contenitore contenente il 40% di caramelle gommose ed il resto di caramelle dure. Determinare la media (µ) e la deviazione standard (σ) del numero di caramelle gommose nel pacchetto. Determinare anche la probabilità che tale numero sia minore di (i) µ σ, (ii) µ 2σ. 54
20 Sol. Si ha µ = Np = = 8 e σ = Np(1 p) = (1 0.4) = Per ottenere la probabilità che il pacchetto contenga non più di µ σ = 5.81 caramelle gommose, si calcola la probabilità cumulativa P (X < µ σ) = P (X 5) = P (X = 0) + P (X = 1) + + P (X = 5) 5 ( ) 20 = (0.40) r (0.60) N r = r r=0 Per (ii) si ottiene P (X < µ 2σ) = P (X 3) =
Statistica. Alfonso Iodice D Enza
Statistica Alfonso Iodice D Enza [email protected] Università degli studi di Cassino () Statistica 1 / 27 Outline 1 () Statistica 2 / 27 Outline 1 2 () Statistica 2 / 27 Outline 1 2 3 () Statistica 2 /
Due variabili aleatorie X ed Y si dicono indipendenti se comunque dati due numeri reali a e b si ha. P {X = a, Y = b} = P {X = a}p {Y = b}
Due variabili aleatorie X ed Y si dicono indipendenti se comunque dati due numeri reali a e b si ha P {X = a, Y = b} = P {X = a}p {Y = b} Una variabile aleatoria χ che assume i soli valori 1, 2,..., n
Lezione 12. Statistica. Alfonso Iodice D Enza Università degli studi di Cassino. Lezione 12. A. Iodice.
discrete uniforme Bernoulli Poisson Statistica Alfonso Iodice D Enza [email protected] Università degli studi di Cassino () Statistica 1 / 56 Outline discrete uniforme Bernoulli Poisson 1 2 discrete 3
esperimento casuale: è un esperimento condotto sotto l effetto del caso; evento elementare: ciascuno dei possibili esiti di un esperimento casuale;
Capitolo 15 Suggerimenti agli esercizi a cura di Elena Siletti Esercizio 15.1: Suggerimento Si ricordi che: esperimento casuale: è un esperimento condotto sotto l effetto del caso; evento elementare: ciascuno
1 4 Esempio 2. Si determini la distribuzione di probabilità della variabile casuale X = punteggio ottenuto lanciando un dado. Si ha immediatamente:
CAPITOLO TERZO VARIABILI CASUALI. Le variabili casuali e la loro distribuzione di probabilità In molte situazioni, dato uno spazio di probabilità S, si è interessati non tanto agli eventi elementari (o
Variabili casuali ad una dimensione Testi degli esercizi. Variabili casuali ad una dimensione a.a. 2012/2013 1
Variabili casuali ad una dimensione Testi degli esercizi 1 Costruzione di variabile casuale discreta Esercizio 1. Sia data un urna contenente 3 biglie rosse, 2 biglie bianche ed una biglia nera. Ad ogni
ESERCITAZIONE 20 : VARIABILI ALEATORIE DISCRETE
ESERCITAZIONE 20 : VARIABILI ALEATORIE DISCRETE e-mail: [email protected] web: www.dm.unipi.it/ tommei Ricevimento: su appuntamento Dipartimento di Matematica, piano terra, studio 114 30 Aprile 2013 Esercizio
Vedi: Probabilità e cenni di statistica
Vedi: http://www.df.unipi.it/~andreozz/labcia.html Probabilità e cenni di statistica Funzione di distribuzione discreta Istogrammi e normalizzazione Distribuzioni continue Nel caso continuo la probabilità
Probabilità classica. Distribuzioni e leggi di probabilità. Probabilità frequentista. Probabilità soggettiva
Probabilità classica Distribuzioni e leggi di probabilità La probabilità di un evento casuale è il rapporto tra il numero dei casi favorevoli ed il numero dei casi possibili, purchè siano tutti equiprobabili.
