ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2006 Sessione straordinaria

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2006 Sessione straordinaria"

Transcript

1 ESME DI STTO DI LICEO SCIENTIFICO CORSO DI ORDINMENTO 006 Sessione straordinaria Il candidato risolva uno dei due problemi e dei 0 quesiti in cui si articola il questionario. PROBLEM È dato il triangolo BC in cui: B, C, tg Â. Determinare l altezza del triangolo relativa al lato B e tracciare la circonferenza k avente centro in C e tangente al lato B. Dopo aver riferito il piano della figura a un conveniente sistema di assi cartesiani ortogonali, in modo, però, ce uno degli assi di riferimento sia parallelo alla retta B: a) scrivere l equazione della circonferenza k; b) trovare le coordinate dei vertici del triangolo e del punto D in cui la circonferenza k interseca il segmento BC; c) determinare l equazione della parabola p, avente l asse perpendicolare alla retta B, tangente in D alla circonferenza k e passante per ; d) calcolare le aree delle due regioni in cui la parabola p divide il triangolo BC; e) trovare, infine, le coordinate dei punti comuni alla circonferenza k e alla parabola p. PROBLEM Si considerino i polinomi di grado, nella variabile, con coefficienti reali, i cui grafici, rappresentati in un piano riferito a un sistema di assi cartesiani ortogonali (O), sono simmetrici rispetto all origine O e anno un massimo relativo nel punto ; 6 4. a) Trovare l equazione f () dei grafici suddetti. b) Dimostrare ce tali grafici anno tre punti in comune, in due dei quali anno ance la stessa tangente. c) Indicare con il grafico avente come tangente inflessionale l asse e disegnarne l andamento. d) Indicato con P() il polinomio rappresentato da e ciamati u e v (u v) le ascisse dei punti, distinti da O, in cui interseca l asse, calcolare: v P() d. u e) Dopo aver controllato ce a tre flessi allineati, determinare le ascisse dei punti in cui la retta dei flessi interseca. Zanicelli Editore, 007

2 QUESTIONRIO 4 È assegnato un pentagono regolare di lato lungo L. Recidendo opportunamente, in esso, cinque triangoli congruenti, si ottiene un decagono regolare: calcolarne la lungezza del lato. (Si lascino indicate le funzioni goniometrice degli angoli coinvolti). Una piramide quadrangolare regolare è tale ce la sua altezza è il doppio dello spigolo di base. Calcolare il rapporto fra il volume del cubo inscritto nella piramide e il volume della piramide stessa. Se le funzioni f () e g(), entrambe tendenti a 0, quando a, non soddisfano alle condizioni previste dal teorema di De L Hôpital, non è possibile calcolare il limite di g ( ) quando a. È vero o è falso? Fornire un esauriente spiegazione della risposta. f ( ) Il limite della funzione f () ln, per è: 0. B un valore finito diverso da 0. C. D. Una sola alternativa è corretta: individuarla e fornire un esauriente spiegazione della scelta operata. Dimostrare ce la derivata, rispetto a, della funzione arctg() è Dopo aver enunciato il teorema di Rolle, spiegare in maniera esauriente se può essere applicato alla funzione f (), nell intervallo [ ; ]. Giustificare, con considerazioni analitice o mediante un interpretazione grafica, ce la seguente equazione: 0 ammette una e una sola soluzione reale. Trovare, quindi, l intervallo [z; z ] al quale appartiene tale soluzione, essendo z un numero intero. Considerata l equazione: 0, spiegare, con il metodo preferito ma in maniera esauriente, percé non può ammettere più di una soluzione razionale. Considerata l equazione: cos sen(), spiegare in maniera esauriente se ammette soluzioni reali o se non ne ammette. Una classe è formata da 8 alunni, di cui 6 femmine e masci. Fra le femmine c è una sola «Maria» e fra i masci un solo «ntonio». Si deve formare una delegazione formata da due femmine e due masci. Quante sono le possibili delegazioni comprendenti «Maria» e «ntonio»? Durata massima della prova: 6 ore. È consentito soltanto l uso di calcolatrici non programmabili. Non è consentito lasciare l Istituto prima ce siano trascorse ore dalla dettatura del tema. Zanicelli Editore, 007

3 SOLUZIONE DELL PROV D ESME CORSO DI ORDINMENTO 006 Sessione straordinaria PROBLEM Rappresentiamo in scala il triangolo BC tenendo conto ce C B, C e tg   6. Considerato tg Â, calcoliamo le altre funzioni goniometrice: tg  sen  sen Â, tg ˆ cos  cos Â. tg ˆ L altezza CH misura CH C sen  pertanto: CH 0. H B Figura. Disegniamo la circonferenza k e scegliamo un sistema di riferimento con origine nel centro C della circonferenza e assi come in figura. k a) L equazione di una circonferenza di raggio r e centro C(0; 0) è del tipo r. Nel nostro caso r CH 0, quindi la circonferenza k a equazione: 00. b) Poicé H C cos  e HB B H, ne segue ce: ( ; 0), B Figura. ; 0, C(0; 0). Per determinare le coordinate di D calcoliamo l equazione della retta CB. Tale equazione è del tipo B m, dove m 4 B. Quindi CB a equazione 4. Cerciamo ora i punti di intersezione tra CB e la circonferenza k considerando il seguente sistema: 4 00 Ne segue ce D(6; 8) OC 0 H D B Zanicelli Editore, 007

4 c) La parabola p a equazione del tipo a b c con a, b, c coefficienti reali e a 0. La tangente a tale parabola nel punto D a come coefficiente angolare f (6), dove f () a b c. Pertanto vale: f () a b, quindi f (6) a b. Poicé la retta CB è perpendicolare alla tangente in D e a coefficiente angolare uguale a 4, allora il coefficiente angolare della retta tangente in D è 4. Deve quindi valere la condizione a b, cioè 48a 4b. Mettiamo tale equazione a sistema 4 con le equazioni ce si ottengono sostituendo all equazione della parabola le coordinate dei punti e D: 6a 6b c 8 a b c 0 48a 4b Risolvendo tale sistema si ottiene: 6 a, b, c L equazione della parabola p è perciò: k d) Rappresentiamo nel sistema cartesiano precedente F OC 6 G la parabola p ce a vertice V 6 ; p e ce interseca l asse nei punti D G ; 0 0 e F H ; 0 0. E B V 0 Evidenziamo le regioni in cui la parabola p divide il Figura. triangolo BC (figura ). Determiniamo l ascissa del punto E, intersezione tra il segmento B e la parabola, ponendo 0 nell equazione di p: Tale equazione a come soluzioni e 6. Il primo valore è l ascissa del punto, mentre il secondo valore è l ascissa di E, ce, quindi, a coordinate E 6 p ; 0. D Determiniamo ora l area del segmento parabolico delimitato dal segmento DE, ce a equazione 0, e la parabola p (in figura 4 è rappresentata la regione 44 ingrandita). = 0 44 E B Figura 4. 4 Zanicelli Editore, 007

