I PROBLEMI DI MASSIMO E DI MINIMO
|
|
|
- Amerigo Caputo
- 9 anni fa
- Visualizzazioni
Transcript
1 I PROBLEMI DI MASSIMO E DI MINIMO Souzioni di pobemi ttti d ibo: Coso Bse Bu di Mtemti, vo. 5 [1] (Pobem n. pg. 1 ) Individu i punto de ett xy5 pe i que è minim distnz d oigine degi ssi oodinti. Consideimo un punto geneio P pptenente ett : x y 5. Esso oodinte geneie ( x; x) distnz de punto geneio P ( x; x) 5. Consideimo o funzione obiettivo d(x) e espime 5 de ett vie de siss x de punto. Indito on O(; ) oigine de sistem di ifeimento tesino, fimente si iv e: d (x) PO x ( 5 x) x 5 x x 5x x 5 on x R Deteminimo o i minimo ssouto de funzione. A t fine oimo deivt d (x) de funzione obiettivo d(x). d' (x) 1 x 5x x 5 ( 1 ) Studimo o i segno de deivt d (x). A t poposito si ossevi e i dindo denomintoe è sempe positivo, essendo un poinomio di seondo gdo on 5> e ( ) ( 5)( 5) 1 <, petnto die 5x x 5 è obie pe quunque x ed è positiv. I segno di d (x) o oinide on queo de numetoe 1x, pe ui si : x 1x ; 1 ; x x d' (x) Andmento di d(x) D gfio de segno di d (x) si dedue e d(x) un minimo pe x. L distnz minim tovt ve dunque: d( ) 5 ( ) ( ) Mente i punto eto oodinte: ( ; 5 ( ) ) ( ;1)
2 [] Pobem n. pg. F tutti i iindi insivibii in un sfe di ggio e misu, detemin queo di supefiie tee mssim. I iindi insitti ne sfe nno e ionfeenze di bse su sfe e i oo sse pssnte pe i ento de sfe. Noto i ggio de sfe, un iindo insitto è deteminto qundo si onose ngoo α e i ggio de sfe CA fom on sse de iindo CH, essendo H α A C i ento de sfe e A un punto su un ionfeenz di bse de iindo. Si ossevi e α può ssumee soo voi ompesi t e. Deteminimo o funzione obiettivo e espime supefiie tee de iindo in funzione de pmeto α. D disegno si iv e supefiie tee de iindo S ( α ), e si ottiene motipindo ionfeenz di bse pe tezz de iindo, è dt d: ( α ) ( senα ) ( os α ) S HA CH senα os α Ceimo o i mssimo ssouto de funzione obiettivo S ( α ) ne intevo: α. A t fine, ome di onsueto oimo deivt pim de funzione obiettivo. S' ( α ) ( os α sen α ) I segno di ( α ) utim espessione. S oinide on i segno di os α sen α, petnto studimo i segno di quest ' os α sen α Dividendo pe sen α > si ottiene: tg α 1 e isovimo ne inognit tg α. tg α 1 tg α 1 tg α ± tg α Pssndo inognit α si : tg α 1 tg α 1 Pobemi di mssimo e di minimo /7
3 pe ui, imitndoi intevo α, isut: α S' ( α ) Andmento di S ( α ) Do studio de segno di S ( α ), isut e ( α ) ' S un mssimo ssouto pe α. I iindo insitto ne sfe petnto isut equiteo (i dimeto di bse è ugue tezz). I voe mssimo de supefiie tee è ugue : S ( α ) sen os. [] Pobem n. 1 pg. 8 Con un tone ettngoe di dimensioni 5 e m, si vuoe ostuie on oppotuni itgi e piegtue un sto ius. Detemine ungezz dee te dimensioni de sto in modo e i suo voume si mssimo. Tgi Piegtue b b D figu si iv immeditmente e i voume de sto ius è dto d: b. Sempe d figu, tenuto onto e i to mggioe misu 5 m e queo minoe m, isut: bb 5 e,. Tenendo onto di queste ezioni i voume de sto può essee espesso ttveso un so dee te dimensioni, inftti, poste sistem e utime due ezioni, si ottiene: b b 5 ; b 5 ; 5 b d ui si iv: 5 ( ) on. Sviuppimo o i oi pe (). () 5 ( ) 1 5 1; () 1 Pobemi di mssimo e di minimo /7