Variabili aleatorie scalari
Metodi di Analisi dei Dati Sperimentali AA /2010 Pier Luca Maffettone Variabili aleatorie scalari Sommario della Introduzione CDF e PDF: definizione CDF e PDF: proprietà Distribuzioni uniforme e Gaussiana
FENOMENI CASUALI. fenomeni casuali
PROBABILITÀ 94 FENOMENI CASUALI La probabilità si occupa di fenomeni casuali fenomeni di cui, a priori, non si sa quale esito si verificherà. Esempio Lancio di una moneta Testa o Croce? 95 DEFINIZIONI
Lezione 3 Calcolo delle probabilità
Lezione 3 Calcolo delle probabilità Definizione di probabilità La probabilità è lo studio degli esperimenti casuali e non deterministici Se lanciamo un dado sappiamo che cadrà ma non è certo che esca il
DISTRIBUZIONI DI PROBABILITA
DISTRIBUZIONI DI PROBABILITA Nell associare ai risultati di un esperimento un valore numerico si costruisce una variabile casuale (o aleatoria, o stocastica). Ogni variabile casuale ha una corrispondente
Università degli studi della Tuscia. Principi di Statistica dr. Luca Secondi A.A. 2014/2015. Esercitazione di riepilogo Variabili casuali
Università degli studi della Tuscia Principi di Statistica dr. Luca Secondi A.A. 014/015 Esercitazione di riepilogo Variabili casuali ESERCIZIO 1 Il peso delle compresse di un determinato medicinale si
UNIVERSITÀ di ROMA TOR VERGATA
UNIVERSITÀ di ROMA TOR VERGATA Corso di Statistica, anno 2010-11 P.Baldi Lista di esercizi 3. Corso di Laurea in Biotecnologie Esercizio 1 Una v.a. X segue una legge N(2, ). Calcolare a1) P(X 1) a2) P(2
ESERCIZI SU EVENTI E VARIABILI ALEATORIE DISCRETE
ESERCIZI SU EVENTI E VARIABILI ALEATORIE DISCRETE Docente titolare: Irene Crimaldi 26 novembre 2009 Es.1 Supponendo che la probabilità di nascita maschile e femminile sia la stessa, calcolare la probabilità
Statistica. Esercitazione 10. Alfonso Iodice D Enza [email protected]. Università degli studi di Cassino. Statistica. A. Iodice. V.C.
uniforme Bernoulli binomiale di Esercitazione 10 Alfonso Iodice D Enza [email protected] Università degli studi di Cassino () 1 / 55 Outline uniforme Bernoulli binomiale di 1 uniforme 2 Bernoulli 3 4
Matematica Applicata L-A Definizioni e teoremi
Definizioni e teoremi Settembre - Dicembre 2008 Definizioni e teoremi di statistica tratte dalle lezioni del corso di Matematica Applicata L- A alla facoltà di Ingegneria Elettronica e delle Telecomunicazioni
p k q n k = p n (k) = n 12 = 1 = 12 1 12 11 10 9 1 0,1208. q = 1 2 e si ha: p 12 (8) = 12 8 4
CAPITOLO QUARTO DISTRIBUZIONE BINOMIALE (O DI BERNOULLI) Molti degli esempi che abbiamo presentato nei capitoli precedenti possono essere pensati come casi particolari di uno schema generale di prove ripetute,
Esercizi Teoria della Probabilità
Esercizi Teoria della Probabilità Esercizio 1 Durante un corso universitario, uno studente prova a svolgere una serie di esercizi. La risposta agli esercizi è di tipo binario (SI/NO). Supponendo la completa
Il Corso di Fisica per Scienze Biologiche
Il Corso di Fisica per Scienze Biologiche Ø Prof. Attilio Santocchia Ø Ufficio presso il Dipartimento di Fisica (Quinto Piano) Tel. 75-585 278 Ø E-mail: [email protected] Ø Web: http://www.fisica.unipg.it/~attilio.santocchia/
STATISTICA: esercizi svolti sulle VARIABILI CASUALI
STATISTICA: esercizi svolti sulle VARIABILI CASUALI VARIABILI CASUALI 2 VARIABILI CASUALI. Variabili casuali generiche. Si supponga che un dado truccato, formato da sei facce contrassegnate dai numeri
Teoria della probabilità Variabili casuali
Corso di Laurea a Distanza in Ingegneria Elettrica Corso di Comunicazioni Elettriche Teoria della probabilità Variabili casuali A.A. 2008-09 Alberto Perotti DELEN-DAUIN Variabile casuale Una variabile