5 Calcoliamo il seguente integrale: d d Il triangolo EDB a altezza rispetto alla base EB ce misura e base lunga EB. L area del triangolo EDB vale quindi: 0 EDB 0. 0 Se a tale area sottraiamo l area del segmento parabolico precedentemente trovata, otteniamo l area della regione di piano delimitata dai segmenti EB, DB e dall arco di parabola ED, pertanto: L area del triangolo BC vale invece B CH. Ne segue ce l area della regione di piano delimitata dai segmenti E, CD, C e dall arco di parabola ED vale: BC e) Le coordinate dei punti comuni alla circonferenza k e alla parabola p sono tutte e sole le soluzioni del sistema: Sostituendo l espressione di nella seconda equazione si ottiene: Sappiamo ce D è un punto comune alle due curve. In particolare esse anno la stessa retta tangente in D. L ascissa di tale punto è quindi una soluzione doppia di tale equazione. Scomponendo il primo membro dell equazione otteniamo: ( 6) ( 46 44) 0 Poicé il discriminante dell equazione è negativo, si può concludere ce la circonferenza k e la parabola p anno in comune solo il punto D. PROBLEM a) ffincé il grafico di una funzione f () sia simmetrico rispetto all origine, la funzione deve essere dispari, cioè tale ce f ( ) f (). Le unice funzioni polinomiali dispari di grado sono del tipo: f () a b c, con a, b, c coefficienti reali e a 0. Il grafico di tale funzione passa per il punto ; 6 4 se f ( ) 6 4, cioè se vale: a 8b c a 60b c. Zanicelli Editore, 007

6 Tale punto è ance un estremo relativo se f ( ) 0. Poicé f () a 4 b c, si a ce f ( ) 80a b c. Deve quindi valere 80a b c 0. Mettendo a sistema tali condizioni, si ottiene: b 4 0a 80a b c 0 c 80a b 40a 60b c 0a b 4 0 c 80a 6 Inoltre, il punto ; 6 4 è in particolare un massimo relativo se f ( ) 0. Poicé f () 0a 6b, si a ce f ( ) 60a b. Sostituendo l espressione di b trovata in funzione di a si ottiene f ( ) 6 (0a ). Perciò f ( ) 0 solo se a 0. L equazione dei grafici considerati è in conclusione la seguente: a 4 0a 80a 6, con a 0 ; 0 ]0; [. b) Riscriviamo l equazione della curva mettendo in evidenza il parametro a: 4 a( 8 6) 6 0. Per determinare i punti comuni alle curve consideriamo il seguente sistema: ( 4) Le soluzioni della prima equazione sono 0, in corrispondenza delle quali troviamo i tre punti (0; 0), ; 6 4, ; 6 4. Il coefficiente angolare della tangente alla curva in un punto di ascissa è: f () a 4 4 0a 80a 6. Poicé f () f ( ) 0, i punti comuni alle curve di ascissa e anno tutti, rispettivamente, le rette 6 4 e 6 4 come tangenti. c) Il punto di ascissa c è un punto di flesso con tangente inflessionale l asse se: - f (c) 0, poicé c è un punto di flesso; - f (c) 0, poicé il punto di ascissa c deve appartenere all asse ; - f (c) 0, poicé il coefficiente angolare della tangente nel punto di ascissa c vale 0. Osserviamo ce f () 0a (4 0a). In particolare f (0) f (0) 0. Se, quindi, imponiamo f (0) 0, si può concludere ce in (0; 0) vi è un flesso con tangente l asse : f (0) 0 80a 6 0 a. 6 Zanicelli Editore, 007

7 La curva è dunque quella ce si ottiene per a, cioè: : 4. Il campo di esistenza di tale funzione è l asse reale. La funzione è dispari, interseca gli assi cartesiani nei punti (0; 0), ; 0 e è positiva solo se ; 0 ;. Inoltre vale: lim 4 lim 4, ma ance: lim f ( ) lim 4 4. Pertanto non vi sono asintoti obliqui. La derivata prima risulta: f () 4 4 ( 4). Essa si annulla in 0 e in e lo scema di figura ne riassume il segno. La funzione ammette quindi un minimo relativo per, ce vale f () 64, e un massimo relativo per, con f ( ) 6 4. Studiamo ora la derivata seconda: f () 4 8 4( ). Essa si annulla in 0 e in. In figura 6 è indicato lo scema del segno. La funzione a tre flessi nei punti di coordinate (0; 0), ; 8, ; 8. Nella figura 7 è rappresentato il grafico della curva. d) Per considerazioni al punto precedente risulta u e v. f'() f() f'() f() M + B ma flesso min + Figura O flesso N γ flesso Figura 6. Figura 7. Essendo P() 4 un polinomio dispari e u v allora possiamo concludere, senza neces sità di calcoli, ce v P()d 0. u e) I tre flessi di sono O(0; 0), ; 8, B ; 8. La retta passante per e B a equazione 8. Poicé tale retta passa per l origine degli assi possiamo concludere ce i tre punti sono allineati. 7 Zanicelli Editore, 007

8 Troviamo ora le ascisse dei punti di intersezione tra tale retta e la curva risolvendo il seguente sistema: ( 4 0 8) 0. 4 Per la proprietà dell annullamento del prodotto risulta: L equazione biquadratica a soluzioni 4 e. In conclusione, le ascisse dei punti in cui la retta passante per i flessi interseca sono: 0, 4 e. QUESTIONRIO Dato il pentagono regolare BCDE, per ogni vertice si ricavino cinque triangoli isosceli congruenti, di base e lato obliquo, in modo da ottenere un decagono regolare di lato (figura 8). Si tracci l altezza K del triangolo isoscele FQ. Poicé l angolo al vertice di un poligono regolare di n lati vale n, nel caso di n un pentagono (n ) risulta. Pertanto l angolo alla base del triangolo isoscele FQ vale FˆK. Per la trigonometria, segue ce cos. cos e, quindi N O E P Q K F D M L C I H G B Figura 8. Inoltre risulta L. Sostituendo l espressione di, sopra trovata, si ottiene la seguente equazione in ce risolviamo: cos L L. cos cos cos Il lato del decagono è lungo perciò L. cos 8 Zanicelli Editore, 007

9 È data una piramide quadrangolare di altezza doppia dello spigolo di base, nella quale è inscritto un cubo (figura 9). Supposto di lungezza a lo spigolo di base, l altezza è VO a e il volume della piramide risulta: V BCD VO a a a. V Determiniamo la lungezza dello spigolo del cubo inscritto alla piramide. Sia B O O, dove O è l intersezione tra l altezza VO della piramide e la faccia B C D del cubo. Quindi ]0; a[. Poicé, B, O, V sono i corrispondenti di, B, O, V in un omotetia di centro V, vale: B B VO. VO ' D' O' D O B' C' C Ma VO VO O O a. Sostituendo, troviamo ce: a a a a a a. Quindi lo spigolo del cubo a lungezza a. Ne segue ce il volume del cubo vale: V a 8 7 a. Il rapporto riciesto è perciò: 8 V 7 a 8 V a Figura 9. a B Tale affermazione è falsa. Forniamo un controesempio considerando le seguenti funzioni: f () sen, g(). Poicé sen, possiamo applicare il teorema del confronto e risulta lim f () 0. 0 Quindi f () e g() sono entrambe funzioni tendenti a 0 per 0. Esse non soddisfano le condizioni previste dal teorema di De L Hôpital, in quanto non esiste f ( ) lim. Infatti: 0 g ( ) f ( ) sen cos. g ( ) Per 0, il primo termine tende a 0 mentre l addendo cos non ammette limite (essendo una funzione oscillante). f ( ) Questo, però, non implica ce non si possa calcolare lim. Infatti risulta: 0 g ( ) lim 0 sen sen cos lim 0 sen 0. 9 Zanicelli Editore, 007