4 Coimo o deivt pim pe deteminzione de mssimo ssouto. ' () 18 1 Studimo o i segno de deivt pim: ' () , 5 ± 5 1 Come si evine d gfio de segno di ' (), () un mssimo pe, e soddisf i imiti imposti d pobem, d ui si iv: ' ( ) Andmento di( ) b [] Pobem n. pg. 11 Individu due numei ui somm è e pe i qui somm dei qudti è minim. Cimndo on x e on y due quunque di questi numei, si : x y y x. Cimndo on S somm dei qudti di questi numei si : S x y, posto y x si ottiene: ( ) x S x x x x x x Coimo o i minimo ssouto di quest funzione medinte o studio de segno de su deivt pim. S ' x S ' x x x 1 1 x S' ( x) Andmento di S( x) Come si evine d gfio de segno de deivt pim S (x), S(x) un minimo ssouto in x1, d ui si iv y11. Ripitondo, i due numei eti sono: 1 e 1. [5] Pobem n. pg. 1 Un settoe ioe di ggio m, è o sviuppo de supefiie tee di un ono. ) Detemine mpiezz de ngoo ento de settoe in modo e i ono bbi voume mssimo; b) Ne ono tovto insivi i iindo di voume mssimo e detemin te voume. Pobemi di mssimo e di minimo /7
5 m α m () I voume di un ono è ugue un tezo de e de eio di bse, pe tezz. In fomue: 1 ( ) De ono noi onosimo potem m, mente su tezz e i ggio de bse sono biti m non indipendenti, ne senso e ssegnto uno dei due, i estnte eemento isut deteminto pe i ftto e deve sussistee seguente ezione e si desume d teoem di Pitgo etivo tingoo ettngoo di teti, e ipotenus potem de ono. Pe qunto detto ve ezione: on. Pe qunto ppen sitto, funzione obiettivo () isut dt d: 1 1 ( ) 1 Ceimo i mssimo de funzione obiettivo () ttveso o studio de segno de su deivt pim. v ' () ' () ± Come si evine d gfio de segno de deivt pim (), i oume de ono ssume i voe mssimo pe e isut ugue : ' ( ) Andmento di( ) mx L ngoo α ento de settoe ioe ve : Pobemi di mssimo e di minimo 5/7
6 α (b) I voume di un iindo è dto d e di bse pe tezz, ossi: iindo Poié i iindo è insitto ne ono, su tezz non può supee que de ono, petnto deve essee:. Ane i ggio di bse de iindo non può supee i ggio de ionfeenz di bse de ono in ui è insitto, petnto deve essee:. D figu to si evine e i tingoi ABC e ADE sono simii e petnto è possibie ive un ezione t gi eementi ed de iindo A C E B D Sezione vetie ente de iindo insitto e gi eementi ed de ono, peismente, d simiitudine itt si : BC DE AB AD D quest ezione si può espimee in funzione di e ttveso quest, i voume de iindo in funzione de soo pmeto. L funzione voume, de vibie ostituise nost funzione obiettivo di ui dobbimo oe i voe mssimo. Seguono o i oi. Coo di in funzione di : ( ) Coo de funzione obiettivo: iindo ( ) Coo de deivt de funzione obiettivo: ' iindo( ) Studio de segno de deivt: ' iindo( ) Pobemi di mssimo e di minimo /7
7 Pobemi di mssimo e di minimo 7/7 ( ) ' ( ) di Andmento I voume mssimo de iindo insitto ne ono si pe m. I voume mssimo de iindo insitto ve: iindo,mx 1 iindo,mx m.
