Il Capital Asset Pricing Model e lo Arbitrage Pricing Theory
|
|
|
- Amedeo Vacca
- 8 anni fa
- Visualizzazioni
Transcript
1 Il Capital Asset Pricing Model e lo Arbitrage Pricing Theory Pierpaolo Montana Università di Roma I Il Capital Asset Pricing Model può essere visto come una evoluzione del modello media-varianza di scelta di portafoglio. Tuttavia, come indica lo stesso nome, diventa un modello di valutazione delle attivitá, più che di allocazione della ricchezza tra diversi assets. Le ipotesi 1. Le preferenze degli agenti dipendono unicamente dal rendimento atteso e dalla varianza dei rendimenti; 2. Tutti gli agenti hanno lo stesso orizzonte di investimento; 3. Tutti gli agenti hanno le stesse aspettative relativamente ai rendimenti attesi e alle varianza-covarianze dei titoli; 4. C é possibilitá di vendita allo scoperto su tutti i titoli rischiosi; 5. C é la possibilitá di prestare e di indebitarsi ad un unico tasso senza rischio; 6. Non ci sono costi di transazione; 7. Non ci sono tasse sul reddito individuale; 8. Tutti gli assets sono infinitamente divisibili; 9. Tutti gli agenti sono price-takers; 10. Tutti gli assets sono scambiabili sul mercato; 11. Il mercato finanziario è in equilibrio; httcp:\\web.tiscalinet.it\pierpaolomontana 1
2 L ipotesi 1 è la base del modello media-varianza. Le ipotesi 2 e 3 sono relative alla cosidetta omogeneitá delle aspettative Le ipotesi 4 e 5 sono relative allapossibilitá di acquistare una qualsiasi quantitá di ciascun titolo, sia di quelli rischiosi che di quello non rischioso. In particolare si assume che il tasso senza rischio sia unico, per tutti i contraenti e che sia lo stesso sie per i debitori che per i creditori. Le ipotesi 6 9 possono essere riassunte dicendo che si assume un modello di mercati finanziari perfetti. L ipotesi 10 stabilisce che ogni bene possa essere scambiato sul mercato, ovvero che i mercati siano completi. L ipotesi 11 è una ipotesi standard in (quasi) tutti i modelli economici. Applichiamo ora l analisi media-varianza con questo insieme di ipotesi più restrittivo. In particolare le ipotesi aggiuntive di cui dobbiamo studiare gli effetti sono quella di omogeneitá delle aspettative (ipotesi 2 3) e quella di equilibrio dei mercati (ipotesi 11). Nella analisi media-varianza in presenza di un titolo non-rischioso (ipotesi 5) abbiamo visto che il processo di determinazione della frontiera efficiente, una volta dato il tasso senza rischio R f, è risolto individuando il portafoglio tangente. Il portafoglio tangente dipende dall insieme dei portafogli ammissibili, ovvero dalle valutazioni che un agente dá dei rendimenti attesi e della matrice varianze-covarianze. Il valore del tasso senza rischio, che permette di individuare il punto (0, R f ) origine della frontiera efficiente, è un valore oggettivo e uguale per tutti gli individui. Il portafoglio tangente, rappresentato dal punto (σ T, R T ), è invece dipendente dalle aspettative degli agenti, e quindi nel modello media-varianza cambia per ogni agente. Nel CAPM, introducendo l ipotesi di omogeneitá della aspettative, la frontiera efficiente è comune a tutti gli agenti e quindi anche il portafoglio efficiente risulta essere lo stesso per tutti gli agenti. Conseguentemente la frontiera efficiente è la stessa per tutti gli agenti. Prendiamo in considerazione ora l ipotesi di equilibrio del mercato dei capitali. Il portafoglio tangente fornisce le proporzioni di titoli rischiosi desiderate da ogni agente. Siano queste (λ T i ). Se indichiamo con W l la ricchezza dell agente l, la quantitá del titolo rischioso i domandata dall agente l á data da 2
3 D l i = W l λ T i La quantitá domandata dal mercato, ovvero da tutti gli agenti, del titolo i è data da ovvero, indicando con W = L l=1 W l la ricchezza complessiva del mercato, L Di l = l=1 L W l λ T i l=1 L Di l = λ T i l=1 L W l = λ T i W l=1 La precedente relazione afferma dunque che la proporzione del titolo i nella domanda complessiva del mercato è data dalla componente λ T i del portafoglio tangente T. Ma poiché il mercato è in equilibrio, la domanda deve essere pari all offerta. La offerta del titolo i è pari alla quantitá del titolo presente sul mercato. Quindi la proporzione λ T i deve essere pari al peso del titolo i sul complesso dei titoli presenti nel mercato. Il ragionamento sopra svolto mostra che il portafoglio tangente é in realtá il portafoglio formato da tutti i titoli presenti sul mercato. Indichiamo con M il portafoglio di mercato e con R M il suo rendimento, di media R M e varianza σm 2 La fontiera efficiente è allora individuata dal rendimento atteso e dalla