II Esercitazione di Matematica Finanziaria
|
|
|
- Rosalia Valente
- 10 anni fa
- Visualizzazioni
Transcript
1 II Esercitazione di Matematica Finanziaria Esercizio 1. Si consideri l acquisto di un titolo a cedola nulla con vita a scadenza di 90 giorni, prezzo di acquisto (lordo) P = euro e valore facciale C = 100 euro. Tale titolo è soggetto ad una ritenuta fiscale, da pagarsi anticipatamente, del 12.50% sull interesse lordo. Relativamente all operazione di acquisto del titolo, calcolare: (a) il tasso di interesse lordo; (b) l intensità di interesse su base giornaliera; (c) il prezzo di acquisto netto; (d) il tasso di interesse netto. Assumendo durata commerciale dell anno (360 giorni) ed ipotizzando un regime di capitalizzazione esponenziale, calcolare al netto della ritenuta fiscale: (e) il tasso di interesse su base annua; (f ) l intensità istantanea di interesse su base semestrale; (g) il tasso di interesse su base bimestrale. Ipotizzando, poi, un regime di capitalizzazione semplice, calcolare, sempre al netto della ritenuta fiscale (h) il tasso di interesse su base annua; (l) il tasso di interesse su base quadrimestrale. Soluzione Relativamente al periodo in oggetto, si ottengono le seguenti grandezze: (a) il tasso di interesse lordo j l = = ;
2 (b) l intensità di interesse su base giornaliera γ = = giorni 1 ; (c) il prezzo di acquisto netto (d) il tasso di interesse netto P n = ( ) = 98.69; j n = = In regime di capitalizzazione composta, abbiamo: (e) il tasso di interesse su base annua i = ( ) 360/ = ; (f ) l intensità istantanea di interesse su base semestrale δ sem = 1 ln( ) = ; 2 (g) il tasso di interesse su base bimestrale i bim = ( ) 1/6 1 = In regime di capitalizzazione semplice, si ha: (h) il tasso di interesse su base annua ( ) i = = ; (l) il tasso di interesse su base quadrimestrale i quad = =
3 Esercizio 2. Data l operazione finanziaria x/t := { 140, 50, 130}/{0, 3, 6} con scadenzario in semestri, dire se l operazione risulta equa in t = 0 valutandola al tasso di interesse annuo i = 5.2%, in regime di capitalizzazione composta. In caso di risposta negativa, calcolare la quota x 0 in t = 0 affinché l operazione risulti equa. Soluzione L operazione non è equa, infatti (1.052) (1.052) 3 = 18 0; affinché l operazione risulti equa, in t = 0 dobbiamo avere una quota x 0 tale che x (1.052) (1.052) 3 = 0, dunque x 0 = 158 euro. Esercizio 3. Si consideri un BTP a scadenza t = 5 anni, cedola annua I = 16 euro e valore nominale C = 200 euro. Determinare: (a) il tasso cedolare dell operazione considerata; (b) il rateo generato qualora si acquisti il titolo in t = 0.25 anni; (c) il rateo generato qualora si acquisti il titolo in t = 0.5 anni. Soluzione Determiniamo: (a) il tasso cedolare dell operazione considerata i c = = 0.08; (b) il rateo generato qualora si acquisti il titolo in t = 0.25 anni A = = 4; (c) il rateo generato qualora si acquisti il titolo in t = 0.5 anni A = = 8. 3
4 Esercizio 4. Si consideri un titolo a cedola fissa annua, scadenza in t = 9 anni, valore facciale C = 200 euro e tasso nominale annuo j nom = 8% rinnovabile una sola volta in un anno. Dopo aver determinato la cedola del titolo in esame, supponendo di sottostare ad una legge di capitalizzazione composta con tasso annuo di interesse i = 6%, calcolare: (a) il valore dell operazione in t 0 = 0; (b) il valore dell operazione in t = 4 anni; (c) il valore finale dell operazione; (d) il valore residuo dell operazione in t = 5 anni; (e) il valore montante dell operazione in t = 4 anni. E se il tasso annuo di interesse fosse i = 8% quale sarebbe il valore in dell - operazione in t 0 = 0? Soluzione Determiniamo, anzitutto, la cedola I = dunque siamo in grado di calcolare: = 16, (a) il valore dell operazione in t 0 = 0 W (0, BT P ) = 16 1 (1.06) (1.06) 9 = ; (b) il valore dell operazione in t = 4 anni W (4, BT P ) = (1.06) 4 = ; (c) il valore finale dell operazione W (9, BT P ) = (1.06) 9 = ; (d) il valore residuo dell operazione in t = 5 anni V (5, BT P ) = 16 1 (1.06) (1.06) 4 = ; 4