Geometria elementare. Sezione Prima Geometria nel piano
pitolo 3 Geometi elemente Sezione Pim Geometi nel pino 1 Enti geometii fondmentli 113 on il temine Geometi, pol ompost di oigine ge he signifi lettelmente misuzione dell te, s intende l sienz zionle he
Angoli e funzioni. goniometriche
UNITÀ 1 ngoli e funzioni goniometihe TEORI 1 Definizioni di ngolo Misu degli ngoli 3 Funzioni goniometihe seno e oseno 4 Funzioni goniometihe tngente e otngente 5 Vloi delle funzioni goniometihe 6 Gfii
11. Geometria piana ( ) ( ) 1. Formule fondamentali. Rettangolo. A = b = h = = b h. b = base h = altezza. Quadrato
11. Geometi pin 1. Fomule fonmentli Rettngolo = h = h = h p= + h p= + h h= p = p h + ( ) = h = h h = = se = igonle p = peimeto h = ltezz = e p = semipeimeto Quto = l l = = l l = l = lto = igonle = e p
www.scuolainweb.altervista.org Problemi di Fisica La Dinamica
www.suolinweb.ltevist.og L Dinmi Poblemi di isi L Dinmi PROBLEA N. Un opo di mss m 4 kg viene spostto on un foz ostnte 3 N su un supefiie piv di ttito pe un ttto s,3 m. Supponendo he il opo inizilmente
Maturità scientifica, corso di ordinamento, sessione ordinaria 2000-2001
Mtemtic per l nuov mturità scientific A. Bernrdo M. Pedone Mturità scientific, corso di ordinmento, sessione ordinri 000-001 PROBLEMA 1 Si consideri l seguente relzione tr le vribili reli x, y: 1 1 1 +
Momento di una forza rispettto ad un punto
Momento di un fo ispettto d un punto Rihimimo lune delle definiioni e popietà sui vettoi già disusse ll iniio del oso Podotto vettoile: ϑ ϑ sin sin θ Il vettoe è dietto lungo l pependiole l pino individuto
13. EQUAZIONI ALGEBRICHE
G. Smmito, A. Bernrdo, Formulrio di mtemti Equzioni lgerihe F. Cimolin, L. Brlett, L. Lussrdi. EQUAZIONI ALGEBRICHE. Prinipi di equivlenz Si die identità un'uguglinz tr due espressioni ontenenti un o più
8 Equazioni parametriche di II grado
Equzioni prmetrihe di II grdo Un equzione he oltre ll inognit (o lle inognite) ontiene ltre lettere (un o più) si die letterri o prmetri e le lettere sono himte, nhe, prmetri; si suppong he l equzione
VERSO L ESAME DI STATO LA DERIVATA DI UNA FUNZIONE
VERSO L ESAME DI STATO LA DERIVATA DI UNA FUNZIONE Soluzioni di quesiti e prolemi trtti dl Corso Bse Blu di Mtemti volume 5 [] (Es. n. 8 pg. 9 V) Dell prol f ( ) si hnno le seguenti informzioni, tutte
GRANDEZZE MAGNETICHE Prof. Chirizzi Marco www.elettrone.altervista.org [email protected]
Soenoide GRANDEZZE MAGNETICHE Pof. Chiizzi Maco www.eettone.atevista.og [email protected] PREMESSA La pesente dispensa ha come obiettivo queo di gaantie agi aievi de coso di Fisica de biennio, ad indiizzo
1 O 1 3. 2, calcola l area della regione piana delimitata da C dalla curva di equazione y = gl(x) nell intervallo [-2;
Risolvi uno dei due poblemi e ispondi 5 quesiti del questionio PROBLEMI VERSO L ESAME In un loclità sull Oceno Atlntico l me h un notevole escusione e pe questo è impotnte pevedene l ndmento In pim ppossimzione
a colori Nuova Matematica Leonardo Sasso Edizione ARANCIONE per la riforma. Quinto anno con elementi di Informatica
Leondo Ssso Nuov Mtemtic coloi nuovo ZONAMtemtic Misue di supefici e di volumi Complementi di clcolo integle Complementi di pobbilità e sttistic 5 con elementi di Infomtic Edizione ARANCIONE pe l ifom.
] + [ ] [ ] def. ] e [ ], si ha subito:
OPE OPERAZIONI BINARIE Definizione di operzione inri Dto un insieme A non vuoto, si him operzione (inri) su A ogni pplizione di A in A In generle, un'operzione su A viene indit on il simolo Se (x, y) è
capacità si può partire dalla sua definizione: C = e dalla relazione fra la differenza di potenziale ed il campo elettrico: V
secizio (ll ppello 6/7/4) n conenstoe pino è costituito ue mtue qute i lto b septe un istnz. Il conenstoe viene completmente cicto ll tensione e poi scollegto ll bttei ust pe ciclo, così est isolto ll
EQUAZIONI DI SECONDO GRADO
Autore: Enrio Mnfui - 30/04/0 EQUAZIONI DI SECONDO GRADO Le equzioni di seondo grdo in un inognit sono uguglinze di due polinomi di ui lmeno uno è di seondo grdo e l ltro è di grdo minore o ugule due.