rischiositá del portafoglio complessivo di mercato. Applicando una relazione giá nota, possiamo scrivere la equazione della frontiera efficiente nelle ipotesi sopra descritte: R e = R f + R M R f σ e σ M La precedente equazione prende il nome di Capital Market Line (Retta del mercato dei capitali), dove la denominazione deriva dal fatto che l equazione descrive tutte le combinazioni rischio-rendimento efficienti possibili sul mercato dei capitali. Secondo questa equazione, un obiettivo di rendimento R e é determinato da un prezzo del differimento temporale R f e da un prezzo del rischio dato dal prodotto del prezzo unitario del rischio R M R f σ M per la quantitá di rischio σ e. Ovvero 3
4 (Rendimento atteso) = (prezzo del tempo)+ (prezzo del rischio) (quantitá di rischio) Questa equazione (Capital Market Line) fornisce la relazione tra rendimento atteso e rischio per un portafoglio efficiente, e non é valida per portafogli non efficienti o per i singoli assets. La conclusione del modello a indice singolo rilevante per il CAPM é che la misura di rischio rilevante per un portafoglio ben diversificato è data dal β del portafoglio. Poiché abbiamo visto che ogni agente detiene un portafolgio la cui composizione riscpecchia esattamente il portafoglio di mercato, il portafoglio di ogni agente è molto diversificato. Possiamo quindi assumere che la misura rilevante di rischio è il beta e svolgiamo quindi l analisi nel piano beta-rendimento atteso. Mostriamo ora, con un esempio, che la relazione tra rischio (misurato dal beta) e rendimento di un qualunque 1 portafoglio sul mercato, è lineare. Consideriamo due portafogli A e B, non necessariamente efficienti, con le caratteristiche seguenti PTF Rendimento atteso β A 10 1,0 B 12 1,4 e consideriamo delle possibili combinazioni dei due portafogli (λ, 1 λ). Per λ = 1 il rendimento atteso si ottiene per combinazione lineare ed è 2 dato da = Diversamente che nel caso del rischio misurato dalla deviazione standard, la misura di rischio beta è anchéssa ottenuta come combianzione lineare delle misure di rischio dei singoli portafogli componenti. Per λ = 1 il beta è dato dunque da 1 1, , 4 = 1, Chiediamoci ora se è possibile che sul mercato esista un portafoglio con un rendimento del 13% e un beta pari a 1, 2. Chiaramente no, altrimenti si avrebbe una opportunitá di arbitraggio. Il semplice ragionamento sopra svolto mostra che tutte le combinazioni rischio-rendimento presenti sul mercato giacciono su una retta. R i = a + b β i É noto che per individuare una retta sono sufficienti due punti, ovvero in questo caso due combinazioni rischio-rendimento presenti sul mercato. 1 La Capital Market Line stabilisce che tale relazione è lineare solo per i portafogli efficienti 4
5 Prendiamo allora in considerazione il portafoglio formato dal titolo non rischioso (0, R f ) e il portafoglio di mercato (E(R M ), 1) 2. Se la relazione rischio-rendimento di questi portafogli deve stare sulla stessa retta, deve essere verificato il sistema: R f = a + b 0 R M = a + b 1 da cui si ricavano i valori di a = R f e b = R M R f e infine l espressione R i = R f + (E(R M ) R f ) β i La precedente equazione è la equazione del CAPM, detta anche Security Market Line. A differenza della Capital Market Line, la Security Market Line esprime una relazione lineare tra rendimento e rischio valida anche per portafogli non efficienti e quindi, in particolare, per i singoli titoli. Da una equazione che serve a identificare le possibili allocazioni efficienti della ricchezza, siamo passati a una equazione che dá il rendimento di equilibrio di un qualsiasi titolo presente sul mercato. Da una soluzione del problema di allocazione della ricchezza, siamo passati ad una soluzione del problema della valutazione di una attivitá rischiosa. Ricordando la formula del coefficiente di regressione β = σ im e sostituendola nella SML, si ottengono altri due modi di presentare la stessa σm 2 equazione: e R i = R f + ( RM R f σ M R i = R f + ( RM R f σ 2 M ) σ im σ M ) σ im Arbitrage Pricing Theory Il modello dello Arbitrage Pricing Theory può essere visto come una estensione del CAPM, in cui vengono rilassate alcune ipotesi e rese più stringenti altre. L ipotesi fondamentale dell APT è che i rendimenti di ciascun titolo siano una funzione affine di un insieme di fattori esplicativi 2 Il beta del portafoglio di mercato è ovviamente 1 5