5 (e) il valore montante dell operazione in t = 4 anni M(4, BT P ) = 16 (1.06) = Se il tasso fosse pari a i = 8%, allora il valore attuale del titolo a cedola fissa sarebbe proprio W (0, BT P ) = 200. Esercizio 5. Si consideri l operazione finanziaria x/t := {20, 80, 70, 50, 60, 50, 20, y}/{0, 1, 2, 3, 4, 5, 6, 7} con scadenzario in anni. Supponendo di valutarla secondo una legge di capitalizzazione composta al tasso di interesse annuo i = 4.5%, calcolare la cifra y che si deve avere in t = 5 anni affinché l operazione risulti equa. Soluzione La cifra y da determinare affinché l operazione risulti equa è soluzione dell equazione cioè 20(1.045) 5 80(1.045) (1.045) (1.045) 2 60(1.045) + y = 0, y = 9.62 Esercizio 6. Si consideri l operazione finanziaria x/t := { 80, 70, 50, 60, 50, 40, 60}/{1, 2, 3, 4, 5, 6, 7}; supponendo di lavorare in regime di capitalizzazione composta secondo il tasso di interesse annuo i = 3.8%, calcolare: (a) il valore dell operazione in t 0 = 0; (b) il valore finale dell operazione; (c) il valore dell operazione in t = 3 anni; (d) il valore residuo ed il valore montante dell operazione in t = 2 anni. Soluzione In regime di capitalizzazione composta, calcoliamo: (a) il valore dell operazione in t 0 = 0 W (0, x ) = 7 x k (1, 038) k = 36.65; k=1 5
6 (b) il valore finale dell operazione W (7, x ) = W (0, x ) (1.038) 7 = 47.58; (c) il valore dell operazione in t = 3 anni W (3, x ) = W (0, x ) (1.038) 3 = 40.99; (d) il valore residuo ed il valore montante dell operazione in t = 2 anni V (2, x ) = 52.53, M(2, x ) =
IV Esercitazione di Matematica Finanziaria
IV Esercitazione di Matematica Finanziaria 28 Ottobre 2010 Esercizio 1. Si consideri l acquisto di un titolo a cedola nulla con vita a scadenza di 85 giorni, prezzo di acquisto (lordo) P = 97.40 euro e
Esercizi di Matematica Finanziaria
Università degli Studi di Siena Facoltà di Economia Esercizi di Matematica Finanziaria relativi ai capitoli I-IV del testo Claudio Pacati a.a. 1998 99 c Claudio Pacati tutti i diritti riservati. Il presente
MATEMATICA FINANZIARIA Appello del 28 gennaio 2002
MATEMATICA FINANZIARIA Appello del 28 gennaio 2002 Cognome e Nome................................................................... C.d.L....................... Matricola n................................................
MATEMATICA FINANZIARIA Appello del 10 luglio 2000
MATEMATICA FINANZIARIA Appello del 10 luglio 2000 Cognome e Nome................................................................... C.d.L....................... Matricola n................................................
ELABORAZIONE AUTOMATICA DEI DATI PER LE DECISIONI ECONOMICHE E FINANZIARIE
ELABORAZIONE AUTOMATICA DEI DATI PER LE DECISIONI ECONOMICHE E FINANZIARIE Calcolo Finanziario Esercizi proposti Gli esercizi contrassegnati con (*) è consigliato svolgerli con il foglio elettronico, quelli
Ipotizzando una sottostante legge esponenziale e considerando l anno commerciale (360 gg), determinare:
MATEMATICA FINANZIARIA - 6 cfu Prova del 22 Gennaio 2015 Cognome Nome e matr.................................................................................. Anno di Corso..........................................
Esercizi svolti in aula
Esercizi svolti in aula 23 maggio 2012 Esercizio 1 (Esercizio 1 del compito di matematica finanziaria 1 (CdL EA) del 16-02-10) Un individuo vuole accumulare su un conto corrente la somma di 10.000 Euro
MATEMATICA FINANZIARIA Appello del 23 giugno 2003 studenti nuovo ordinamento
MATEMATICA FINANZIARIA Appello del 23 giugno 2003 studenti nuovo ordinamento Cognome e Nome................................................................... C.d.L....................... Matricola n................................................
3b. [2] Dopo aver determinato la rata esatta, scrivere il piano di ammortamento.
MATEMATICA FINANZIARIA - 6 cfu Prova del 23 aprile 2014 - Riservata a studenti fuori corso Cognome Nome e matr.................................................................................. Anno di
MATEMATICA FINANZIARIA - 6 cfu Prova del 15 luglio 2014 Cognome Nome e matr... Anno di Corso... Firma... Scelta dell appello per l esame orale
MATEMATICA FINANZIARIA - 6 cfu Prova del 15 luglio 2014 Cognome Nome e matr.................................................................................. Anno di Corso..........................................