10 4 Il limite lim ( ln ) porta alla forma indeterminata. Riscriviamolo raccogliendo la al numeratore: lim ( ln ) ln. Ora, per il teorema di De L Hôpital risulta: lim ln lim 0, pertanto vale: lim ( ln ). L alternativa corretta è C. La funzione f () arctg(), definita in tutto R, è l inversa della funzione f () tg, con ;. La funzione tangente è derivabile nell intervallo con derivata non nulla. Per il teorema della derivata della funzione inversa, arctg() è derivabile in tutto R e si a: D[arctg ]. D[t g ] tg Il teorema di Rolle afferma ce, data una funzione f () continua nell intervallo [a; b] e derivabile nei suoi punti interni, se f (a) f (b), allora esiste almeno un punto c, interno all intervallo [a; b], per il quale risulta f (c) 0. La funzione f () non è derivabile in 0. Infatti, calcolando il limite del rapporto incrementale in tale punto si a ce: lim () f (0) 0 f lim lim 0, 0 lim () f (0) 0 f lim lim 0. 0 Quindi non esiste f (0) e di conseguenza la funzione non soddisfa tutte le ipotesi del teorema di Rolle nell intervallo [ ; ]. Consideriamo la funzione di equazione: f (). Tale funzione è definita in tutto R e ivi continua e derivabile, in quanto polinomiale. Inoltre f (0) 0 e f ( ) 0. Quindi per il teorema di esistenza degli zeri di una funzione, l equazione considerata ammette almeno una soluzione reale nell intervallo [ ; 0]. Poicé f () 4 è positiva in R {0} e si annulla solo in 0, ne segue ce la funzione è strettamente crescente e, quindi, iniettiva. In particolare l equazione ammette un unico zero compreso tra e 0. Ricordiamo il seguente teorema: Se p() è un polinomio a coefficienti interi e il numero razionale a (ridotto ai minimi termini) è uno zero b del polinomio cioè p a b 0, allora: il numeratore a divide il termine noto del polinomio; il denominatore b divide il coefficiente del termine di grado massimo del polinomio. 0 Zanicelli Editore, 007

11 Dal teorema segue ce, per trovare le soluzioni razionali dell equazione 0, possiamo restringere la nostra attenzione al termine noto e al coefficiente del termine ce è anc esso. Quindi il numeratore e il denominatore della soluzione razionale devono essere interi divisori di. Poicé i divisori di sono solamente i numeri e, ne segue ce le possibili soluzioni razionali dell equazione 0 sono oppure. Sostituendo tali valori al polinomio p() osserviamo ce: p() 0, p( ) 0. Possiamo quindi concludere ce è l unica soluzione razionale dell equazione considerata. 9 0 L equazione considerata non a soluzioni reali poicé il prodotto di due numeri minori o uguali di sen, cos è ancora un numero minore o uguale di e quindi non può essere uguale a. Poicé tra le 6 femmine vi è una sola persona di nome «Maria», le possibili coppie di femmine comprendenti «Maria» sono. nalogamente, le possibili coppie di masci comprendenti «ntonio» sono. Le possibili delegazioni comprendenti «Maria» e «ntonio» sono, perciò, cioè 6. Per esercitarti ancora sugli argomenti trattati nel Svolgi il Problema Problema pag. W 74 Esercizio 64 pag. Q 8 Esercizio pag. W Problema Problema pag. W 74 (punti a, b e c) Problema pag. W 7 Problema pag. V 8 Quesito Quesito 6 pag. Q 4 Quesito Problema 8 pag. 98 Esercizio 60 pag. 9 Quesito Esercizio 94 pag. V Esercizio 9 pag. V Quesito 4 Esercizio 0 pag. V 4 Esercizio 4 pag. W 8 Quesito Esercizio 9 pag. V 6 Quesito 6 Esercizio pag. V Esercizio 4 pag. V Quesito 7 Esercizio pag. Esercizio pag. Quesito 9 Esercizio 6 pag. Q Esercizio 4 pag. Q Quesito 0 Quesito pag. 40 Quesito pag. 40 Zanicelli Editore, 007

ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I Sessione straordinaria

ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I Sessione straordinaria ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. 006 Sessione straordinaria Il candidato risolva uno dei due problemi e dei 0 quesiti in cui si articola il questionario. PROBLEMA È dato il

Dettagli

ORDINAMENTO 2006 SESSIONE STRAORDINARIA - QUESITI QUESITO 1

ORDINAMENTO 2006 SESSIONE STRAORDINARIA - QUESITI QUESITO 1 www.matefilia.it ORDINAMENTO 2006 SESSIONE STRAORDINARIA - QUESITI QUESITO 1 È assegnato un pentagono regolare di lato lungo L. Recidendo opportunamente, in esso, cinque triangoli congruenti, si ottiene

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2007 Sessione suppletiva

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2007 Sessione suppletiva ESAME DI STAT DI LIE SIENTIFI RS DI RDINAMENT 7 Sessione suppletiva Il candidato risolva uno dei due problemi e 5 dei quesiti in cui si articola il questionario. PRBLEMA Rispetto a un sistema di assi cartesiani

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2006 Sessione suppletiva

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2006 Sessione suppletiva ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 006 Sessione suppletiva Il candidato risolva uno dei due problemi e 5 dei 0 quesiti in cui si articola il questionario. PROBLEMA Nel piano, riferito

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. 2007 Sessione suppletiva

ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. 2007 Sessione suppletiva ESAME DI STAT DI LIE SIENTIFI RS SPERIMENTALE P.N.I. 7 Sessione suppletiva Il candidato risolva uno dei due problemi e 5 dei quesiti in cui si articola il questionario. PRLEMA Si consideri la funzione

Dettagli

Liceo Scientifico di ordinamento anno ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO anno PROBLEMA 1

Liceo Scientifico di ordinamento anno ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO anno PROBLEMA 1 Liceo Scientifico di ordinamento anno 00-00 ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO anno 00-00 PROBLEMA Punto a Indicati rispettivamente con V ed S il volume e l area totale di T e con

Dettagli

Esame di maturità scientifica, corso di ordinamento a. s

Esame di maturità scientifica, corso di ordinamento a. s Problema 1 Esame di maturità scientifica, corso di ordinamento a. s. -4 Sia f la funzione definita da: f()=- Punto 1 Disegnate il grafico G di f()=-. La funzione f()=- è una funzione polinomiale (una cubica).

Dettagli

Problema ( ) = 0,!

Problema ( ) = 0,! Domanda. Problema ( = sen! x ( è! Poiché la funzione seno è periodica di periodo π, il periodo di g x! = 4. Studio di f. La funzione è pari, quindi il grafico è simmetrico rispetto all asse y. È sufficiente

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I Sessione suppletiva

ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I Sessione suppletiva ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. 006 Sessione suppletiva Il candidato risolva uno dei due problemi e 5 dei 0 quesiti in cui si articola il questionario. PROBLEMA Nel piano,

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2005

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2005 ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 5 Il candidato risolva uno dei due problemi e cinque quesiti scelti nel questionario. PROBLEMA Nel primo quadrante del sistema di riferimento Oy,

Dettagli

SIMULAZIONE DELLA PROVA DI MATEMATICA DELL ESAME DI STATO

SIMULAZIONE DELLA PROVA DI MATEMATICA DELL ESAME DI STATO ANNO SCOLASTICO 2012-13 SIMULAZIONE DELLA PROVA DI MATEMATICA DELL ESAME DI STATO INDIRIZZO: SCIENTIFICO CORSO DI ORDINAMENTO Risoluzione Problema 1 a) Poiché per ogni valore di a l espressione analitica