6 R i = a i + b i1 I 1 + b i2 I b ij I J + e i dove I 1, I 2,..., I j,..., I J è l insieme di J fattori da cui è supposto dipendere il rendimento dei titoli. I parametri b i1, b i2,..., b ij rappresentano la sensibilitá del titolo i rispetto ai singoli fattori di rischio. Il parametro a i rappresenta l intercetta della equazione di regressione ed è il valore che assumerebbe in media il rendimento del titolo i se i valori degli indici dei fattori esplicativi fossero tutti pari a 0. e i è l errore dell equazione di regressione. Come nel modello dell indice singolo, si hanno delle ipotesi sui termini e i 1. E(e i ) = 0 2. E(e 2 i ) = σ 2 e i 3. E(e i, e j ) = 0 4. E[e i (I j Īj)] = 0 Illustriamo la derivazione del modello APT nel caso di due soli fattori, quindi J = 2, con un esempio. La relazione di partenza è quindi R i = a i + b i1 I 1 + b i2 I 2 + e i Un portafoglio non è più individuato da un punto nel piano (σ, µ), ma da un punto nello spazio (b 1, b 2, R). Il rischio ora non è più misurato da un solo parametro σ, ma da una coppia di parametri (b 1, b 2 ) che misurano rispettivamente la sensitivitá rispetto al primo e al secondo fattore. Consideriamo ora tre portafogli presenti nel mercato PTF Rendimento atteso b i1 b i2 A 15 1,0 0,6 B 14 0,5 1,0 C 10 0,3 0,2 Supponiamo ora l esistenza di una relazione affine tra il rendimento atteso e i due fattori di rischio, ovvero R i = γ 0 + γ 1 b i1 + γ 2 b i2 6
7 I tre portafogli di cui sopra sono state riportate i profili rischio-rendimento, sono sufficienti a individuare i parametri γ 0, γ 1, γ 2 dell equazione, nel caso specifico R i = 7, b i1 + 3, 75b i2 Formiamo ora dei portafogli come combinazioni dei portafogli A, B, C. Il rendimento atteso e le misure di rischio di un portafoglio formato come combinazione di altri portafogli sono combinazioni lineari dei rendimenti attesi e delle misure di rischio dei portafogli componenti: Prendiamo ad esempio λ 1 = λ 2 = λ 3 = 1 3 da cui R P = 1 3 R A R B R C b P 1 = 1 3 b A b B b C1 b P 2 = 1 3 b A b B b C2 da cui si ricava R P = 13 b P 1 = 0, 6 b P 2 = 0, 6 R P = b P 1 = b P 2 = N λ i X i Ri i=1 N λ i X i b i1 i=1 N λ i X i b i2 i=1 Il profilo rischio-rendimento di questo portafoglio è dato da (13, 0.6, 0.6) Poniamo di nuovo la stessa domanda (retorica): E possibile che sul mercato si trovi un portafoglio con profilo rischiorendimento (15, 0.6, 0.6)? Ovviamente la risposta è ancora una volta no, altrimenti avremmo una possibilitá di arbitraggio. Ne consegue che tutti i portafogli presenti sul mercato giacciono su uno stesso iperpiano, di equazione generica 7
8 R i = γ 0 + γ 1 b i1 + γ 2 b i2 La precedente è l equazione di equilibrio del modello APT a due fattori, e può essere risolta se la si mette a sistema sui valori di tre portafogli presenti nel mercato. Il significato del valore γ 0 si può meglio interpretare scrivendo l equazione per il portafoglio senza rischio: R f = γ 0 + γ γ 2 0 da cui γ 0 = R f Il significato dei valori γ 1, γ 2 si può invece comprendere scrivendo l equazione per il portafoglio P 1 con b i1 = 1 e b i2 = 0 e per il portafoglio P 2 con b i1 = 0 e b i2 = 1. R P1 = R f + γ γ 2 0 da cui R P2 = R f + γ γ 2 1 γ 1 = R P1 R f γ 2 = R P2 R f 8
Le curve di indifferenza sulla frontiera di Markowitz
UNIVERSIT DEGLI STUDI DI PRM FCOLT DI ECONOMI Corso di Pianificazione Finanziaria Evoluzione della teoria del rischio finanziario da Markowitz al teorema della separazione e al CPM 1 Le curve di indifferenza
Le curve di indifferenza sulla frontiera di Markowitz
UNIVERSITA DEGLI STUDI DI PARMA FACOLTA DI ECONOMIA Corso di Corporate Banking and Finance a.a. 2012-2013 (Professor Eugenio Pavarani) Evoluzione della teoria del rischio finanziario da Markowitz al teorema
Rischio e rendimento. dott. Matteo Rossi
Rischio e rendimento dott. Matteo Rossi Argomenti trattati Teoria di portafoglio di Markowitz Relazione rischio-rendimento Validità e ruolo del CAPM Alternative al Capital Asset Pricing Model Teoria di
LA MODERNA TEORIA DI PORTAFOGLIO
LA MODERNA TEORIA DI PORTAFOGLIO Dal concetto di rischio e rendimento, ai dettami dell APT Gino Gandolfi La diversificazione di Markowitz IL RENDIMENTO DEL PORTAFOGLIO Poiché un portafoglio è un insieme
ECONOMIA DEI MERCATI FINANZIARI
ECONOMIA DEI MERCATI FINANZIARI 6 febbraio 2012 PROVA SCRITTA Inserire i propri dati: Numero di Matricola Nome Cognome CORSO DI LAUREA: Sezione 1. Indicare se le seguenti affermazioni sono vere o false,
Introduzione al rischio, rendimento e costo opportunità del capitale
Introduzione al rischio, rendimento e costo opportunità del capitale Nozione di Costo Opportunità del Capitale Il rendimento che i finanziatori otterrebbero impiegando i propri fondi in attività alternative,
LEZIONE 4. Il Capital Asset Pricing Model. Professor Tullio Fumagalli Corso di Finanza Aziendale Università degli Studi di Bergamo.