STATISTICA ESERCITAZIONE 9
STATISTICA ESERCITAZIONE 9 Dott. Giuseppe Pandolfo 19 Gennaio 2015 REGOLE DI CONTEGGIO Sequenze ordinate Sequenze non ordinate Estrazioni con ripetizione Estrazioni senza ripetizione Estrazioni con ripetizione
Probabilità 1, laurea triennale in Matematica I prova scritta sessione estiva a.a. 2008/09
Probabilità, laurea triennale in Matematica I prova scritta sessione estiva a.a. 2008/09. Due roulette regolari vengono azionate più volte; sia T il numero di volte che occorre azionare la prima roulette
PROVE SCRITTE DI MATEMATICA APPLICATA, ANNO 2006/07
PROVE SCRITTE DI MATEMATICA APPLICATA, ANNO 006/07 Esercizio 1 Prova scritta del 16/1/006 In un ufficio postale lavorano due impiegati che svolgono lo stesso compito in maniera indipendente, sbrigando
Note sulla probabilità
Note sulla probabilità Maurizio Loreti Dipartimento di Fisica Università degli Studi di Padova Anno Accademico 2002 03 1 La distribuzione del χ 2 0.6 0.5 N=1 N=2 N=3 N=5 N=10 0.4 0.3 0.2 0.1 0 0 5 10 15
Esercitazione 4 del corso di Statistica 2 Prof. Domenico Vistocco
Esercitazione 4 del corso di Statistica 2 Prof. Domenico Vistocco Alfonso Iodice D Enza May 23, 2007 1 Esercizio Si consideri un mazzo di carte francesi di 2 carte e si supponga di stare giocando a poker.
STATISTICA (2) ESERCITAZIONE 1. Dott.ssa Antonella Costanzo
STATISTICA (2) ESERCITAZIONE 1 29.01.2014 Dott.ssa Antonella Costanzo Esercizio 1. Modelli discreti di probabilità: le v.c. binomiale e geometrica (come caso particolare della v.c. binomiale negativa)
LEZIONI DI STATISTICA MEDICA
LEZIONI DI STATISTICA MEDICA A.A. 2010/2011 - Distribuzione binomiale - Distribuzione Normale Sezione di Epidemiologia & Statistica Medica Università degli Studi di Verona DISTRIBUZIONI TEORICHE DI PROBABILITA
Esercitazione n. 3 - Corso di STATISTICA - Università della Basilicata - a.a. 2011/12 Prof. Roberta Siciliano
Esercitazione n. 3 - Corso di STATISTICA - Università della Basilicata - a.a. 2011/12 Prof. Roberta Siciliano Esercizio 1 Una moneta viene lanciata 6 volte. Calcolare a) La probabilità che escano esattamente
Esercizi di Probabilità e Statistica
Esercizi di Probabilità e Statistica Samuel Rota Bulò 6 giugno 26 Statistica Esercizio Sia {X n } n una famiglia di v.a. di media µ e varianza σ 2. Verificare che X = n n X i σ 2 = n (X i µ) 2 S 2 = n
Esercizi svolti di statistica. Gianpaolo Gabutti
Esercizi svolti di statistica Gianpaolo Gabutti ([email protected]) 1 Introduzione Questo breve documento contiene lo svolgimento di alcuni esercizi di statistica da me svolti durante la preparazione
Verifica delle ipotesi: Binomiale
Verifica delle ipotesi: Binomiale Esercizio Nel collegio elettorale di una città, alle ultime elezioni il candidato A ha ottenuto il 4% delle preferenze mentre il candidato B il 6%. Nella nuova tornata
Esercizi di Calcolo combinatorio: disposizioni
Calcolo combinatorio: disposizioni La Big Triple all ippodromo del luogo consiste nell indicare il corretto ordine di arrivo dei cavalli classificati tra i primi tre nella nona corsa. Se ci sono 12 cavalli
Esercizi di Calcolo delle Probabilità
Esercizi di Calcolo delle Probabilità Versione del 1/05/005 Corso di Statistica Anno Accademico 00/05 Antonio Giannitrapani, Simone Paoletti Calcolo delle probabilità Esercizio 1. Un dado viene lanciato
Modulo di Statistica e Tecnologia (Dott. Giorgio Poletti
Laurea in Scienze dell Educazione Insegnamento di Pedagogia Sperimentale (Prof. Paolo Frignani) Modulo di Statistica e Tecnologia (Dott. Giorgio Poletti [email protected]) MEDIA aritmetica semplice
Calcolo delle Probabilità 2