Dettagli

MINISTERO DELL'ISTRUZIONE, DELL'UNIVERSITÀ, DELLA RICERCA SCUOLE ITALIANE ALL ESTERO

MINISTERO DELL'ISTRUZIONE, DELL'UNIVERSITÀ, DELLA RICERCA SCUOLE ITALIANE ALL ESTERO Sessione Ordinaria in America 4 MINISTERO DELL'ISTRUZIONE, DELL'UNIVERSITÀ, DELLA RICERCA SCUOLE ITALIANE ALL ESTERO (Americhe) ESAMI DI STATO DI LICEO SCIENTIFICO Sessione Ordinaria 4 SECONDA PROVA SCRITTA

Dettagli

Soluzione esercizi sulle funzioni - 5 a E Liceo Scientifico - 04/11/ 13

Soluzione esercizi sulle funzioni - 5 a E Liceo Scientifico - 04/11/ 13 Soluzione esercizi sulle funzioni - 5 a E Liceo Scientifico - 04// 3 Esercizio. Si consideri la funzione ) se 0 f) e se 0. e si verifichi che non è continua in 0. Che tipo di discontinuità presenta in

Dettagli

1. (Da Medicina e Odontoiatria 2012) Determinare l'area del triangolo che ha come vertici i punti (0,0), (0,1), (13,12) del piano cartesiano:

1. (Da Medicina e Odontoiatria 2012) Determinare l'area del triangolo che ha come vertici i punti (0,0), (0,1), (13,12) del piano cartesiano: QUESITI 1 PIANO CARTESIANO 1. (Da Medicina e Odontoiatria 2012) Determinare l'area del triangolo che ha come vertici i punti (0,0), (0,1), (13,12) del piano cartesiano: a) 6 b) 13/2 c) 12 d) 13 e) 78 2.

Dettagli

Indirizzo: Tema di Il candidato risolva uno dei due problemi e 4 quesiti del questionario. PROBLEMA 1 PROBLEMA 2

Indirizzo: Tema di Il candidato risolva uno dei due problemi e 4 quesiti del questionario. PROBLEMA 1 PROBLEMA 2 Sessione ordinaria all estero (EUROPA) 8-9 ESAMI DI STATO DI LICEO SCIENTIFICO SCUOLE ITALIANE ALL ESTERO: EUROPA CORSO DI ORDINAMENTO Indirizzo: SCIENTIFICO Tema di: MATEMATICA Il candidato risolva uno

Dettagli

8 Simulazione di prova d Esame di Stato

8 Simulazione di prova d Esame di Stato 8 Simulazione di prova d Esame di Stato Problema Risolvi uno dei due problemi e 5 dei 0 quesiti in cui si articola il questionario Si consideri la famiglia di funzioni f α () = a e a con a parametro reale

Dettagli

Funzioni derivabili (V. Casarino)

Funzioni derivabili (V. Casarino) Funzioni derivabili (V. Casarino) Esercizi svolti 1) Applicando la definizione di derivata, calcolare la derivata in = 0 delle funzioni: a) 5 b) 3 4 c) + 1 d) sin. ) Scrivere l equazione della retta tangente

Dettagli

ANNO SCOLASTICO SIMULAZIONE DELLA PROVA DI MATEMATICA DELL ESAME DI STATO INDIRIZZO: SCIENTIFICO CORSI SPERIMENTALI

ANNO SCOLASTICO SIMULAZIONE DELLA PROVA DI MATEMATICA DELL ESAME DI STATO INDIRIZZO: SCIENTIFICO CORSI SPERIMENTALI ANNO SCOLASTICO 009-0 SIMULAZIONE DELLA PROVA DI MATEMATICA DELL ESAME DI STATO INDIRIZZO: SCIENTIFICO CORSI SPERIMENTALI PROBLEMA Si consideri la funzione: ln( + e) se e < < 0 f ( ) = ( + b) e + a se

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2012

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2012 ESME DI STT DI LICE SCIENTIFIC CRS DI RDINMENT Il candidato risolva uno dei due problemi e 5 dei quesiti in cui si articola il questionario. PRLEM Siano f e g le funzioni definite, per tutti gli reali

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2005 Sessione suppletiva

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2005 Sessione suppletiva ESAME DI STATO DI LIEO SIENTIFIO ORSO DI ORDINAMENTO 005 Sessione suppletiva Il candidato risolva uno dei due problemi e 5 dei 10 quesiti in cui si articola il questionario PROBLEMA 1 Sono dati una piramide

Dettagli

Una circonferenza e una parabola sono disegnate nel piano cartesiano. La circonferenza ha centro nel punto

Una circonferenza e una parabola sono disegnate nel piano cartesiano. La circonferenza ha centro nel punto La parabola Esercizi Esercizio 368.395 Una circonferenza e una parabola sono disegnate nel piano cartesiano. La circonferenza ha centro nel punto 0 ;5 e raggio, e la parabola ha il suo vertice in 0 ;0.

Dettagli

ESAME DI STATO: Indirizzo Scientifico Sessione ordinaria 2003 SECONDA PROVA SCRITTA Tema di MATEMATICA (AMERICA emisfero boreale)

ESAME DI STATO: Indirizzo Scientifico Sessione ordinaria 2003 SECONDA PROVA SCRITTA Tema di MATEMATICA (AMERICA emisfero boreale) Sessione ordinaria LS_ORD 00 America Boreale ESAME DI STATO: Indirizzo Scientifico Sessione ordinaria 00 SECONDA PROVA SCRITTA Tema di MATEMATICA (AMERICA emisfero boreale) Il candidato risolva uno dei

Dettagli

Matematica classe 5 C a.s. 2012/2013

Matematica classe 5 C a.s. 2012/2013 Matematica classe 5 C a.s. 2012/2013 Asintoti e grafici 1) Una funzione y = f(x) gode delle seguenti caratteristiche: D / 4, y 0 se x 0 x 2, lim, 3. Rappresentare un grafico qualitativo della funzione.

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2003 Sessione straordinaria

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2003 Sessione straordinaria ESME I STTO I LICEO SCIENTIFICO CORSO I ORINMENTO Sessione straordinaria Il candidato risolva uno dei due problemi e 5 dei 1 quesiti in cui si articola il questionario. PROLEM 1 È assegnata la seguente

Dettagli

A T T E N Z I O N E. Ministero dell Istruzione, dell Università e della Ricerca

A T T E N Z I O N E. Ministero dell Istruzione, dell Università e della Ricerca Pag. 1/5 Sessione suppletiva 01 $$$$$..1/1 Seconda prova scritta *$$$$$1115* *$$$$$1115* *$$$$$1115* *$$$$$1115* A T T E N Z I O N E Il plico relativo a questa prova contiene due temi: il primo destinato

Dettagli

ANNO SCOLASTICO SIMULAZIONE DELLA PROVA DI MATEMATICA DELL ESAME DI STATO INDIRIZZO: SCIENTIFICO CORSI SPERIMENTALI. della funzione y ln( x e)

ANNO SCOLASTICO SIMULAZIONE DELLA PROVA DI MATEMATICA DELL ESAME DI STATO INDIRIZZO: SCIENTIFICO CORSI SPERIMENTALI. della funzione y ln( x e) ANNO SCOLASTICO 009-0 SIMULAZIONE DELLA PROVA DI MATEMATICA DELL ESAME DI STATO INDIRIZZO: SCIENTIFICO CORSI SPERIMENTALI PROBLEMA Si consideri la funzione: ln( x e) se e x 0 f ( x) x ( x bx) e a se x

Dettagli

Carlo Sintini, Problemi di maturità, 1948 Luglio, matematicamente.it Luglio 1948, primo problema

Carlo Sintini, Problemi di maturità, 1948 Luglio, matematicamente.it Luglio 1948, primo problema Luglio 1948, primo problema In un cerchio di raggio r è condotta una corda AB la cui distanza dal centro è r/. Inscrivere nel segmento circolare che non contiene il centro, un triangolo ABC in modo che

Dettagli

1) Applicando la definizione di derivata, calcolare la derivata in x = 0 delle funzioni: c) x + 1 d)x sin x.