LEZIONE 4 Il Capital Asset Pricing Model 1 Generalità 1 Generalità (1) Il Capital Asset Pricing Model è un modello di equilibrio dei mercati che consente di individuare una precisa relazione tra rendimento
Le curve di indifferenza sulla frontiera di Markowitz
UNIVERSITA DEGLI STUDI DI PARMA FACOLTA DI ECONOMIA Corso di pianificazione finanziaria da Markowitz al teorema della separazione e al CAPM Le curve di indifferenza sulla frontiera di Markowitz Markowitz
Il Capital asset pricing model è un modello di equilibrio dei mercati, individua una relazione tra rischio e rendimento, si fonda sulle seguenti
Il Capital asset pricing model è un modello di equilibrio dei mercati, individua una relazione tra rischio e rendimento, si fonda sulle seguenti ipotesi: Gli investitori sono avversi al rischio; Gli investitori
Argomenti trattati Capitolo 8. Teoria del portafoglio di Markowitz. Rischio e rendimento. Teoria del portafoglio di Markowitz
Capitolo 8 Principi di Finanza aziendale 5/ed Richard. realey, Stewart C. Myers, Franklin llen, Sandro Sandri e rendimento Lucidi di Matthew Will Francesco Millo. Tutti i diritti riservati rgomenti trattati
Argomenti trattati. CAPM e Portfolio Theory. Teoria deòòa Finanza Aziendale
Teoria deòòa Finanza ziendale CPM e Portfolio Theory 1- rgomenti trattati Relazione rischio-rendimento Testare il Capital sset Pricing Model lternative e al Capital sset Pricing Model 1-3 Combinare più
Tema d esame del 15/02/12
Tema d esame del 15/0/1 Volendo aprire un nuovo locale, una catena di ristoranti chiede ad un consulente di valutare la posizione geografica ideale all interno di un centro abitato. A questo scopo, avvalendosi
LA VALUTAZIONE DI PORTAFOGLIO. Giuseppe G. Santorsola 1
LA VALUTAZIONE DI PORTAFOGLIO Giuseppe G. Santorsola 1 Rendimento e rischio Rendimento e rischio di un singolo titolo Rendimento e rischio di un portafoglio Rendimento ex post Media aritmetica dei rendimenti
1 Esercizi sulla teoria del portafoglio
1 Esercizi sulla teoria del portafoglio 1. Sia dato un mercato uniperiodale in cui siano disponibili soltanto due titoli rischiosi A e B caratterizzati da scarto quadratico medio e coefficiente di correlazione
CAPITOLO 1 LA FUNZIONE DI PRODUZIONE E LA CRESCITA ECONOMICA
CAPITOLO 1 LA FUZIOE DI PRODUZIOE E LA CRESCITA ECOOMICA 11 La funzione di produzione Data una funzione di produzione in cui la quantità prodotta () dipende dalla quantità di capitale () e di lavoro ()
Esercizi di Matematica Finanziaria
Esercizi di Matematica Finanziaria Selezione del portafoglio Claudio Pacati Università degli Studi di Siena [email protected] Roberto Renò Università degli Studi di Verona [email protected] Versione
Indice. Le curve di indifferenza sulla frontiera di Markowitz UNIVERSITA DI PARMA FACOLTA DI ECONOMIA
UNIVERSITA DI PARMA FACOLTA DI ECONOMIA Corso di pianificazione finanziaria A.a. 2003/2004 1 Indice La Capital Market Theory di Markowitz Il Teorema della separazione di Tobin e la Capital Market Line
ECONOMIA APPLICATA ALL INGEGNERIA (Docente: Prof. Ing. Donato Morea)
ESERCIZIO n. 1 - La produzione ed i costi di produzione (1 ) Un impresa utilizza una tecnologia descritta dalla seguente funzione di produzione: I prezzi dei fattori lavoro e capitale sono, rispettivamente,
EQUAZIONE DELLA RETTA
EQUAZIONE DELLA RETTA EQUAZIONE DEGLI ASSI L equazione dell asse x è 0. L equazione dell asse y è 0. EQUAZIONE DELLE RETTE PARALLELE AGLI ASSI L equazione di una retta r parallela all asse x è cioè è uguale
Esercizi di macroeconomia (a.a. 2014/2015) Secondo modulo
Esercizi di macroeconomia (a.a. 2014/2015) Secondo modulo Indice 1 Mercato del lavoro 1 2 Il modello AD - AS 3 3 Produzione, inflazione e moneta 7 4 Crescita 9 1 Mercato del lavoro Esercizio 1. Si consideri
Il teorema di separazione di Fisher
Il teorema di separazione di Fisher G. Travaglini December 2, 2003 1 Introduzione. Per spiegare alcune delle proprietà attribuibili al sistema finanziario partiamo da un esempio molto semplice. Prendiamo
Domande 1. La domanda e l offerta del bene 1 sono date rispettivamente da:
Domande 1. La domanda e l offerta del bene 1 sono date rispettivamente da: DD SS 10 0,2 2 2 5 0,5 a) Calcolare la quantità e il prezzo di equilibrio sapendo che il reddito a disposizione del consumatore
I. Foglio di esercizi su vettori linearmente dipendenti e linearmente indipendenti. , v 2 = α v 1 + β v 2 + γ v 3. α v 1 + β v 2 + γ v 3 = 0. + γ.