MATEMATICA FINANZIARIA Appello del 10 febbraio 2004 studenti vecchio ordinamento
MATEMATICA FINANZIARIA Appello del 10 febbraio 2004 studenti vecchio ordinamento Cognome e Nome................................................................... C.d.L....................... Matricola
MATEMATICA FINANZIARIA Appello dell 8 ottobre 2010 programma a.a. precedenti
MATEMATICA FINANZIARIA Appello dell 8 ottobre 2010 programma a.a. precedenti Cognome e Nome........................................................................... C.d.L....................... Matricola
Per motivi di bilancio, la Banca può scegliere di finanziare una sola delle due imprese. Quale sceglierà, e per quale motivo?
MATEMATICA FINANZIARIA Prova intermedia dell 11/11/2014 Pacati Renò non iscritto Cognome e Nome..................................................................... Matricola...................... Fornire
Università di Milano Bicocca Esercitazione 7 di Matematica per la Finanza 12 Marzo 2015
Università di Milano Bicocca Esercitazione 7 di Matematica per la Finanza 12 Marzo 2015 Esercizio 1 Si consideri la funzione f(t) := 2t/10 1 + 0, 04t, t 0. 1. Verificare che essa rappresenta il fattore
ELABORAZIONE AUTOMATICA DEI DATI PER LE DECISIONI ECONOMICHE E FINANZIARIE. Prova del 23 giugno 2009. Cognome Nome e matr... Anno di Corso... Firma...
ELABORAZIONE AUTOMATICA DEI DATI PER LE DECISIONI ECONOMICHE E FINANZIARIE Prova del 23 giugno 2009 Cognome Nome e matr..................................................................................
MATEMATICA FINANZIARIA Appello del 12 febbraio 2014. Cattedra: prof. Pacati (SI) prof. Renò (SI) dott. Quaranta (GR).
MATEMATICA FINANZIARIA Appello del 12 febbraio 2014 Cognome e Nome................................................................... C.d.L....................... Matricola n................................................
Ipotizzando una sottostante legge esponenziale e considerando l anno solare (365 gg), determinare:
MATEMATICA FINANZIARIA - 6 cfu quadrate, i punti che saranno assegnati se l esercizio è stato svolto in modo corretto. con le seguenti caratteristiche: prezzo di emissione: 99,467e, valore a scadenza 100e,
MATEMATICA FINANZIARIA Appello del 13 06 2008. Cattedra: prof. Pacati prof. Renò dott. Quaranta dott. Falini dott. Riccarelli
MATEMATICA FINANZIARIA Appello del 13 06 2008 Cognome e Nome................................................................... C.d.L....................... Matricola n................................................
MATEMATICA FINANZIARIA Appello del 24 settembre 2003 studenti nuovo ordinamento
MATEMATICA FINANZIARIA Appello del 24 settembre 2003 studenti nuovo ordinamento Cognome e Nome................................................................... C.d.L....................... Matricola
Esercizi di Matematica Finanziaria - Corso Part Time scheda 1 - Leggi finanziarie, rendite ed ammortamenti
Esercizi di Matematica Finanziaria - Corso Part Time scheda 1 - Leggi finanziarie, rendite ed ammortamenti 1. Un capitale d ammontare 100 viene investito, in regime di interesse semplice, al tasso annuo
PERCORSI ABILITANTI SPECIALI 2014 DIDATTICA DELL ECONOMIA DEGLI INTERMEDIARI FINANZIARI
PERCORSI ABILITANTI SPECIALI 014 DIDATTICA DELL ECONOMIA DEGLI INTERMEDIARI FINANZIARI A cura Dott.ssa Federica Miglietta ESERCITAZIONE CALCOLO FINANZIARIO: Nel caso degli investimenti si parla genericamente
MATEMATICA FINANZIARIA Appello del 10 luglio 2013. Cattedra: prof. Pacati (SI) prof. Renò (SI) dott. Quaranta (GR) dott. Riccarelli (AR).
MATEMATICA FINANZIARIA Appello del 10 luglio 2013 Cognome e Nome.......................................................................... C.d.L....................... Matricola n...................................................
1b. [2] Stessa richiesta del punto 1a., con gli stessi dati salvo che la valutazione deve essere fatta rispetto alla legge lineare.
MATEMATICA FINANZIARIA - 6 cfu Prova del 14 aprile 2015 - Riservata a studenti fuori corso Cognome Nome e matr.................................................................................. Anno di
TRACCE DI MATEMATICA FINANZIARIA
TRACCE DI MATEMATICA FINANZIARIA 1. Determinare il capitale da investire tra tre mesi per ottenere, nel regime dello sconto commerciale, un montante di 2800 tra tre anni e tre mesi sapendo che il tasso
MATEMATICA FINANZIARIA Appello del 4 settembre 2013. Cattedra: prof. Pacati (SI) prof. Renò (SI) dott. Quaranta (GR) dott. Riccarelli (AR).
MATEMATICA FINANZIARIA Appello del 4 settembre 2013 Cognome e Nome................................................................... C.d.L....................... Matricola n................................................