1) Applicando la definizione di derivata, calcolare la derivata in x = 0 delle funzioni: c) x + 1 d)x sin x. Funzioni derivabili Esercizi svolti 1) Applicando la definizione di derivata, calcolare la derivata in x = 0 delle funzioni: a)2x 5 b) x 3 x 4 c) x + 1 d)x sin x. 2) Scrivere l equazione della retta tangente

Dettagli

Esercizi svolti. a 2 x + 3 se x 0; determinare a in modo che f risulti continua nel suo dominio.

Esercizi svolti. a 2 x + 3 se x 0; determinare a in modo che f risulti continua nel suo dominio. Esercizi svolti 1. Sia sin(x ) f(x) = x ( 1 + x 1 ) se x > 0 a x + 3 se x 0; determinare a in modo che f risulti continua nel suo dominio.. Scrivere l equazione della retta tangente nel punto di ascissa

Dettagli

Richiami sullo studio di funzione

Richiami sullo studio di funzione Richiami sullo studio di funzione Per studiare una funzione y = f() e disegnarne un grafico approssimativo, possiamo procedere in ordine secondo i seguenti passi:. determinare il campo di esistenza (o

Dettagli

ORDINAMENTO 2001 QUESITO 1 QUESITO 2

ORDINAMENTO 2001 QUESITO 1 QUESITO 2 www.matefilia.it ORDINAMENTO 2001 QUESITO 1 Indicata con f(x) una funzione reale di variabile reale, si sa che f(x) l per x a, essendo l ed a numeri reali. Dire se ciò è sufficiente per concludere che

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I Sessione ordinaria

ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I Sessione ordinaria ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. 00 Sessione ordinaria Il candidato risolva uno dei due problemi e 5 dei 0 quesiti in cui si articola il questionario. PROBLEMA Sia AB un segmento

Dettagli

DERIVATE E LORO APPLICAZIONE

DERIVATE E LORO APPLICAZIONE DERIVATE E LORO APPLICAZIONE SIMONE ALGHISI 1. Applicazione del calcolo differenziale 1 Abbiamo visto a lezione che esiste un importante legame tra la continuità di una funzione y = f(x) in un punto x

Dettagli

1) Ricava il dominio di ciascuna delle due funzioni e scrivilo attraverso intervalli

1) Ricava il dominio di ciascuna delle due funzioni e scrivilo attraverso intervalli 1) Ricava il dominio di ciascuna delle due funzioni e scrivilo attraverso intervalli A) 1 2 B) [ A) 2 x 1; B) (-, - 3) ( - 3, 0) ( 0, + ) ] 2) Riferendoti al grafico rappresentato completa a) Il dominio

Dettagli

ORDINAMENTO SESSIONE SUPPLETIVA QUESITO 1

ORDINAMENTO SESSIONE SUPPLETIVA QUESITO 1 www.matefilia.it ORDINAMENTO 7 - SESSIONE SUPPLETIVA QUESITO 1 Si calcoli il ite della funzione x cosx x sen x, quando x tende a. x cosx x x sen x = [F. I. ] x x cosx x (1 sen x x ) x cosx 1 sen x x =

Dettagli

La retta nel piano cartesiano

La retta nel piano cartesiano La retta nel piano cartesiano Se proviamo a disporre, sul piano cartesiano, una retta vediamo che le sue possibili posizioni sono sei: a) Coincidente con l asse delle y; b) Coincidente con l asse delle

Dettagli

LICEO SCIENTIFICO QUESTIONARIO QUESITO 1

LICEO SCIENTIFICO QUESTIONARIO QUESITO 1 www.matefilia.it LICEO SCIENTIFICO 015 - QUESTIONARIO QUESITO 1 y = f() ; il suo grafico è tangente alla retta y = + 5 nel secondo quadrante ed inoltre risulta: f () = + 6. Determinare l equazione y =

Dettagli

Maturità Scientifica, Corso di ordinamento, Sessione Ordinaria

Maturità Scientifica, Corso di ordinamento, Sessione Ordinaria Matematica per la nuova maturità scientifica A. Bernardo M. Pedone 7 Problema 1 Maturità Scientifica, Corso di ordinamento, Sessione Ordinaria 001-00 In un piano, riferito a un sistema di assi cartesiani

Dettagli

Lezione 6 Richiami di Geometria Analitica

Lezione 6 Richiami di Geometria Analitica 1 Piano cartesiano Lezione 6 Richiami di Geometria Analitica Consideriamo nel piano due rette perpendicolari che si intersecano in un punto O Consideriamo ciascuna di queste rette come retta orientata

Dettagli

ULTERIORI ESERCIZI SUL CALCOLO DIFFERENZIALE

ULTERIORI ESERCIZI SUL CALCOLO DIFFERENZIALE ULTERIORI ESERCIZI SUL CALCOLO DIFFERENZIALE 1 Scrivi l equazione della retta tangente al grafico di f(x) = (1 + 2x) 4 nel suo punto di intersezione con l asse y 2 Scrivi l equazione della retta tangente

Dettagli

ORDINAMENTO SESSIONE SUPPLETIVA QUESTIONARIO QUESITO 1

ORDINAMENTO SESSIONE SUPPLETIVA QUESTIONARIO QUESITO 1 www.matefilia.it ORDINAMENTO 2003 - SESSIONE SUPPLETIVA QUESTIONARIO QUESITO Tra i rettangoli aventi la stessa area di 6 m 2 trovare quello di perimetro minimo. Indicate con x ed y le misure della base

Dettagli

Istituzioni di Matematica I

Istituzioni di Matematica I Istituzioni di Matematica I Le soluzioni proposte costituiscono solo una traccia di possibili soluzioni (lo studente deve giustificare i vari risultati), possono esserci altri modi, altrettanto corretti,

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2001 Sessione suppletiva

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2001 Sessione suppletiva ESME DI STT DI LICE SCIENTIFIC CRS DI RDINMENT 1 Sessione suppletiva Il candidato risolva uno dei due problemi e dei 1 quesiti in cui si articola il questionario. PRBLEM 1 Si consideri la funzione reale

Dettagli

risoluzione della prova

risoluzione della prova Verso la seconda prova di matematica 7 Risoluzione della prova verso la seconda prova di matematica 7 risoluzione della prova Problemi 7 a Determiniamo l equazione della parabola di vertice V`; j e passante

Dettagli

AMERICHE PROBLEMA 1

AMERICHE PROBLEMA 1 www.matefilia.it AMERICHE 16 - PROBLEMA 1 Considerata la funzione G: R R è così definita: svolgi le richieste che seguono. 1) x G(x) = e t sen (t)dt Discuti campo di esistenza, continuità e derivabilità