ESERCIZI SVOLTI DI ALGEBRA LINEARE (Sono svolti alcune degli esercizi proposti nei fogli di esercizi su vettori linearmente dipendenti e vettori linearmente indipendenti e su sistemi lineari ) I. Foglio
MATEMATICA FINANZIARIA RISCHI: RAPPRESENTAZIONE E GESTIONE (CENNI)
Matematica Finanziaria, a.a. 2011/2012 p. 1/315 UNIVERSITA DEGLI STUDI DI PARMA FACOLTA DI ECONOMIA MATEMATICA FINANZIARIA RISCHI: RAPPRESENTAZIONE E GESTIONE (CENNI) ANNAMARIA OLIVIERI a.a. 2011/2012
Esercizi sulla retta. Gruppo 1 (4A TSS SER, 4B TSS SER, 4A AM )
Esercizi sulla retta. Gruppo 1 (4A TSS SER, 4B TSS SER, 4A AM ) 1. Scrivere l'equazione della retta passante per i punti P1(-3,1), P2(2,-2). Dobbiamo applicare l'equazione di una retta passante per due
Metodi statistici per l economia (Prof. Capitanio) Slide n. 10. Materiale di supporto per le lezioni. Non sostituisce il libro di testo
Metodi statistici per l economia (Prof. Capitanio) Slide n. 10 Materiale di supporto per le lezioni. Non sostituisce il libro di testo 1 REGRESSIONE LINEARE Date due variabili quantitative, X e Y, si è
Esercitazione del
Esercizi sulla regressione lineare. Esercitazione del 21.05.2013 Esercizio dal tema d esame del 13.06.2011. Si consideri il seguente campione di n = 9 osservazioni relative ai caratteri ed Y: 7 17 8 36
CLASSIFICAZIONE DELLE CONICHE AFFINI
CLASSIFICAZIONE DELLE CONICHE AFFINI Pre-requisiti necessari. Elementi di geometria analitica punti e rette nel piano cartesiano, conoscenza delle coniche in forma canonica). Risoluzione di equazioni e
UNIVERSITÀ di ROMA TOR VERGATA
UNIVERSITÀ di ROMA TOR VERGATA Corso di Statistica, anno 2010-11 P.Baldi Lista di esercizi 3. Corso di Laurea in Biotecnologie Esercizio 1 Una v.a. X segue una legge N(2, ). Calcolare a1) P(X 1) a2) P(2
Esercitazioni di Meccanica Quantistica I
Esercitazioni di Meccanica Quantistica I Sistema a due stati Consideriamo come esempio di sistema a due stati l ammoniaca. La struttura del composto è tetraedrico : alla sommità di una piramide con base
Statistica Applicata all edilizia: il modello di regressione
Statistica Applicata all edilizia: il modello di regressione E-mail: [email protected] 27 aprile 2009 Indice Il modello di Regressione Lineare 1 Il modello di Regressione Lineare Analisi di regressione
Condizione di allineamento di tre punti
LA RETTA L equazione lineare in x e y L equazione: 0 con,,, e non contemporaneamente nulli, si dice equazione lineare nelle due variabili e. Ogni coppia ; tale che: 0 si dice soluzione dell equazione.
PROVE SCRITTE DI MATEMATICA APPLICATA, ANNO 2006/07
PROVE SCRITTE DI MATEMATICA APPLICATA, ANNO 006/07 Esercizio 1 Prova scritta del 16/1/006 In un ufficio postale lavorano due impiegati che svolgono lo stesso compito in maniera indipendente, sbrigando
Funzioni derivabili (V. Casarino)
Funzioni derivabili (V. Casarino) Esercizi svolti 1) Applicando la definizione di derivata, calcolare la derivata in = 0 delle funzioni: a) 5 b) 3 4 c) + 1 d) sin. ) Scrivere l equazione della retta tangente
Rischi di mercato. Francesco Menoncin
Rischi di mercato Francesco Menoncin 6-0-0 Sommario Le risposte devono essere C.C.C (Chiare, Concise e Corrette). Il tempo a disposizione è di (due) ore. Esercizi. Su un mercato completo con tre stati
Sistemi lineari. Lorenzo Pareschi. Dipartimento di Matematica & Facoltá di Architettura Universitá di Ferrara
Sistemi lineari Lorenzo Pareschi Dipartimento di Matematica & Facoltá di Architettura Universitá di Ferrara http://utenti.unife.it/lorenzo.pareschi/ [email protected] Lorenzo Pareschi (Univ. Ferrara)
La valutazione dei rischi. Corso di risk management Prof. Giuseppe D Onza
La valutazione dei rischi Corso di risk management Prof. Giuseppe D Onza LA VALUTAZIONE DEI RISCHI E un attività che caratterizza la gestione dei rischi finalizzata ad apprezzare la gravità dei fenomeni
Capitolo 3 La scelta razionale del consumatore
Capitolo 3 La scelta razionale del consumatore Il comportamento del consumatore Tre fasi distinte di analisi nello studio del comportamento del consumatore 1. Le preferenze del consumatore 2. I vincoli
Separazione in due fondi Security Market Line CAPM
Separazione in due fondi Security Market Line CAPM Eduardo Rossi Economia dei mercati monetari e finanziari A.A. 2002/2003 1 Separazione in due fondi Un vettore di rendimenti er può essere separato in
Il metodo della regressione
Il metodo della regressione Consideriamo il coefficiente beta di una semplice regressione lineare, cosa significa? È una differenza tra valori attesi Anche nel caso classico di variabile esplicativa continua
Geometria analitica. coppia di numeri equazione di 2 grado. delle equazioni
1 Geometria analitica La geometria analitica stabilisce una corrispondenza tra il mondo della geometria e il mondo dell'algebra. Ciò significa che gli enti geometrici hanno degli enti corrispondenti nel
FUNZIONI LINEARI (Retta, punto di pareggio e relazioni lineari generalizzate)
FUNZIONI LINEARI (Retta, punto di pareggio e relazioni lineari generalizzate) Copyright SDA Bocconi, Milano La retta Una retta può essere espressa secondo due formulazioni: a. Forma esplicita b. Forma
Strumenti di indagine per la valutazione psicologica