VI Esercitazione di Matematica Finanziaria
VI Esercitazione di Matematica Finanziaria 2 Dicembre 200 Esercizio. Verificare la proprietà di scindibilità delle leggi del prezzo { v(t, s) = exp } 2 (s2 t 2 ) e v(t, s) = e t(s t) Soluzione. Possiamo
Pertanto la formula per una prima approssimazione del tasso di rendimento a scadenza fornisce
A. Peretti Svolgimento dei temi d esame di MDEF A.A. 015/16 1 PROVA CONCLUSIVA DI MATEMATICA per le DECISIONI ECONOMICO-FINANZIARIE Vicenza, 9/01/016 ESERCIZIO 1. Data l obbligazione con le seguenti caratteristiche:
MATEMATICA FINANZIARIA Schede Esercizi a.a. 2014-2015 Elisabetta Michetti
MATEMATICA FINANZIARIA Schede Esercizi a.a. 2014-2015 Elisabetta Michetti 1 MODULO 1 1.1 Principali grandezze finanziarie 1. Si consideri una operazione finanziaria di provvista che prevede di ottenere
Matematica Finanziaria A - corso part time prova d esame del 21 Aprile 2010 modalità A
prova d esame del 21 Aprile 2010 modalità A 1. Un tizio ha bisogno di 600 euro che può chiedere, in alternativa, a due banche: A e B. La banca A propone un rimborso a quote capitale costanti mediante tre
Matematica Finanziaria Soluzione della prova scritta del 15/05/09
Matematica Finanziaria Soluzione della prova scritta del 15/05/09 ESERCIZIO 1 Il valore in t = 60 semestri dei versamenti effettuati dall individuo è W (m) = R(1 + i 2 ) m + R(1 + i 2 ) m 1 +... R(1 +
MATEMATICA FINANZIARIA Appello del 24 marzo 2015
MATEMATICA FINANZIARIA Appello del 24 marzo 2015 Cognome.................................. Nome.................................. C.d.L....................... Matricola n................................................
1 2 3 4 Prefazione Il presente volume raccoglie testi proposti dagli autori nell ambito dei vari appelli d esame per il corso di Matematica Finanziaria tenuto presso la Facoltà di Economia dell Università
MATEMATICA FINANZIARIA Appello del 20 gennaio 2014. Cattedra: prof. Pacati (SI) prof. Renò (SI) dott. Quaranta (GR).
MATEMATICA FINANZIARIA Appello del 20 gennaio 2014 Cognome e Nome................................................................... C.d.L....................... Matricola n................................................
MATEMATICA FINANZIARIA Appello del 18 marzo 2013. Cattedra: prof. Pacati (SI) prof. Renò (SI) dott. Quaranta (GR) dott. Riccarelli (AR).
MATEMATICA FINANZIARIA Appello del 18 marzo 2013 Cognome e Nome.......................................................................... C.d.L....................... Matricola n...................................................
1a. [2] Determinare il tasso annuo d interesse della legge lineare cui avviene l operazione finanziaria.
MATEMATICA FINANZIARIA - 6 cfu Prova del 5 febbraio 2015 Cognome Nome e matr.................................................................................. Anno di Corso..........................................
MATEMATICA FINANZIARIA Appello dell 11 settembre 2013. Cattedra: prof. Pacati (SI) prof. Renò (SI) dott. Quaranta (GR) dott. Riccarelli (AR).
MATEMATICA FINANZIARIA Appello dell 11 settembre 2013 Cognome e Nome................................................................... C.d.L....................... Matricola n................................................
1 Esercizi di Riepilogo sulla Capitalizzazione Semplice e Composta
1 Esercizi di Riepilogo sulla Capitalizzazione Semplice e Composta 1. Un capitale C = 15 000 euro viene investito in RIC per anni al tasso di interesse trimestrale i 1 = 0.03. Il montante che si ottiene
Matematica finanziaria: svolgimento prova di esame del 21 giugno 2005 (con esercizio 1 corretto)
Matematica finanziaria: svolgimento prova di esame del giugno 5 (con esercizio corretto). [6 punti cleai, 6 punti altri] Si possiede un capitale di e e lo si vuole impiegare per anni. Supponendo che eventuali
Le Scelte Finanziarie. S. Corsaro Matematica Finanziaria a.a. 2007/08
Le Scelte Finanziarie 1 Tasso Interno di Rendimento Consideriamo un operazione finanziaria (t 0 =0): 0 x 0 t 1 t 2 t m...... x 1 x 2 x m Posto: x = x0, x1,, xm { } si definisce tasso interno di rendimento
2. Scomporre la seconda rata in quota di capitale e quota d interesse.
Esercizi di matematica finanziaria Rate e ammortamenti Esercizio.. Un finanziamento di 0000 euro deve essere rimborsato con tre rate annue costanti d ammontare R. Il tasso contrattuale è 2% annuo (composto)..