Dettagli

M557 - ESAME DI STATO DI LICEO SCIENTIFICO

M557 - ESAME DI STATO DI LICEO SCIENTIFICO M7 - ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO Tema di: MATEMATICA Il candidato risolva uno dei due problemi e cinque quesiti scelti nel questionario. PROBLEMA 1 Nel primo quadrante del

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2003 Sessione suppletiva

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2003 Sessione suppletiva ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO Sessione suppletiva Il candidato risolva uno dei due problemi e dei 1 quesiti in cui si articola il questionario. PROBLEMA 1 Del triangolo ABC si

Dettagli

In un piano, riferito ad uni sistema cartesiano ortogonale Oxy, si considerino le parabole di equazione:

In un piano, riferito ad uni sistema cartesiano ortogonale Oxy, si considerino le parabole di equazione: Maturità scientifica 966/967 Sessione estiva In un piano, riferito ad uni sistema cartesiano ortogonale Oy, si considerino le parabole di equazione: y m m essendo m un parametro diverso da zero. (a) Si

Dettagli

FUNZIONI REALI DI UNA VARIABILE REALE

FUNZIONI REALI DI UNA VARIABILE REALE FUNZIONI REALI DI UNA VARIABILE REALE INTERVALLI Per definire il campo di esistenza (o dominio) di una funzione reale di variabile reale y=f()si devono indicare talvolta insiemi di numeri reali che su

Dettagli

Corso di Geometria BIAR, BSIR Esercizi 10: soluzioni

Corso di Geometria BIAR, BSIR Esercizi 10: soluzioni Corso di Geometria 2010-11 BIAR, BSIR Esercizi 10: soluzioni 1 Geometria dello spazio Esercizio 1. Dato il punto P 0 = ( 1, 0, 1) e il piano π : x + y + z 2 = 0, determinare: a) Le equazioni parametriche

Dettagli

Test sull ellisse (vai alla soluzione) Quesiti

Test sull ellisse (vai alla soluzione) Quesiti Test sull ellisse (vai alla soluzione) Quesiti ) Considerata nel piano cartesiano l ellisse Γ : + y = 8 valutare il valore di verità delle seguenti affermazioni. I fuochi si trovano sull asse delle ordinate

Dettagli

Esame di Stato di Liceo Scientifico Corso di Ordinamento

Esame di Stato di Liceo Scientifico Corso di Ordinamento Corso di Ordinamento Soluzione dei Temi di Matematica proposti nella Sessione Ordinaria 006 Sessione Ordinaria 006 Corso di Ordinamento Sommario Problema Punto a) Punto b) Punto c) Punto Finale 4 Problema

Dettagli

Carlo Sintini, Problemi di maturità, 1949 Settembre, matematicamente.it Settembre 1949, primo problema

Carlo Sintini, Problemi di maturità, 1949 Settembre, matematicamente.it Settembre 1949, primo problema Settembre 199, primo problema In una data circonferenza di centro O, la corda AB è il lato del quadrato inscritto. Condotta nel punto B la semiretta tangente alla circonferenza che giace, rispetto alla

Dettagli

Condizione di allineamento di tre punti

Condizione di allineamento di tre punti LA RETTA L equazione lineare in x e y L equazione: 0 con,,, e non contemporaneamente nulli, si dice equazione lineare nelle due variabili e. Ogni coppia ; tale che: 0 si dice soluzione dell equazione.

Dettagli

Soluzioni dei quesiti della maturità scientifica A.S. 2007/2008

Soluzioni dei quesiti della maturità scientifica A.S. 2007/2008 Soluzioni dei quesiti della maturità scientifica A.S. 007/008 Nicola Gigli Sun-Ra Mosconi 19 giugno 008 1. La proposizione è falsa. Per trovare un controesempio ad essa, si consideri un qualunque piano

Dettagli

Soluzioni dei problemi della maturità scientifica A.S. 2012/2013

Soluzioni dei problemi della maturità scientifica A.S. 2012/2013 Soluzioni dei problemi della maturità scientifica A.S. / Nicola Gigli Sun-Ra Mosconi June, Problema. Il teorema fondamentale del calcolo integrale garantisce che Quindi f (x) = cos x +. f (π) = cos π +

Dettagli

Esame di Stato di Liceo Scientifico Corso di Ordinamento

Esame di Stato di Liceo Scientifico Corso di Ordinamento Corso di Ordinamento Soluzione dei Temi di Matematica proposti nella Sessione Ordinaria 8 Sessione Ordinaria 8 Corso di Ordinamento Sommario Problema Punto a) Punto b) Punto c) Punto d) 5 Problema 6 Punto

Dettagli

SIMULAZIONE DELLA PROVA DI MATEMATICA DELL ESAME DI STATO. Il candidato risolva uno dei problemi e risponda a 5 quesiti del questionario.

SIMULAZIONE DELLA PROVA DI MATEMATICA DELL ESAME DI STATO. Il candidato risolva uno dei problemi e risponda a 5 quesiti del questionario. Simulazione 06/7 ANNO SCOLASTICO 06/7 SIMULAZIONE DELLA PROVA DI MATEMATICA DELL ESAME DI STATO PER IL LICEO SCIENTIFICO Il candidato risolva uno dei problemi e risponda a 5 quesiti del questionario. Problema

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I Sessione suppletiva

ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I Sessione suppletiva ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. 00 Sessione suppletiva Il candidato risolva uno dei due problemi e 5 dei 0 quesiti in cui si articola il questionario. PROBLEMA In un piano,

Dettagli

EQUAZIONE DELLA RETTA

EQUAZIONE DELLA RETTA EQUAZIONE DELLA RETTA EQUAZIONE DEGLI ASSI L equazione dell asse x è 0. L equazione dell asse y è 0. EQUAZIONE DELLE RETTE PARALLELE AGLI ASSI L equazione di una retta r parallela all asse x è cioè è uguale

Dettagli

1.4 Geometria analitica

1.4 Geometria analitica 1.4 Geometria analitica IL PIANO CARTESIANO Per definire un riferimento cartesiano nel piano euclideo prendiamo: Un punto detto origine i Due rette orientate passanti per. ii Due punti e per definire le

Dettagli

Soluzioni dei problemi della maturità scientifica A.S. 2007/2008

Soluzioni dei problemi della maturità scientifica A.S. 2007/2008 Soluzioni dei problemi della maturità scientifica A.S. 007/008 Nicola Gigli Sunra J.N. Mosconi 19 giugno 008 Problema 1 (a) Determiniamo in funzione di a i lati del triangolo. Essendo l angolo BĈA retto

Dettagli

SIMULAZIONE - 29 APRILE QUESITI

SIMULAZIONE - 29 APRILE QUESITI www.matefilia.it SIMULAZIONE - 29 APRILE 206 - QUESITI Q Determinare il volume del solido generato dalla rotazione attorno alla retta di equazione y= della regione di piano delimitata dalla curva di equazione

Dettagli

Verifiche di matematica classe 3 C 2012/2013

Verifiche di matematica classe 3 C 2012/2013 Verifiche di matematica classe 3 C 2012/2013 1) È assegnato il punto P 1 (3; 1), calcolare le coordinate dei punti: P 2 simmetrico di P 1 rispetto alla bisettrice del primo e terzo quadrante P 3 simmetrico

Dettagli

ESAME DI STATO LICEO SCIENTIFICO MATEMATICA 2011

ESAME DI STATO LICEO SCIENTIFICO MATEMATICA 2011 ESAME DI STATO LICEO SCIENTIFICO MATEMATICA PROBLEMA La funzione f ( ) ( )( ) è una funzione dispari di terzo grado Intercetta l asse nei punti ;, ; e ; Risulta f per e per è invece f per e per f ' risulta

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2013

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2013 ESAME DI STAT DI LICE SCIENTIFIC CRS DI RDINAMENT Il candidato risolva uno dei due problemi e 5 dei quesiti in cui si articola il questionario. PRBLEMA La funzione f è definita da cos t dt per tutti i

Dettagli

Esercitazioni di ISTITUZIONI di MATEMATICA 1 Facoltà di Architettura Anno Accademico 2005/2006

Esercitazioni di ISTITUZIONI di MATEMATICA 1 Facoltà di Architettura Anno Accademico 2005/2006 Esercitazioni di ISTITUZIONI di MATEMATICA 1 Facoltà di Architettura Anno Accademico 005/006 Antonella Ballabene SOLUZIONI -14 marzo 006- SCHEMA per lo STUDIO di FUNZIONI 1. Dominio della funzione f)..