Lezione 7: Rette e piani nello spazio
Lezione 7: Rette e pini nello spzio In quest lezione i metteremo in un riferimento rtesino ortonormle dello spzio. I primi oggetti geometrii he individuimo sono le rette e i pini. Per qunto rigurd le rette
REALTÀ E MODELLI SCHEDA DI LAVORO
REALTÀ E MODELLI SCHEDA DI LAVORO 1 La siepe Sul eto di una villetta deve essee ealizzato un piccolo giadino ettangolae di m, ipaato da una siepe posta lungo il bodo Dato che un lato del giadino è occupato
Test di autovalutazione
UNITÀ ELEMENTI DI CALCOLO ALGEBRICO Test di utovlutzione 0 0 0 0 0 0 60 0 80 90 00 n Il mio punteggio, in entesimi, è n Rispondi ogni quesito segnndo un sol delle lterntive. n Confront le tue risposte
Dinamica: Applicazioni delle leggi di Newton
Fisic Fcolà di Scienze MM FF e, Uniesià Snnio Dinmic: Appliczioni delle leggi di ewon Gionni Filell ([email protected]) Il poblem genele dell dinmic Quindi se conoscimo ue le foze che giscono su un oggeo
La parabola. Fuoco. Direttrice y
L prol Definizione: si definise prol il luogo geometrio dei punti del pino equidistnti d un punto fisso detto fuoo e d un rett fiss dett direttrie. Un rppresentzione grfi inditiv dell prol nel pino rtesino
L IPERBOLE. L iperbole è il luogo geometrico dei punti del piano per i quali è costante la differenza delle distanze da due punti fissi detti fuochi.
prof.ss Cterin Vespi 1 Appunti di geometri nliti L IPERBOLE L iperole è il luogo geometrio dei punti del pino per i quli è ostnte l differenz delle distnze d due punti fissi detti fuohi. Sino F1 e F i
GONIOMETRIA. MISURA DEGLI ANGOLI La misura di un angolo si può esprimere in diversi modi, a seconda dell unità di misura che si sceglie.
of. Luigi Cai Anno scolastico 4-5 GONIOMETRIA MISURA DEGLI ANGOLI La misua di un angolo si può espimee in divesi modi, a seconda dell unità di misua che si sceglie. Sistema sessagesimale Si assume come
Operatori divergenza e rotore in coordinate cilindriche
Opeatoi divegena e otoe Univesità di Roma To Vegata Pof. Ing. Paolo Sammaco Opeatoi divegena e otoe in coodinate cilindiche Dott. Ing. Macello Di Risio 1 Sistema di ifeimento Si assume il sistema di ifeimento
Geometria solida Rette e piani nello spazio + poliedri + solidi di rotazione
Geometri solid ette e pini nello spzio + poliedri + solidi di rotzione ette e pini nello spzio tilisi se le seguenti ffermzioni sono vere o flse. EZ. d e e tre rette nello spzio sono tr loro prllele, llor
Esercizi della 8 lezione sulla Geomeria Linere ESERCIZI SULLA CIRCONFERENZA ESERCIZI SULLA PARABOLA ESERCIZI SULL' ELLISSE ERCIZI SULL' IPERBOLE
Eserizi dell lezione sull Geomeri Linere ESERCIZI SULLA CIRCONFERENZA ESERCIZI SULLA PARABOLA ESERCIZI SULL' ELLISSE ES ERCIZI SULL' IPERBOLE ESERCIZI SULLA CIRCONFERENZA. Determinre l equzione dell ironferenz
MONOMI. Donatella Candelo 13/11/2004 1
Donatella Candelo 1/11/00 1 MONOMI Un monomio è una qualunque espressione algebrica intera data dal prodotto di fattori qualsiasi, numerici o letterali. Praticamente in ogni monomio si può distinguere
a è detta PARTE LETTERALE
I MONOMI Si die MONOMIO un espressione letterle in ui le unihe operzioni presenti sino il prodotto e l divisione. Esempio è detto COEFFICIENTE del monomio e è dett PARTE LETTERALE Un monomio si die ridotto
MATRICI SIMILI E MATRICI DIAGONALIZZABILI
MATRICI SIMILI E MATRICI DIAGONALIZZABILI DEFINIZIONE: Due mtici qudte A e B, dello stesso odine n, si dicono simili se esiste un mtice non singole S, tle che isulti: B S A S L mtice S si chim nche mtice
ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. 2003
ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. Il cndidto risolv uno dei due problemi e 5 dei quesiti in cui si rticol il questionrio. PROBLEMA Nel pino sono dti: il cerchio di dimetro OA,
ESPONENZIALI E LOGARITMI
ESPONENZIALI E LOGARITMI RICHIAMI DI TEORIA dom f Im f grfico Funzioni esponenzili y=^ con > Funzioni esponenzili y=^ con
Studio delle relazioni statistiche (bivariate) Trattazione generale. Dipendenza statistica
Studio dee eazioni statistihe (bivaiate) Pobema_1: è possibie sapee he suede aa Y se vaia a X (in modo spontaneo o indotto)? X Pobema_2: si itiene i sia un egame ta a Y e a X. E possibie dimostae i ontaio?