Prova d esame di Calcolo delle Probabilità 2 Maggio 2006 Sia X una variabile aleatoria distribuita secondo la densità seguente ke x 1 x < 0 f X (x) = 1/2 0 x 1. 1. Determinare il valore del parametro reale
Statistica. Lezione 4
Università degli Studi del Piemonte Orientale Corso di Laurea in Infermieristica Corso integrato in Scienze della Prevenzione e dei Servizi sanitari Statistica Lezione 4 a.a 2011-2012 Dott.ssa Daniela
Il campionamento e l inferenza. Il campionamento e l inferenza
Il campionamento e l inferenza Popolazione Campione Dai dati osservati mediante scelta campionaria si giunge ad affermazioni che riguardano la popolazione da cui essi sono stati prescelti Il campionamento
MATEMATICA FINANZIARIA RISCHI: RAPPRESENTAZIONE E GESTIONE (CENNI)
Matematica Finanziaria, a.a. 2011/2012 p. 1/315 UNIVERSITA DEGLI STUDI DI PARMA FACOLTA DI ECONOMIA MATEMATICA FINANZIARIA RISCHI: RAPPRESENTAZIONE E GESTIONE (CENNI) ANNAMARIA OLIVIERI a.a. 2011/2012
Metodi quantitativi per i mercati finanziari
Metodi quantitativi per i mercati finanziari Esercizi di probabilità Spazi di probabilità Ex. 1 Sia Ω = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}. Siano A e B sottoinsiemi di Ω tali che A = {numeri pari},
Esercitazioni di Statistica
Esercitazioni di Statistica Variabili casuali Prof. Livia De Giovanni [email protected] Esercizio Determinare se le funzioni seguenti: 0.0 se x < 0. se x = g(x) = 0.5 se x = 0.7 se x = 3 se x =
Statistica ARGOMENTI. Calcolo combinatorio
Statistica ARGOMENTI Calcolo combinatorio Probabilità Disposizioni semplici Disposizioni con ripetizione Permutazioni semplici Permutazioni con ripetizioni Combinazioni semplici Assiomi di probabilità
Distribuzioni e inferenza statistica
Distribuzioni e inferenza statistica Distribuzioni di probabilità L analisi statistica spesso studia i fenomeni collettivi confrontandoli con modelli teorici di riferimento. Tra di essi, vedremo: la distribuzione
DISTRIBUZIONE NORMALE (1)
DISTRIBUZIONE NORMALE (1) Nella popolazione generale molte variabili presentano una distribuzione a forma di campana, bene caratterizzata da un punto di vista matematico, chiamata distribuzione normale
Corso di Fondamenti di TLC Esercizi di Probabilitá
Corso di Fondamenti di TLC Esercizi di Probabilitá Exercise 0.1 Unurna contiene 2 biglie bianche e 5 nere. Estraiamo una prima biglia: se nera la rimettiamo dentro con altre due dello stesso colore, se
Il processo inferenziale consente di generalizzare, con un certo grado di sicurezza, i risultati ottenuti osservando uno o più campioni
La statistica inferenziale Il processo inferenziale consente di generalizzare, con un certo grado di sicurezza, i risultati ottenuti osservando uno o più campioni E necessario però anche aggiungere con
Teorema del limite centrale TCL
Teorema del limite centrale TCL Questo importante teorema della statistica inferenziale si applica a qualsiasi variabile aleatoria che sia combinazione lineare di N variabili aleatorie le cui funzioni
UNIVERSITÀ DEGLI STUDI DI PERUGIA
SIGI, Statistica II, esercitazione n. 3 1 UNIVERSITÀ DEGLI STUDI DI PERUGIA FACOLTÀ DI ECONOMIA CORSO DI LAUREA S.I.G.I. STATISTICA II Esercitazione n. 3 Esercizio 1 Una v.c. X si dice v.c. esponenziale
ES.2.3. è pari ad 1. Una variabile aleatoria X che assume valori su tutta la retta si dice distribuita
ES.2.3 1 Distribuzione normale La funzione N(x; µ, σ 2 = 1 e 1 2( x µ σ 2 2πσ 2 si chiama densità di probabilità normale (o semplicemente curva normale con parametri µ e σ 2. La funzione è simmetrica rispetto
Modelli descrittivi, statistica e simulazione