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2001 Sessione ordinaria

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2001 Sessione ordinaria ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 00 Sessione ordinaria Il candidato risolva uno dei due problemi e dei 0 quesiti in cui si articola il questionario. PROBLEMA Si consideri la seguente

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. 2005

ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. 2005 ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. 005 Il candidato risolva uno dei due problemi e 5 dei 0 quesiti in cui si articola il questionario. PROBLEMA Nel piano Oy sono date le curve

Dettagli

Test su geometria. 1. una circonferenza. 2. un iperbole. 3. una coppia di iperboli. 4. una coppia di rette. 5. una coppia di circonferenze

Test su geometria. 1. una circonferenza. 2. un iperbole. 3. una coppia di iperboli. 4. una coppia di rette. 5. una coppia di circonferenze Test su geometria Domanda 1 Fissato nel piano un sistema di assi cartesiani ortogonali Oxy, il luogo dei punti le cui coordinate (x; y) soddisfano l equazione x y = 1 è costituita da una circonferenza.

Dettagli

ESERCIZI SULLO STUDIO DI FUNZIONI

ESERCIZI SULLO STUDIO DI FUNZIONI ESERCIZI SULLO STUDIO DI FUNZIONI 0 novembre 206 Esercizi Esercizio n. Si consideri la funzione f(x) = 7 x 2 + 3 Dominio: R Intersezioni con gli assi: Intersezioni con l asse x: { y = 0 y = 7 x 2 + 3.

Dettagli

ORDINAMENTO 2011 QUESITO 1

ORDINAMENTO 2011 QUESITO 1 www.matefilia.it ORDINAMENTO 0 QUESITO Consideriamo la sezione della sfera e del cilindro con un piano passante per l asse del cilindro: Indicando con x il diametro di base del cilindro, con y la sua altezza

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. 2013

ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. 2013 ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. 0 Il candidato risolva uno dei due problemi e dei 0 quesiti in cui si articola il questionario. PROBLEMA Una funzione f () è definita e derivabile,

Dettagli

ORDINAMENTO 2007 SESSIONE STRAORDINARIA - QUESITI QUESITO 1

ORDINAMENTO 2007 SESSIONE STRAORDINARIA - QUESITI QUESITO 1 www.matefilia.it ORDINAMENTO 2007 SESSIONE STRAORDINARIA - QUESITI QUESITO 1 Si determini il campo di esistenza della funzione y = (x 2 3x) 1 x 4. Ricordiamo che il campo di esistenza di una funzione del

Dettagli

CALENDARIO BOREALE 1 EUROPA 2015 QUESITO 1

CALENDARIO BOREALE 1 EUROPA 2015 QUESITO 1 www.matefilia.it Indirizzi: LI0, EA0 SCIENTIFICO; LI0 - SCIENTIFICO - OPZIONE SCIENZE APPLICATE CALENDARIO BOREALE EUROPA 05 QUESITO La funzione f(x) è continua per x [ 4; 4] il suo grafico è la spezzata

Dettagli

LO STUDIO DI FUNZIONE ESERCIZI CON SOLUZIONI

LO STUDIO DI FUNZIONE ESERCIZI CON SOLUZIONI Autore: Enrico Manfucci - 6/05/0 LO STUDIO DI FUNZIONE ESERCIZI CON SOLUZIONI PREMESSA Per Studio di funzione si intende disegnare il grafico di una funzione data la sua espressione analitica. Questo significa

Dettagli

LICEO SCIENTIFICO QUESTIONARIO QUESITO 1

LICEO SCIENTIFICO QUESTIONARIO QUESITO 1 www.matefilia.it LICEO SCIENTIFICO 7 - QUESTIONARIO QUESITO Definito il numero E come: E = e d, dimostrare che risulta: e d = e E esprimere e d in termini di e ed E. Cerchiamo una primitiva di e integrando

Dettagli

Mutue posizioni della parabola con gli assi cartesiani

Mutue posizioni della parabola con gli assi cartesiani Mutue posizioni della parabola con gli assi cartesiani L equazione di una parabola generica è data da: Consideriamo l equazione che definisce i punti di intersezione della parabola con l asse delle ascisse

Dettagli

SIMULAZIONE DELLA PROVA DI MATEMATICA DELL ESAME DI STATO. t ed è nulla per t 0. Vale il limite:

SIMULAZIONE DELLA PROVA DI MATEMATICA DELL ESAME DI STATO. t ed è nulla per t 0. Vale il limite: Simulazione /6 ANNO SCOLASTICO /6 SIMULAZIONE DELLA PROVA DI MATEMATICA DELL ESAME DI STATO PER IL LICEO SCIENTIFICO Risoluzione Problema Conversazioni telefoniche a) La funzione f t è continua e derivabile

Dettagli

Testi verifiche 3 C 3 I a. s. 2008/2009

Testi verifiche 3 C 3 I a. s. 2008/2009 Testi verifiche 3 C 3 I a. s. 2008/2009 1) Sono assegnati i punti A(- 1; 3) C(3; 0) M ;1 a) Ricavare le coordinate del simmetrico di A rispetto a M e indicarlo con B. Verificare che il segmento congiungente

Dettagli

CALENDARIO BOREALE 2 AMERICHE 2015 QUESITO 1

CALENDARIO BOREALE 2 AMERICHE 2015 QUESITO 1 www.matefilia.it Indirizzi: LI0, EA0 SCIENTIFICO; LI0 - SCIENTIFICO - OPZIONE SCIENZE APPLICATE CALENDARIO BOREALE AMERICHE 0 QUESITO Determinare il volume del solido generato dalla rotazione attorno alla

Dettagli

f(x) = sin cos α = k2 2 k

f(x) = sin cos α = k2 2 k 28 Maggio 2015 Il punteggio viene attribuito in base alla correttezza e completezza nella risoluzione dei quesiti, nonché alle caratteristiche dell esposizione: chiarezza, ordine ed organicità. La sufficienza

Dettagli

Derivata di una funzione

Derivata di una funzione Derivata di una funzione Prof. E. Modica http://www.galois.it erasmo@galois.it Il problema delle tangenti Quando si effettua lo studio delle coniche viene risolta una serie di esercizi che richiedono la

Dettagli

Soluzione Problema 1

Soluzione Problema 1 Soluzione Problema 1 1. Ricordiamo che una funzione h(x) è derivabile in un punto c se esiste finita la sua derivata nel punto c. Per il significato geometrico della derivata ciò significa che esiste ed

Dettagli

a) Determinare il dominio, i limiti agli estremi del dominio e gli eventuali asintoti di f. Determinare inoltre gli zeri di f e studiarne il segno.

a) Determinare il dominio, i limiti agli estremi del dominio e gli eventuali asintoti di f. Determinare inoltre gli zeri di f e studiarne il segno. 1 ESERCIZI CON SOLUZIONE DETTAGLIATA Esercizio 1. Si consideri la funzione f(x) = e x 3e x +. a) Determinare il dominio, i limiti agli estremi del dominio e gli eventuali asintoti di f. Determinare inoltre

Dettagli

Chi non risolve esercizi non impara la matematica.