MATEMATICA FINANZIARIA Appello del 22 gennaio 2015
MATEMATICA FINANZIARIA Appello del 22 gennaio 2015 Cognome e Nome................................................................... C.d.L....................... Matricola n................................................
Nome e Cognome... Matricola...
Università degli Studi di Perugia Facoltà di Economia Corso di Laurea in Statistica e Informatica per la Gestione delle Imprese (SIGI) Anno accademico 2006-2007 Matematica Finanziaria (5 crediti) - Prova
3. Determinare il numero di mesi m > 0 tale che i montanti generati dai due impieghi coincidano. M = 1000 1 + 0.1 9 ) = 1075 12
Esercizi di matematica finanziaria 1 Leggi finanziarie in una variabile Esercizio 1.1. Un soggetto può impiegare C o a interessi semplici con tasso annuo i oppure a interessi semplici anticipati con tasso
Capitalizzazione composta, rendite, ammortamento
Capitalizzazione composta, rendite, ammortamento Paolo Malinconico 2 dicembre 2014 Montante Composto dove: C(t) = C(1+i) t C(t) = montante (o valore del capitale) al tempo t C = capitale impiegato (corrispondente
Leggi di capitalizzazione
Leggi di capitalizzazione Introduzione Nel capitolo precedente abbiamo introdotto la definizione di fattore montante M(t,s)=V(s)/V(t) Quando M(t,s) viene vista come funzione di t e di s, si chiama legge
2. Leggi finanziarie di capitalizzazione
2. Leggi finanziarie di capitalizzazione Si chiama legge finanziaria di capitalizzazione una funzione atta a definire il montante M(t accumulato al tempo generico t da un capitale C: M(t = F(C, t C t M
ESERCIZI DI MATEMATICA FINANZIARIA DIPARTIMENTO DI ECONOMIA E MANAGEMENT UNIFE A.A. 2015/2016. 1. Esercizi: lezione 24/11/2015
ESERCIZI DI MATEMATICA FINANZIARIA DIPARTIMENTO DI ECONOMIA E MANAGEMENT UNIFE A.A. 2015/2016 1. Esercizi: lezione 24/11/2015 Valutazioni di operazioni finanziarie Esercizio 1. Un operazione finanziaria
MATEMATICA FINANZIARIA Appello del 9 ottobre 2015 appello straordinario
MATEMATICA FINANZIARIA Appello del 9 ottobre 2015 appello straordinario Cognome e Nome.......................................................................... C.d.L....................... Matricola n...................................................
Regime finanziario dell interesse semplice: formule inverse
Regime finanziario dell interesse semplice: formule inverse Il valore attuale di K è il prodotto del capitale M disponibile al tempo t per il fattore di sconto 1/(1+it). 20 Regime finanziario dell interesse
Corso di Matematica finanziaria
Corso di Matematica finanziaria modulo "Fondamenti della valutazione finanziaria" Eserciziario di Matematica finanziaria Università degli studi Roma Tre 2 Esercizi dal corso di Matematica finanziaria,
Metodi Matematici 2 B 28 ottobre 2010
Metodi Matematici 2 B 28 ottobre 2010 1 Prova Parziale - Matematica Finanziaria TEST Cognome Nome Matricola Rispondere alle dieci domande sbarrando, nel caso di risposta multipla, la casella che si ritiene
MATEMATICA FINANZIARIA Appello del 2 marzo 2010 programma vecchio ordinamento
MATEMATICA FINANZIARIA Appello del 2 marzo 2010 programma vecchio ordinamento Cognome e Nome........................................................................... C.d.L....................... Matricola
Cognome Nome Matricola
Sede di SULMONA Prova scritta di esame del 01 02-2011 Cognome Nome Matricola Esercizio 1 (punti 5) Nel regime dell interesse iperbolico e dell interesse composto, calcolare il tasso semestrale di interesse
Matematica finanziaria: svolgimento prova di esame del 5 luglio 2005
Matematica finanziaria: svolgimento prova di esame del 5 luglio 5. [5 punti cleai, 5 punti altri] Prestiamo e a un amico. Ci si accorda per un tasso di remunerazione del 6% annuale (posticipato), per un
1 MATEMATICA FINANZIARIA
1 MATEMATICA FINANZIARIA 1.1 26.6.2000 Data la seguente operazione finanziaria: k = 0 1 2 3 4 F k = -800 200 300 300 400 a. determinare il TIR b. detreminare il VAN corrispondente ad un interesse periodale
Appunti di Calcolo finanziario. Mauro Pagliacci
Appunti di Calcolo finanziario Mauro Pagliacci c Draft date 4 maggio 2010 Premessa In questo fascicolo sono riportati gli appunti dalle lezioni del corso di Elaborazioni automatica dei dati per le applicazioni
MATEMATICA FINANZIARIA Appello del 26 gennaio 2009. Cattedra: prof. Pacati prof. Renò dott. Quaranta dott. Falini dott. Riccarelli
MATEMATICA FINANZIARIA Appello del 26 gennaio 2009 Cognome e Nome................................................................... C.d.L....................... Matricola n................................................