Teoria di Jourawski. 1. Sezione ad T. Lê2 L Lê2. à Soluzione
eori di Jourwski ü [A.. 0-03 : ultim revisione 4 gennio 03] Si pplic l teori di Jourwski l fine di clcolre l distribuzione di tensioni tngenzili su lcune sezioni soggette sforzo di tglio.. Sezione d ê
Il teorema di Gauss e sue applicazioni
Il teoema di Gauss e sue applicazioi Cocetto di flusso Cosideiamo u campo uifome ed ua supeficie piaa pepedicolae alle liee di campo. Defiiamo flusso del campo attaveso la supeficie la uatità : = (misuata
FUNZIONI MATEMATICHE. Una funzione lineare è del tipo:
FUNZIONI MATEMATICHE Le relzioni mtemtihe utilizzte per desrivere fenomeni nturli, in iologi ome in ltre sienze, possono ovvimente essere le più svrite. Per lo più si trtt di equzioni lineri, qudrtihe,
Ingegneria dei Sistemi Elettrici_5c_1
ngegnei dei Sistemi Elettici_5c_1 Esempi di cmpi mgnetici e clcl di induttnze. M. Usi ngegnei dei sistemi Elettici_5c_1 1 Cndutte ettiline indefinit Si cnsidei un cndutte mgene cilindic ettiline di gnde
TRIGONOMETRIA E COORDINATE
Y Y () X O (Y Y ) - α X (X X ) 200 c TRIGONOMETRI E OORDINTE ngoli e sistemi di misura angolare Funzioni trigonometriche Risoluzione dei triangoli rettangoli Risoluzione dei poligoni Risoluzione dei triangoli
ESAME DI STATO LICEO SCIENTIFICO MATEMATICA 2011
ESAME DI STATO LICEO SCIENTIFICO MATEMATICA PROBLEMA La funzione f ( ) ( )( ) è una funzione dispari di terzo grado Intercetta l asse nei punti ;, ; e ; Risulta f per e per è invece f per e per f ' risulta
Corso di Elettrotecnica 1 - Cod. 9200 N Diploma Universitario Teledidattico in Ingegneria Informatica ed Automatica Polo Tecnologico di Alessandria
Schede di lettotecnica Coso di lettotecnica - Cod. 900 N Diploma Univesitaio Teledidattico in Ingegneia Infomatica ed utomatica Polo Tecnologico di lessandia cua di Luca FRRRIS Scheda N Sistemi tifase:
Problemi di massimo e minimo in Geometria Solida Problemi su poliedri. Indice dei problemi risolti
Problemi di mssimo e minimo in Geometri olid Problemi su poliedri Indice dei problemi risolti In generle, un problem si riferisce un figur con crtteristice specifice (p.es., il numero dei lti dell bse)
MODELLI DI SCELTA DEL PERCORSO PER RETI DI TRASPORTO COLLETTIVO
IPARTIMENTO INENERIA CIVILE UNIVERSITÀ I ROMA TOR VERATA coo di Pianificazione dei tapoti 2 MOELLI I SCELTA EL PERCORSO PER RETI I TRASPORTO COLLETTIVO 1 CLASSIFICAZIONE EI COMPORTAMENTI I SCELTA celta
Triangolo rettangolo
Dato il triangolo rettangolo Possiamo perciò utilizzare angoli). Progetto Matematica in Rete Triangolo rettangolo OPA sappiamo che: PA cateto sen OP cos tg OA cateto OP PA cateto OA cateto opposto ad ipotenusa
durante lo spostamento infinitesimo dr la quantità data dal prodotto scalare F dr
4. Lavoo ed enegia Definizione di lavoo di una foza Si considea un copo di massa m in moto lungo una ceta taiettoia. Si definisce lavoo infinitesimo fatto dalla foza F duante lo spostamento infinitesimo
Linea scarichi e sifoni