Strumenti di indagine per la valutazione psicologica 1.5 Correlazione e causazione Davide Massidda [email protected] Metodi simmetrici vs asimmetrici Relazioni tra variabili Nei metodi di studio
FINANZA AZIENDALE AVANZATO
FINANZA AZIENDALE AVANZATO La diversificazione di portafoglio e il CAPM Lezione 3 e 4 1 Scopo della lezione Illustrare il modello logico-teorico più utilizzato nella pratica per stimare il rendimento equo
La ricerca della performance nelle gestioni è un argomento che da anni tormenta la quotidianità di ogni operatore. Il settore dell investimento si
La ricerca della performance nelle gestioni è un argomento che da anni tormenta la quotidianità di ogni operatore. Il settore dell investimento si caratterizza per una moltitudine di prodotti e di gestori
METODO DEI MINIMI QUADRATI
METODO DEI MINIMI QUADRATI Torniamo al problema della crescita della radice di mais in funzione del contenuto di saccarosio nel terreno di coltura. Ripetendo varie volte l esperimento con diverse quantità
Lezioni di Microeconomia
Lezioni di Microeconomia Lezione 4 Le scelte di consumo, il vincolo di bilancio Lezione 4: le scelte di consumo e il vincolo di bilancio Slide 1 Le scelte di consumo Due assunzioni fondamentali: a) i consumatori
Statistica. Alfonso Iodice D Enza
Statistica Alfonso Iodice D Enza [email protected] Università degli studi di Cassino () Statistica 1 / 24 Outline 1 2 3 4 5 () Statistica 2 / 24 Dipendenza lineare Lo studio della relazione tra caratteri
Il modello di regressione lineare multipla. Il modello di regressione lineare multipla
Introduzione E la generalizzazione del modello di regressione lineare semplice: per spiegare il fenomeno d interesse Y vengono introdotte p, con p > 1, variabili esplicative. Tale generalizzazione diventa
Capitolo 6. Scelta di portafoglio ed equilibrio di mercato con più titoli rischiosi
Capitolo 6. Scelta di portafoglio ed equilibrio di mercato con più titoli rischiosi Il Capitolo 5 ha affrontato il tema della scelta di portafoglio e dell equilibrio di mercato nel caso particolarmente
Il modello AD-AS. macroeconomia (clamm), a.a
Il modello AD-AS macroeconomia (clamm), a.a. 2013-2014 Contenuto Il Modello La curva di domanda aggregata La curva di offerta aggregata Equilibrio macroeconomico Equilibrio di medio periodo Breve periodo
IL METODO FINANZIARIO (D.C.F. - Discounted Cash Flow)
IL METODO FINANZIARIO (D.C.F. - Discounted Cash Flow) Introduzione Il metodo finanziario tende a determinare il valore di un azienda attraverso la somma dei flussi di cassa prospettici della stessa, attualizzati
Trigonometria. Parte della matematica che si occupa di studiare le relazioni tra i lati e gli angoli di un triangolo
Trigonometria Parte della matematica che si occupa di studiare le relazioni tra i lati e gli angoli di un triangolo I triangoli rettangoli Premessa: ricordiamo le definizioni di seno e coseno di un angolo
Esercizi di Geometria Affine
Esercizi di Geometria Affine Sansonetto Nicola dicembre 01 Geometria Affine nel Piano Esercizio 1. Nel piano affine standard A (R) dotato del riferimento canonico, si consideri la retta τ di equazione
Mercato concorrenziale
Mercato concorrenziale Francesca Stro olini Francesca Stro olini (Institute) 1 / 24 Mercato concorrenziale In un mercato perfettamente concorrenziale le decisioni di consumo di tutti i consumatori e le
SOTTOSPAZI E OPERAZIONI IN SPAZI DIVERSI DA R n
SPAZI E SOTTOSPAZI 1 SOTTOSPAZI E OPERAZIONI IN SPAZI DIVERSI DA R n Spazi di matrici. Spazi di polinomi. Generatori, dipendenza e indipendenza lineare, basi e dimensione. Intersezione e somma di sottospazi,
GIUSTIFICAZIONE TEORICA DELLA FORMULA DI PETRY MEDIANTE L ANALISI DIMENSIONALE
M. G. BUSATO GIUSTIFICAZIONE TEORICA DELLA FORMULA DI PETRY MEDIANTE L ANALISI DIMENSIONALE NOTA TECNICA MGBSTUDIO.NET SOMMARIO La formula di Petry è una formula semiempirica che consente di stimare,
Programmazione con Foglio di Calcolo Cenni di Statistica Descrittiva
Fondamenti di Informatica Ester Zumpano Programmazione con Foglio di Calcolo Cenni di Statistica Descrittiva Lezione 5 Statistica descrittiva La statistica descrittiva mette a disposizione il calcolo di
1.4.3 Tassi su altre basi temporali... 16
VII Indice 1 Regimi finanziari 1 1.1 Contratti, titoli e operazioni finanziarie.............. 1 1.1.1 Il sistema finanziario..................... 1 1.1.2 Investimenti e finanziamenti................ 2
Relazioni prezzi-volumi-risultati
Relazioni prezzi-volumi-risultati 1 Variabili dipendenti Variabile indipendente Costi Volume di produzione e vendita Ricavi 2 1 L equazione del reddito RE = Reddito di esercizio Q = Quantità di produzione
ANALISI MULTIVARIATA
ANALISI MULTIVARIATA Marcella Montico Servizio di epidemiologia e biostatistica... ancora sulla relazione tra due variabili: la regressione lineare semplice VD: quantitativa VI: quantitativa Misura la
ESERCIZI MATEMATICA GENERALE - Canale III
ESERCIZI MATEMATICA GENERALE - Canale III Vettori Prof. A. Fabretti 1 A.A. 009/010 1 Dati in R i vettori v = (1,,, u = (,, 1 e w = (,, calcolare: a la combinazione lineare u + v + 4 w b il prodotto scalare
TEORIA DEI SISTEMI SISTEMI LINEARI
TEORIA DEI SISTEMI Laurea Specialistica in Ingegneria Meccatronica Laurea Specialistica in Ingegneria Gestionale Indirizzo Gestione Industriale TEORIA DEI SISTEMI SISTEMI LINEARI Ing. Cristian Secchi Tel.