Chi non risolve esercizi non impara la matematica. 2.8 esercizi 31 2.8 esercizi hi non risolve esercizi non impara la matematica. 1 Vero o falso? a. I punti (0, 2), (4, 4), (6, 0) e (2, 2) sono i vertici di un quadrato. V F b. Non esiste il coefficiente

Dettagli

ESAME DI STATO 2016 INDIRIZZO SCIENTIFICO E OPZIONE SCIENZE APPLICATE

ESAME DI STATO 2016 INDIRIZZO SCIENTIFICO E OPZIONE SCIENZE APPLICATE ESAME DI STATO 2016 INDIRIZZO SCIENTIFICO E OPZIONE SCIENZE APPLICATE Il candidato risolva uno dei due problemi e risponda a 5 quesiti del questionario 1. PROBLEMA 1 L amministratore di un piccolo condominio

Dettagli

SYLLABUS DI MATEMATICA Liceo Linguistico Classe III

SYLLABUS DI MATEMATICA Liceo Linguistico Classe III SYLLABUS DI MATEMATICA Liceo Linguistico Classe III LE EQUAZIONI DI SECONDO GRADO Le equazioni di secondo grado e la loro risoluzione. La formula ridotta. Equazioni pure, spurie e monomie. Le relazioni

Dettagli

Esercizio 1. f(x) = 4 5x2 x 2 +x 2. Esercizio 2. f(x) = x2 16. Esercizio 3. f(x) = x2 1 9 x 2

Esercizio 1. f(x) = 4 5x2 x 2 +x 2. Esercizio 2. f(x) = x2 16. Esercizio 3. f(x) = x2 1 9 x 2 Matematica ed Informatica+Fisica ESERCIZI Modulo di Matematica ed Informatica Corso di Laurea in CTF - anno acc. 2013/2014 docente: Giulia Giantesio, gntgli@unife.it Esercizi 8: Studio di funzioni Studio

Dettagli

Soluzioni dei quesiti della maturità scientifica A.S. 2009/2010

Soluzioni dei quesiti della maturità scientifica A.S. 2009/2010 Soluzioni dei quesiti della maturità scientifica AS 009/010 Nicola Gigli Sun-Ra Mosconi giugno 010 Quesito 1 Un generico polinomio di grado n si può scrivere nella forma p(x) a 0 + a 1 x + + a n x n dove

Dettagli

SESSIONE ORDINARIA 2007 CORSO DI ORDINAMENTO SCUOLE ITALIANE ALL ESTERO - AMERICHE

SESSIONE ORDINARIA 2007 CORSO DI ORDINAMENTO SCUOLE ITALIANE ALL ESTERO - AMERICHE SESSIONE ORDINARIA 007 CORSO DI ORDINAMENTO SCUOLE ITALIANE ALL ESTERO - AMERICHE PROBLEMA Si consideri la funzione f definita da f ( x) x, il cui grafico è la parabola.. Si trovi il luogo geometrico dei

Dettagli

PNI SESSIONE SUPPLETIVA QUESTIONARIO QUESITO 1

PNI SESSIONE SUPPLETIVA QUESTIONARIO QUESITO 1 www.matefilia.it PNI 200 - SESSIONE SUPPLETIVA QUESTIONARIO QUESITO Enunciare il teorema del valor medio o di Lagrange illustrandone il legame con il teorema di Rolle e le implicazioni ai fini della determinazione

Dettagli

determinare le coordinate di P ricordando la relazione che permette di calcolare le coordinate del punto medio di un segmento si

determinare le coordinate di P ricordando la relazione che permette di calcolare le coordinate del punto medio di un segmento si PROBLEMA Determinare il punto simmetrico di P( ;) rispetto alla retta x y =0 Soluzione Il simmetrico di P rispetto ad una retta r è il punto P che appartiene alla retta passante per P, perpendicolare ad

Dettagli

Teoria in sintesi 10. Teoria in sintesi 14

Teoria in sintesi 10. Teoria in sintesi 14 Indice L attività di recupero Funzioni goniometriche Teoria in sintesi 0 Obiettivo Calcolare il valore di espressioni goniometriche in seno e coseno Obiettivo Determinare massimo e minimo di funzioni goniometriche

Dettagli

Proposta di soluzione della prova di matematica Liceo scientifico PNI

Proposta di soluzione della prova di matematica Liceo scientifico PNI Proposta di soluzione della prova di matematica Liceo scientifico PNI - 14 Problema 1 Punto a) In A e O, g non è derivabile in quanto la tangente risulta verticale (punto di cuspide). Stesso dicasi per

Dettagli

Svolgimento degli esercizi sulla circonferenza

Svolgimento degli esercizi sulla circonferenza Liceo Classico Galilei Pisa - Classe a A - Prof. Francesco Daddi - 1 ottobre 011 Svolgimento degli esercizi sulla circonferenza Esercizio 1. La circonferenza ha centro in C 4 ), 7, 7 ) e raggio + 7 57

Dettagli

In un triangolo un lato è maggiore della differenza degli altri due, pertanto dal triangolo si ha > dividendo per =1.

In un triangolo un lato è maggiore della differenza degli altri due, pertanto dal triangolo si ha > dividendo per =1. L iperbole L iperbole è il luogo geometrico dei punti del piano per i quali è costante la differenza delle distanze da due punti fissi detti fuochi. Come si evince del grafico, la differenza delle distanze

Dettagli

SCIENTIFICO COMUNICAZIONE OPZIONE SPORTIVA PROBLEMA 2. Figura 1

SCIENTIFICO COMUNICAZIONE OPZIONE SPORTIVA PROBLEMA 2. Figura 1 www.matefilia.it SCIENTIFICO COMUNICAZIONE OPZIONE SPORTIVA 216 - PROBLEMA 2 Nella figura 1 è rappresentato il grafico Γ della funzione continua f: [, + ) R, derivabile in ], + ), e sono indicate le coordinate

Dettagli

ISTITUTO SUPERIORE XXV APRILE LICEO CLASSICO ANDREA DA PONTEDERA classi 5A-5B PROGRAMMA DI MATEMATICA

ISTITUTO SUPERIORE XXV APRILE LICEO CLASSICO ANDREA DA PONTEDERA classi 5A-5B PROGRAMMA DI MATEMATICA ISTITUTO SUPERIORE XXV APRILE LICEO CLASSICO ANDREA DA PONTEDERA classi 5A-5B PROGRAMMA DI MATEMATICA PRIMA PARTE Intervallo limitato di numeri reali Dati due numeri reali a e b, con a

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2008

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2008 ESME DI STTO DI LIEO SIENTIFIO ORSO DI ORDINMENTO 00 Il candidato risolva uno dei due problemi e 5 dei 10 quesiti in cui si articola il questionario. PROLEM 1 Il triangolo rettangolo ha l ipotenusa a e

Dettagli