MATEMATICA FINANZIARIA Appello del 22 gennaio 2004 studenti vecchio ordinamento
MATEMATICA FINANZIARIA Appello del 22 gennaio 2004 studenti vecchio ordinamento Cognome e Nome................................................................... C.d.L....................... Matricola
Matricola: Cognome e Nome: Firma: Numero di identificazione: 1 MATEMATICA FINANZIARIA E ATTUARIALE (A-G) E (H-Z) - Prova scritta del 15 gennaio 2014
Matricola: Cognome e Nome: Firma: Numero di identificazione: 1 MATEMATICA FINANZIARIA E ATTUARIALE (A-G) E (H-Z) - Prova scritta del 15 gennaio 2014 Avvertenze Durante lo svolgimento degli esercizi tenere
Operazioni finanziarie composte
Operazioni finanziarie composte Consideriamo due operazioni finanziarie: {S, -(S+I)}/{0,1} e {S, -(S+I+J})}/{0,2} La seconda può essere intesa come la composizione di due operazioni elementari: {S, -(S+I)}/{0,1},
Esercizio + 0,05 (1 0,05) 1. Calcolare la rata annua necessaria per costituire in 11 anni al tasso del 5% il capitale di 9800. 7-1
Esercizio Calcolare la rata annua necessaria per costituire in anni al tasso del 5% il capitale di 9800. ( 0,05) + 9800 = R 4,2068R 0,05 R 689,8 7- Esercizio Calcolare la rata di una rendita semestrale
Formulario. Legge di capitalizzazione dell Interesse semplice (CS)
Formulario Legge di capitalizzazione dell Interesse semplice (CS) Il montante M è una funzione lineare del capitale iniziale P. Di conseguenza M cresce proporzionalmente rispetto al tempo. M = P*(1+i*t)
ESERCIZI DA SVOLGERE PER IL 23/05/08 (la parte in verde, il resto lo dovreste avere già svolto).
ESERCIZI DA SVOLGERE PER IL 23/05/08 (la parte in verde, il resto lo dovreste avere già svolto). 1. Data la funzione : f x =x 2 e x minimo e di massimo. Determinare inoltre gli eventuali flessi e gli intervalli
i = ˆ i = 0,02007 i = 0,0201 ˆ "3,02 non accett. Anno z Rata Quota interessi Quota capitale Debito estinto Debito residuo
1 Appello sessione estiva 2009/ 2010 (tassi equivalenti - ammortamento) 1 Parte Rispondere ai seguenti distinti quesiti in A) e in B). A) Il capitale C=10000 è stato impiegato in capitalizzazione composta
MATEMATICA FINANZIARIA Appello del 6 luglio 2011. Cattedra: prof. Pacati (SI) prof. Renò (SI) dott. Quaranta (GR) dott. Riccarelli (AR).
MATEMATICA FINANZIARIA Appello del 6 luglio 2011 Cognome e Nome................................................................... C.d.L....................... Matricola n................................................
CLASSE TERZA - COMPITI DELLE VACANZE A.S. 2014/15 MATEMATICA
Risolvere le seguenti disequazioni: 0 ) x x ) x x x 0 CLASSE TERZA - COMPITI DELLE VACANZE A.S. 04/ MATEMATICA x 6 x x x x 4) x x x x x 4 ) 6) x x x ( x) 0 x x x x x x 6 0 7) x x x EQUAZIONI CON I MODULI
MATEMATICA FINANZIARIA Appello del 16 giugno 2014
MATEMATICA FINANZIARIA Appello del 16 giugno 2014 Cognome e Nome................................................................... C.d.L....................... Matricola n................................................
Determinare l ammontare x da versare per centrare l obiettivo di costituzione.
Esercizi di matematica finanziaria 1 VAN - DCF - TIR Esercizio 1.1. Un investitore desidera disporre tra 3 anni d un capitale M = 10000 euro. Investe subito la somma c 0 pari a 1/4 di M. Farà poi un ulteriore
M 1 + i = 1017.1 1.05 = 968.67 = 1000 968.67 0.05 12 3 12
Esercizi di matematica finanziaria 1 Titoli con cedola Esercizio 1.1. Un tesoriere d impresa considera la possibilità d impiego della somma C = 1000 nell acquisto d un titolo, rimborsato alla pari, con
Esercizi svolti durante le lezioni del 2 dicembre 2015
Esercizi svolti durante le lezioni del 2 dicembre 205 Sconto commerciale ed attualizzazione. Lo sconto commerciale è proporzionale al capitale scontato ed al tempo che intercorre tra oggi e l'epoca in
PIANI DI AMMORTAMENTO, TIC, NUDA PROPRIETA E USUFRUTTO, TIR E ARBITRAGGIO
ESERCITAZIONE MATEMATICA FINANZIARIA 16/11/2013 1 PIANI DI AMMORTAMENTO, TIC, NUDA PROPRIETA E USUFRUTTO, TIR E ARBITRAGGIO Nuda proprietà e usufrutto Esercizio 1 2 ESERCIZIO 1 Una società prende in prestito
MATEMATICA FINANZIARIA Appello del 14 luglio 2015
MATEMATICA FINANZIARIA Appello del 14 luglio 2015 Cognome e Nome................................................................... C.d.L....................... Matricola n................................................