Modelli descrittivi, statistica e simulazione Master per Smart Logistics specialist Roberto Cordone ([email protected]) Statistica inferenziale Cernusco S.N., giovedì 18 febbraio 2016 (9.00/13.00)
UNIVERSITÀ di ROMA TOR VERGATA
UNIVERSITÀ di ROMA TOR VERGATA Corso di Laurea Magistrale in Scienze della Nutrizione Umana Corso di Statistica Medica, anno 05-6 P.Baldi Lista di esercizi, 8 gennaio 06. Esercizio Si sa che in una schedina
UNIVERSITÀ di ROMA TOR VERGATA
UNIVERSITÀ di ROMA TOR VERGATA Corso di Statistica, anno 00- P.Baldi Lista di esercizi. Corso di Laurea in Biotecnologie Esercizio Si sa che in una schedina del totocalcio i tre simboli, X, compaiono con
Lezioni da Matematica I Calcolo differenziale, Algebra lineare, Probabilità e statistica G. Aletti & G. Naldi & L. Pareschi
Lezioni da Matematica I Calcolo differenziale, Algebra lineare, Probabilità e statistica G. Aletti & G. Naldi & L. Pareschi http://www.ateneonline.it/naldi matematica McGraw-Hill Capitolo 12, Modelli Probabilistici
Variabili aleatorie. Variabili aleatorie e variabili statistiche
Variabili aleatorie Variabili aleatorie e variabili statistiche Nelle prime lezioni, abbiamo visto il concetto di variabile statistica : Un oggetto o evento del mondo reale veniva associato a una certa
Modelli matematici di fenomeni aleatori Variabilità e casualità
Modelli matematici di fenomeni aleatori Variabilità e casualità La casualità è alla base della scelta degli individui che compongono un campione ai fini di un indagine statistica. La casualità è alla base
Istituzioni di Statistica e Statistica Economica
Istituzioni di Statistica e Statistica Economica Università degli Studi di Perugia Facoltà di Economia, Assisi, a.a. 2013/14 Esercitazione n. 1 A. I dati riportati nella seguente tabella si riferiscono
LE DISTRIBUZIONI CAMPIONARIE
LE DISTRIBUZIONI CAMPIONARIE Argomenti Principi e metodi dell inferenza statistica Metodi di campionamento Campioni casuali Le distribuzioni campionarie notevoli: La distribuzione della media campionaria
Laboratorio di Didattica di elaborazione dati 5 STIMA PUNTUALE DEI PARAMETRI. x i. SE = n.
5 STIMA PUNTUALE DEI PARAMETRI [Adattato dal libro Excel per la statistica di Enzo Belluco] Sia θ un parametro incognito della distribuzione di un carattere in una determinata popolazione. Il problema
Esercizi di Probabilità
Esercizi di Probabilità Annalisa Cerquetti - Sandra Fortini Vai all indice Istituto di Metodi Quantitativi, Viale Isonzo, 25, 2033 Milano, Italy. E-mail: [email protected],[email protected]
Introduzione alla probabilità
UNIVERSITÀ DI BOLOGNA FACOLTÀ DI MEDICINA VETERINARIA LAUREA IN SANITA E QUALITA DEI PRODOTTI DI ORIGINE ANIMALE Introduzione alla probabilità Probabilità = metodologia per lo studio di fenomeni aleatori
Esercitazioni di Statistica
Esercitazioni di Statistica Stima Puntuale Prof. Livia De Giovanni [email protected] Esercizio In ciascuno dei casi seguenti determinare quale tra i due stimatori S e T per il parametro θ è distorto
Lanciando un dado, il tuo compagno esclama: uscirà 1, 2, 3, 4, 5 o 6 oppure: uscirà il numero 4. uscirà il numero 9
Lanciando un dado, il tuo compagno esclama: uscirà 1, 2, 3, 4, 5 o 6 oppure: uscirà il numero 4 o ancora: uscirà il numero 9 Possiamo dire che le previsione del tuo compagno sono la prima certa, la seconda
STATISTICA ESERCITAZIONE
STATISTICA ESERCITAZIONE Dott. Giuseppe Pandolfo 1 Giugno 2015 Esercizio 1 Una fabbrica di scatole di cartone evade il 96% degli ordini entro un mese. Estraendo 300 campioni casuali di 300 consegne, in
CALCOLO DELLE PROBABILITA - 24 Giugno 2015 CdL in STAD, SIGAD Compito intero Seconda prova in itinere: esercizi 4,5,6.