Scarici a pavimento Advantix dimensione 4 inea scarici e sifoni IT 3/ istino prezzi 20 Con riserva di modifice. Advantix Scarici a pavimento d imensione 4 Questi scarici a pavimento A dvantix sono idonei
Università di Camerino Corso di Laurea in Fisica: indirizzo Tecnologie per l Innovazione Appunti di Calcolo Prof. Angelo Angeletti
Uivesità di Cmeio Coso di Lue i Fisic: idiizzo Tecologie pe l Iovzioe Apputi di Clcolo Pof. Agelo Ageletti Itegli defiiti Itegle defiito di u fuzioe i u itevllo chiuso e limitto Uo dei polemi più impotti
Veneziane e tende tecniche
DECORAZIONE 04 Montre Venezine e tende tenihe 1 Gli ttrezzi LIVELLA A BOLLA RIGHELLO METRO TRAPANO VITI E TASSELLI MATITA CACCIAVITE SEGA PER METALLO TAGLIALAMELLE PER VENEZIANE FORBICI PER TENDE A RULLO
Magnetostatica: forze magnetiche e campo magnetico
Magnetostatica: foze magnetiche e campo magnetico Lezione 6 Campo di induzione magnetica B() (nomenclatua stoica ; in ealtà si dovebbe chiamae, e spesso lo è, campo magnetico) è un campo di foze vettoiale
Circonferenza, cerchio e loro parti
Nuleo tematio: geometia ionfeenza, ehio e loo pati. ionfeenza e ehio. ati della ionfeenza e del ehio. osizione di una etta ispetto a una ionfeenza 4. osizioni eipohe di due ionfeenze 5. ngoli al ento 6.
C è in realtà un quarto sistema, meno utilizzato, che è quello del cavo.
0c - Principi costruttivi degi edifici Sua base di quanto appena detto, e interazioni tra gi eementi costruttivi (o strutturai) degi edifici portano a distinguere tre diversi principi statico-costruttivi,
Origami: Geometria con la carta (II)
igami: Geomeia con a caa (II) E' possibie mosae (cf. Geeschage, 1995) che ognuna dee pocedue E1-E5 dea geomeia eucidea, può essee sosiuia da combinazioni dee pocedue 1-8 dea geomeia oigami. Infai abbiamo:
ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2002 Sessione straordinaria
ESAME DI STAT DI LICE SCIENTIFIC CRS DI RDINAMENT 00 Sessione strordinri Il cndidto risolv uno dei due problemi e 5 dei 0 quesiti in cui si rticol il questionrio. PRBLEMA Con riferimento un sistem monometrico
EX 1 Una cassa di massa m=15kg è ferma su una superficie orizzontale scabra. Il coefficiente di attrito statico è µ s
STATICA EX Una cassa di massa m=5kg è fema su una supeficie oizzontale scaba. Il coefficiente di attito statico è µ s = 3. Supponendo che sulla cassa agisca una foza F fomante un angolo di 30 ispetto al
Curve e integrali curvilinei: esercizi svolti
Curve e integrali curvilinei: esercizi svolti 1 Esercizi sulle curve parametriche....................... 1.1 Esercizi sulla parametrizzazione delle curve............. 1. Esercizi sulla lunghezza di una
IL MOMENTO ANGOLARE E IL MOMENTO D INERZIA
. L'IMPULS 0 DI MT IL MMENT NGLRE E IL MMENT D INERZI Il momento angolae nalizziamo alcuni moti di otazione. Se gli attiti sono tascuabili, una uota di bicicletta messa in otazione può continuae a giae
Geometria analitica in sintesi
punti distanza ta due punti coodinate del punto medio coodinate del baicento ta due punti di un tiangolo di vetici etta e foma implicita foma esplicita foma segmentaia equazione della etta m è il coefficiente