Svolgimento degli esercizi sulla circonferenza
Liceo Classico Galilei Pisa - Classe a A - Prof. Francesco Daddi - 1 ottobre 011 Svolgimento degli esercizi sulla circonferenza Esercizio 1. La circonferenza ha centro in C 4 ), 7, 7 ) e raggio + 7 57
Elenco dei simboli più comunemente usati in economia politica
Elenco dei simboli più comunemente usati in economia politica Simboli matematici m Coefficiente angolare di una retta generica Misura la pendenza della retta; se ha segno positivo la retta è crescente,
L elasticità e le sue applicazioni in economia Introduzione
L elasticità e le sue applicazioni in economia Introduzione Fino ad ora l analisi su domanda, offerta ed equilibrio di mercato è stata di tipo qualitativo. Se vogliamo avere una misura quantitativa degli
Esercitazione 26 Febbraio 2009
Esercitazione 26 Febbraio 2009 Economia Monetaria (6058) Classe 14 5 marzo 2009 1 Esercizio (a) Considerate il modello della domanda di moneta per investimento della ricchezza. Supponete in particolare
1 Ampliamento del piano e coordinate omogenee
1 Ampliamento del piano e coordinate omogenee Vogliamo dare una idea, senza molte pretese, dei concetti che stanno alla base di alcuni calcoli svolti nella classificazione delle coniche. Supponiamo di
Sussidi didattici per il corso di PROGETTAZIONE, COSTRUZIONI E IMPIANTI. Prof. Ing. Francesco Zanghì ELEMENTI DI IDRAULICA AGGIORNAMENTO 26/11/2013
Sussidi didattici per il corso di PROGETTAZIONE, COSTRUZIONI E IMPIANTI Prof. Ing. Francesco Zanghì ELEMENTI DI IDRAULICA AGGIORNAMENTO 26/11/2013 L'idraulica è la scienza che studia l'utilizzazione dei
Studio generale di una conica
Studio generale di una conica Manlio De Domenico 19 Giugno 2003 Definizione 1 Si definisce conica C un equazione algebrica F (x 1, x 2, x 3 ) = 0 del secondo ordine omogenea. Detta A la matrice simmetrica
Esercizi su distribuzioni doppie, dipendenza, correlazione e regressione (Statistica I, IV Canale)
Esercizi su distribuzioni doppie, dipendenza, correlazione e regressione (Statistica I, IV Canale) Esercizio 1: Un indagine su 10.000 famiglie ha dato luogo, fra le altre, alle osservazioni riportate nella
CORSO DI STATISTICA (parte 1) - ESERCITAZIONE 5
CORSO DI STATISTICA (parte 1) - ESERCITAZIONE 5 Dott.ssa Antonella Costanzo [email protected] Esercizio 1. Misura dell associazione tra due caratteri Uno store manager è interessato a studiare la relazione
Lezioni di Economia Politica
Università degli Studi ROMA TRE Facoltà di Giurisprudenza Lezioni di Economia Politica I principi fondamentali dell economia e gli strumenti per lo studio Giovanni Nicola De Vito - 2010 Microeconomia area
ESERCITAZIONE IV - Soluzioni
umero di omicidi ESERCITAZIOE IV - Soluzioni Esercizio I. a),00 12,00 10,00 8,00 6,00 4,00 2,00 0,00 0 5 10 15 20 25 Popolazione povera (%) b) Poiché i due caratteri in analisi sono quantitativi per calcolare
Capital budgeting. Luca Deidda. Uniss, CRENoS, DiSEA. Luca Deidda (Uniss, CRENoS, DiSEA) Lecture 19 1 / 1
Capital budgeting Luca Deidda Uniss, CRENoS, DiSEA Luca Deidda (Uniss, CRENoS, DiSEA) Lecture 19 1 / 1 Introduzione Scaletta Introduzione Incertezza e costo del capitale Costo del capitale di rischio (equity
Lezione 9: Il problema del consumatore: Il vincolo di bilancio
Corso di Scienza Economica (Economia Politica) prof. G. Di Bartolomeo Lezione 9: Il problema del consumatore: Il vincolo di bilancio Facoltà di Scienze della Comunicazione Università di Teramo Microeconomia
Domande ed Esercizi Corso di Istituzioni di Economia Politica
Domande ed Esercizi Corso di Istituzioni di Economia Politica Simone D Alessandro Ottobre 2009 Indice 1 Teoria del Consumatore 1 1.1 Esercizi.............................. 1 2 Teoria della Produzione 3
Analisi della correlazione canonica
Analisi della correlazione canonica Su un collettivo di unità statistiche si osservano due gruppi di k ed m variabili L analisi della correlazione canonica ha per obiettivo lo studio delle relazioni di
Lezione 12 Argomenti