Negoziazione Titoli - Nota di conferma Vendita
Negoziazione Titoli - Nota di conferma Vendita Nota di conferma rimborso titoli e cedole maturate 1/3/13 40.000 BTP Triennali 3,75% 1/03-1/09 100,00 40.000,00 1,87500 750,00 - Imposta sostitutiva 12,50%
prof.ssa S.Spallini RAGIONERIA GENERALE Il mercato dei capitali
1 RAGIONERIA GENERALE Il mercato dei capitali Il mercato dei capitali 2 E costituito dalla incontro tra domanda e offerta di capitali, in esso ha luogo la fissazione del prezzo dei capitali rappresentato
Marco Tolotti - Corso di Esercitazioni di Matematica 12 Cfu - A.A. 2010/2011 1
Marco Tolotti - Corso di Esercitazioni di Matematica 1 Cfu - A.A. 010/011 1 Esercitazione 1: 4/09/010 1. Determinare il dominio delle seguenti funzioni: log a) f() = 5 ( 1). b) g() = log 3 (3 6) log 13.
COMPITO DI MATEMATICA FINANZIARIA 8 Febbraio 2013. - Come cambia il REA atteso se l'obbligazione sarà ancora in vita dopo le prime tre estrazioni?
UNIVERSITA DEGLI STUDI DI URBINO (Sede di Fano) COMPITO DI MATEMATICA FINANZIARIA 8 Febbraio 2013 1) L'impresa Gamma emette 250 obbligazioni il cui VN unitario è pari a 100. Il rimborso avverrà tramite
I titoli obbligazionari
I titoli obbligazionari 1 Tipologie di titoli La relazione di equivalenza consente di attribuire un valore oggi ad importi monetari disponibili ad una data futura. In particolare permettono di determinare
V esercitazione di Matematica Finanziaria
V esercitazione di Matematica Finanziaria Esercizio 1. Dato un debito S=6 000 euro, valutato secondo una legge di capitalizzazione esponenziale al tasso di interesse annuo i=4%, si calcola l importo della
CONDIZIONI DEFINITIVE DEL PRESTITO OBBLIGAZIONARIO CASSA PADANA TASSO VARIABILE
A.9 MODELLO DELLE CONDIZIONI DEFINITIVE CASSA PADANA Banca di Credito Cooperativo, Società Cooperativa in qualità di Emittente CONDIZIONI DEFINITIVE DEL PRESTITO OBBLIGAZIONARIO CASSA PADANA TASSO VARIABILE
INFORMATIVA SUGLI STRUMENTI FINANZIARI OBBLIGAZIONI TASSO FISSO 3,50% 20/09/2011-20/09/2013 54ª DI MASSIMI 15.000.000,00 ISIN IT0004761448
CONDIZIONI DEFINITIVE alla NOTA INFORMATIVA SUGLI STRUMENTI FINANZIARI OBBLIGAZIONI TASSO FISSO Banca Popolare del Lazio 3,50% 20/09/2011-20/09/2013 54ª DI MASSIMI 15.000.000,00 ISIN IT0004761448 Le presenti
ESERCIZI PER LE VACANZE CLASSE 4^A anno scolastico 2011-2012
ESERCIZI PER LE VACANZE CLASSE ^A anno scolastico 011-01 PROBLEMI SULLA RETTA: 1. Scrivi l equazione della retta passante per i punti A(-;-) e B(6;10). Determina la distanza del punto C(-1;) da tale retta.
ESERCIZI DI MATEMATICA FINANZIARIA DIPARTIMENTO DI ECONOMIA E MANAGEMENT UNIFE A.A. 2015/2016. 1. Esercizi: lezione 09/10/2015
ESERCIZI DI MATEMATICA FINANZIARIA DIPARTIMENTO DI ECONOMIA E MANAGEMENT UNIFE A.A. 2015/2016 1. Esercizi: lezione 09/10/2015 Regimi semplice e composto Esercizio 1. Dopo quanti mesi un capitale C, impiegato
CONDIZIONI DEFINITIVE della NOTA INFORMATIVA BANCA DI CESENA OBBLIGAZIONI A TASSO FISSO. Isin IT0004233943
BANCA DI CESENA CREDITO COOPERATIVO DI CESENA E RONTA SOCIETA COOPERATIVA CONDIZIONI DEFINITIVE della NOTA INFORMATIVA BANCA DI CESENA OBBLIGAZIONI A TASSO FISSO BANCA DI CESENA 01/06/07-01/06/10 - TF
Esercizio 1 Calcolare il montante F di 10.000 con un interesse semplice del 15% annuo, dopo 4 anni. [16.000 ]
Esercizio 1 Calcolare il montante F di 10.000 con un interesse semplice del 15% annuo, dopo 4 anni. [16.000 ] Esercizio 2 Del precedente esercizio calcolare il montante in regime di capitalizzazione composta.