Cognome e Nome: Matricola CdS CALCOLO DELLE PROBABILITA - 4 Giugno 5 CdL in STAD, SIGAD Compito intero Seconda prova in itinere: esercizi 4,5, Motivare dettagliatamente le risposte su fogli allegati e
Esercitazione: La distribuzione NORMALE
Esercitazione: La distribuzione NORMALE Uno dei più importanti esempi di distribuzione di probabilità continua è dato dalla distribuzione Normale (curva normale o distribuzione Gaussiana); è una delle
Distribuzioni di probabilità
Distribuzioni di probabilità Distribuzioni di probabilità L analisi statistica spesso studia i fenomeni collettivi confrontandoli con modelli teorici di riferimento. Tra di essi, vedremo: la distribuzione
Distribuzioni campionarie. Antonello Maruotti
Distribuzioni campionarie Antonello Maruotti Outline 1 Introduzione 2 Concetti base Si riprendano le considerazioni fatte nella parte di statistica descrittiva. Si vuole studiare una popolazione con riferimento
Un esempio. Ipotesi statistica: supposizione riguardante: un parametro della popolazione. la forma della distribuzione della popolazione
La verifica delle ipotesi In molte circostanze il ricercatore si trova a dover decidere quale, tra le diverse situazioni possibili riferibili alla popolazione, è quella meglio sostenuta dalle evidenze
PROBLEMI DI PROBABILITÀ
PROBLEMI DI PROBABILITÀ 1. Si dispongono a caso su uno scaffale sette libri, dei quali tre trattano di matematica. Qual è la probabilità che i tre libri di matematica si vengano a trovare l uno accanto
TEST DI AUTOVALUTAZIONE APPROSSIMAZIONE NORMALE
TEST DI AUTOVALUTAZIONE APPROSSIMAZIONE NORMALE I diritti d autore sono riservati. Ogni sfruttamento commerciale non autorizzato sarà perseguito. Metodi statistici per la biologia Parte A. Sia X, X,...
VARIABILI ALEATORIE CONTINUE
VARIABILI ALEATORIE CONTINUE Se X è una variabile aleatoria continua, la probabilità che X assuma un certo valore x fissato è in generale zero, quindi non ha senso definire una distribuzione di probabilità
Esercitazione del 31/01/2012 Istituzioni di Calcolo delle Probabilità
Esercitazione del 1/01/2012 Istituzioni di Calcolo delle Probabilità Esercizio 1 Vengono lanciati due dadi regolari a 6 facce. (a) Calcolare la probabilità che la somma dei valori ottenuti sia 9? (b) Calcolare
Approssimazione normale alla distribuzione binomiale
Approssimazione normale alla distribuzione binomiale P b (X r) costoso P b (X r) P(X r) per N grande Teorema: Se la variabile casuale X ha una distribuzione binomiale con parametri N e p, allora, per N
Analisi della varianza
Analisi della varianza Prof. Giuseppe Verlato Sezione di Epidemiologia e Statistica Medica, Università di Verona ANALISI DELLA VARIANZA - 1 Abbiamo k gruppi, con un numero variabile di unità statistiche.
ESERCIZI DI CALCOLO PROBABILITÀ DISTRIBUZIONI DOPPIE E NOTEVOLI
Variabili bidimensionali ESERCIZI DI CALCOLO PROBABILITÀ DISTRIBUZIONI DOPPIE E NOTEVOLI 1) Siano X 1 e X 2 due variabili casuali indipendenti che possono assumere valori 0, 1 e 3 rispettivamente con probabilità
LA DISTRIBUZIONE NORMALE ESERCITAZIONE
LA DISTRIBUZIONE NORMALE ESERCITAZIONE Esercizio 1 Se si suppone che, nella popolazione degli adulti, il livello di acido urico (mg/100 ml) segua una distribuzione gaussiana con media e d.s. rispettivamente
Variabili aleatorie gaussiane
Variabili aleatorie gaussiane La distribuzione normale (riconoscibile dalla curva a forma di campana) è la più usata tra tutte le distribuzioni, perché molte distribuzioni che ricorrono naturalmente sono
Statistica descrittiva II
Probabilità e Statistica Esercitazioni a.a. 009/010 C.d.L.: Ingegneria Elettronica e delle Telecomunicazioni, Ingegneria Informatica Statistica descrittiva II Ines Campa Probabilità e Statistica - Esercitazioni