1. Elementi di Calcolo Combinatorio.
. Elementi di Calolo Combinatorio. Prinipio Base del Conteggio Supponiamo he si devono ompiere due esperimenti. Se l esperimento uno può assumere n risultati possibili, e per ognuno di questi i sono n
C8. Teoremi di Euclide e di Pitagora
8. Teoemi di uclide e di Pitagoa 8.1 igue equiscomponibili ue poligoni sono equiscomponibili se è possibile suddivideli nello stesso numeo di poligoni a due a due conguenti. Il ettangolo e il tiangolo
EQUAZIONI ESPONENZIALI -- LOGARITMI
Equzioi espoezili e riti pg 1 Adolfo Sioe 1998 EQUAZIONI ESPONENZIALI -- LOGARITMI Fuzioe Espoezile Dto u uero rele positivo osiderio l fuzioe f : R R he d ogi eleeto R f orrispodere l'eleeto y =. Se =
Lunghezza della circonferenza e area del cerchio
Unità LA GEOMETRIA Lungezz dell circonferenz e re del cercio Misur dell circonferenz Il rpporto fr l misur c di un circonferenz e l misur d del suo dimetro è costnte ed è ugule π (si legge pi greco) L
Appunti di FOTOGRAMMETRIA
INTRODUIONE Con il temine fotogmmeti s intende l insieme di tutti i poedimenti nlitii, gfii e ottiomenii ttveso i quli, dto un suffiiente numeo di fotogfie di un oggetto pese d punti divesi, è possibile
SIMULAZIONE - 22 APRILE 2015 - QUESITI
www.matefilia.it Assegnata la funzione y = f(x) = e x 8 SIMULAZIONE - APRILE 5 - QUESITI ) veificae che è invetibile; ) stabilie se la funzione invesa f è deivabile in ogni punto del suo dominio di definizione,
Lezione 14. Risoluzione delle equazioni algebriche.
Lezione Prerequisiti: Lezioni 8,. Risoluzione delle equzioni lgebriche. Si F un cmpo, e si K un chiusur lgebric di F. Si f ( ) F[ ] non costnte. Studimo i metodi di risoluzione per l equzione f ( ) = 0,
Sistemi differenziali 2 2: esercizi svolti. 1 Sistemi lineari Stabilità nei sistemi lineari
Sistemi differenziali : esercizi svolti 1 Sistemi lineari Stabilità nei sistemi lineari 14 1 Sistemi differenziali : esercizi svolti 1 Sistemi lineari Gli esercizi contrassegnati con il simbolo * presentano
RUBINETTI D ARRESTO DA INCASSO PER IMPIANTI IDRICI
RUBINETTI D ARRESTO DA INCASSO PER IMPIANTI IDRICI PRODOTTI E SISTEMI PER L IDROTERMICA WELCO-Idro Rubinetti d rresto d incsso per impinti idrici I rubinetto d'rresto è un importnte orgno d'intercettzione
determinare le coordinate di P ricordando la relazione che permette di calcolare le coordinate del punto medio di un segmento si
PROBLEMA Determinare il punto simmetrico di P( ;) rispetto alla retta x y =0 Soluzione Il simmetrico di P rispetto ad una retta r è il punto P che appartiene alla retta passante per P, perpendicolare ad
Le grandezze scalari e le grandezze vettoriali
VETTORI I VETTORI DEL PINO Le grndezze slri e le grndezze ettorili Esistono grndezze determinte dl nmero he le misr rispetto n prefisst nità, ome per esempio l lnghezz, l re, il olme, il tempo Qeste grndezze
Formule di Gauss Green
Formule di Guss Green In queste lezioni voglimo studire il legme esistente tr integrli in domini bidimensionli ed integrli urvilinei sull frontier di questi. In seguito i ouperemo del problem nlogo nello
COMBINAZIONI DI CARICO SOLAI
COMBINAZIONI DI CARICO SOLAI (ppunti di Mrio Zfonte in fse di elorzione) Ai fini delle verifihe degli stti limite, seondo unto indito dll normtiv, in generle le ondizioni di rio d onsiderre, sono uelle
DISTANZA TRA DUE PUNTI NEL PIANO CARTESIANO
Geogebra DISTANZA TRA DUE PUNTI NEL PIANO CARTESIANO 1. Apri il programma Geogebra, assicurati che siano visualizzati gli assi e individua il punto A (0, 0). a. Dove si trova il punto A? b. Individua il