Esercizi di Matematica Finanziaria
Esercizi di Matematica Finanziaria Un utile premessa Negli esercizi di questo capitolo, tutti gli importi in euro sono opportunamente arrotondati al centesimo. Ad esempio,e2 589.23658 e2 589.24 (con un
CONDIZIONI DEFINITIVE NOTA INFORMATIVA SUL PROGRAMMA
CONDIZIONI DEFINITIVE alla NOTA INFORMATIVA SUL PROGRAMMA "B.C.C. DI FORNACETTE OBBLIGAZIONI A TASSO VARIABILE" Emissione n. 182 B.C.C. FORNACETTE 2007/2010 Euribor 6 mesi + 25 p.b. ISIN IT0004218829 Le
LABORATORIO DI MATEMATICA RENDITE, AMMORTAMENTI, LEASING CON EXCEL
LABORATORIO DI MATEMATICA RENDITE, AMMORTAMENTI, LEASING CON EXCEL ESERCITAZIONE GUIDATA: LE RENDITE 1. Il montante di una rendita immediata posticipata Utilizzando Excel, calcoliamo il montante di una
Regimi finanziari: interesse semplice. S. Corsaro Matematica Finanziaria a.a. 2007/08 1
Regimi finanziari: interesse semplice S. Corsaro Matematica Finanziaria a.a. 2007/08 1 Legge finanziaria TASSO PERIODALE tasso riferito all unità di tempo interesse i(1), oppure sconto d(1) REGIME FINANZIARIO
2014-2015 Corso TFA - A048 Matematica applicata. Didattica della matematica applicata all economia e alla finanza
Università degli Studi di Ferrara 2014-2015 Corso TFA - A048 Matematica applicata Didattica della matematica applicata all economia e alla finanza 18 febbraio 2015 Appunti di didattica della Matematica
Confronto tra i regimi finanziari
Confronto tra i regimi finanziari Consideriamo i tre regimi finanziari Quale è il regime più conveniente? Per misurare la convenienza, paragoniamo i fattori di capitalizzazione: r s (t) = f. cap. interesse
Banca Intermobiliare SpA Obbligazioni a tasso variabile
Sede legale in Torino, Via Gramsci, n. 7 Capitale sociale: Euro 154.737.342,00 interamente versato Registro delle imprese di Torino e codice fiscale n. 02751170016 Iscritta all Albo Banche n. 5319 e Capogruppo
CASSA PADANA Banca di Credito Cooperativo Società Cooperativa in qualità di Emittente
A.9 MODELLO DELLE CONDIZIONI DEFINITIVE CASSA PADANA Banca di Credito Cooperativo Società Cooperativa in qualità di Emittente CONDIZIONI DEFINITIVE DEL PRESTITO OBBLIGAZIONARIO CASSA PADANA TASSO VARIABILE
rata n. rata quota capitale quota interesse debito residuo 0 0 0 0 200 000
MATEMATICA FINANZIARIA Prova intermedia dell //05 Pacati Quaranta Esercizio. Anna è una giovane che ha appena ricevuto un eredità di 50 000 e decide di investirli in un conto di deposito fino a che non
Le obbligazioni: misure di rendimento e rischio. Economia degli Intermediari Finanziari 4 maggio 2009 A.A. 2008-2009
Le obbligazioni: misure di rendimento e rischio Economia degli Intermediari Finanziari 4 maggio 009 A.A. 008-009 Agenda 1. Introduzione ai concetti di rendimento e rischio. Il rendimento delle obbligazioni
Soluzioni del Capitolo 5
Soluzioni del Capitolo 5 5. Tizio contrae un prestito di 5.000 al cui rimborso provvede mediante il pagamento di cinque rate annue; le prime quattro rate sono ciascuna di importo.00. Determinare l importo
Temi d esame di Matematica Finanziarie e Attuariale. Matematica Finanziaria ed Attuariale Prova scritta dell 8 aprile 2005
Temi d esame di Matematica Finanziarie e Attuariale Matematica Finanziaria ed Attuariale Prova scritta dell 8 aprile 2005 1. 7 pti Una somma di denaro raddoppia dopo 10 anni: qual è il tasso di rendimento?