Lezione 12 Argomenti Costi di produzione: differenza tra costo economico e costo contabile I costi nel breve periodo Relazione di breve periodo tra funzione di produzione, produttività del lavoro e costi
Lezione 10: Interpolazione lineare Corso di Statistica Facoltà di Economia Università della Basilicata. Prof. Massimo Aria
Lezione 10: Interpolazione lineare Corso di Statistica Facoltà di Economia Università della Basilicata Prof. Massimo Aria [email protected] Il concetto di interpolazione In matematica, e in particolare in
Si consideri il sistema a coefficienti reali di m equazioni lineari in n incognite
3 Sistemi lineari 3 Generalità Si consideri il sistema a coefficienti reali di m equazioni lineari in n incognite ovvero, in forma matriciale, a x + a 2 x 2 + + a n x n = b a 2 x + a 22 x 2 + + a 2n x
CONSUMO. 3. Il Saggio Marginale di Sostituzione (SMS)
CONSUMO 1. Le Preferenze del Consumatore 2. Curve di Indifferenza 3. Il Saggio Marginale di Sostituzione (SMS) 4. La Funzione di Utilità Utilità Marginale e Utilità Marginale Decrescente Utilità Marginale
Forma canonica di Jordan
Capitolo INTRODUZIONE Forma canonica di Jordan Siano λ i, per i =,, h, gli autovalori distinti della matrice A e siano r i i corrispondenti gradi di molteplicità all interno del polinomio caratteristico:
APPUNTI SUL CONCETTO DI EFFICIENZA PARETIANA
Politica Economica Avanzata 009-0 APPUNTI SUL CONCETTO DI EFFICIENZA PARETIANA LA SCATOLA DI EDGEWORTH E L EFFICIENZA PARETIANA B Individuo (Impresa ) Dotazione totale di Bene (x )=OB OA dotazione di x
NOTE DI MATEMATICA APPLICATA ALL ECONOMIA
NOTE DI MATEMATICA APPLICATA ALL ECONOMIA «[ ] lo scopo dell analisi infinitesimale è quello di fare acquisire strumenti di calcolo atti alla ricerca ottimale di funzioni vincolate, soprattutto di natura
Corso di Calcolo Numerico
Corso di Calcolo Numerico Dott.ssa M.C. De Bonis Università degli Studi della Basilicata, Potenza Facoltà di Ingegneria Corso di Laurea in Ingegneria Meccanica Risoluzione di Equazioni Algebriche Le equazioni
La circonferenza nel piano cartesiano
La circonferenza nel piano cartesiano 1. Definizione ed equazione. Si chiama circonferenza C, di centro C( α, β ) e raggio r, l insieme di tutti e soli i punti del piano che hanno distanza r da C. L equazione
(x B x A, y B y A ) = (4, 2) ha modulo
GEOMETRIA PIANA 1. Esercizi Esercizio 1. Dati i punti A(0, 4), e B(4, ) trovarne la distanza e trovare poi i punti C allineati con A e con B che verificano: (1) AC = CB (punto medio del segmento AB); ()
Microeconomia - Problem set 4 - soluzione
Microeconomia - Problem set 4 - soluzione (Prof Paolo Giordani - TA: Pierluigi Murro) 2 Maggio 2015 Esercizio 1 Calcolare i prodotti marginali di ciascun fattore produttivo (P M 1, P M 2 ) e il saggio
Funzioni. iniettiva se x y = f (x) f (y) o, equivalentemente, f (x) = f (y) = x = y
Funzioni. Dati due insiemi A e B (non necessariamente distinti) si chiama funzione da A a B una qualunque corrispondenza (formula, regola) che associa ad ogni elemento di A uno ed un solo elemento di B.
= 1. Dall equazione 8.4. z = z = 4 3
Esercizio 8.1 L equazione 8. definisce che il prezzo di vendita del prodotto è dato dal prodotto tra mark-up e costo marginale nel caso del duopolio. Nel caso dell esercizio, possiamo agevolmente calcolare
Esercizi di Matematica per la prova di ammissione alla Scuola Galileiana /16
Esercizi di Matematica per la prova di ammissione alla Scuola Galileiana - 015/16 Esercizio 1 Per quali valori n Z \ {0} l espressione è un numero intero positivo? (n + 5)(n + 6) 6n Soluzione. Il problema
Appunti ed esercizi sulle coniche
1 LA CIRCONFERENZA 1 Appunti ed esercizi sulle coniche Versione del 1 Marzo 011 1 La circonferenza Nel piano R, fissati un punto O = (a, b) e un numero r > 0, la circonferenza (o cerchio) C di centro O
Corso di Risk Management S
Corso di Risk Management S Marco Bee [email protected] Dipartimento di Economia Università di Trento Anno Accademico 2007-2008 Struttura del corso Il corso può essere suddiviso come segue: 1.
