MATEMATICA FINANZIARIA Appello dell 8 ottobre 2010 programma a.a. precedenti
|
|
|
- Angelo Meloni
- 10 anni fa
- Visualizzazioni
Transcript
1 MATEMATICA FINANZIARIA Appello dell 8 ottobre 2010 programma a.a. precedenti Cognome e Nome C.d.L Matricola n Firma Corso: dott. Quaranta (SI) prof. Pacati (SI) dott. Riccarelli (AR) dott. Falini (GR). Fornire le risposte richieste utilizzando esclusivamente gli spazi nelle caselle; eventuali punti decimali e/o segni negativi occupano una casella. Non consegnare fogli aggiuntivi. Scrivere con chiarezza i passi essenziali del procedimento negli appositi spazi. Esercizio 1. Si consideri l operazione finanziaria di investimento di P = 100 euro, che garantisce il rimborso di C = euro dopo τ = un anno e 27 giorni. Si utilizzi, in questo esercizio, la convenzione che la durata dell anno è di 365 giorni. Si calcolino anzitutto le grandezze periodali: l interesse I = euro il tasso di interesse j = % il tasso di sconto k = % l intensità di interesse γ = giorni 1 l intensità di sconto κ = giorni 1 Si calcolino quindi le grandezze annue, ipotizzando una sottostante legge degli interessi composti: il tasso di interesse i = % l intensità istantanea di interesse δ = anni 1 Si determini infine di quanti giorni g bisogna aumentare la durata dell operazione in modo che, a parità di somma investita e di somma rimborsata, il tasso annuale di interesse (composto) dell operazione risulti il 3%. g = giorni Esercizio 2. Si consideri l operazione finanziaria di acquisto, alla data odierna e al prezzo di P = 200 euro, di una rendita perpetua immediata e posticipata a rata mensile costante di R = 1 euro e se ne calcoli il tasso interno di rendimento i, esprimendolo in forma percentuale e su base annua. Si calcoli quindi il valore (complessivo) W dell operazione finanziaria dopo 10 anni e secondo la legge esponenziale individuata da i e lo si decomponga in valore montante M e valore residuo V. i = % W = euro M = euro V = euro
2 Esercizio 3. Si consideri un mercato in cui, al tempo t 0 = 0, sono quotati: un titolo a cedola nulla che, al prezzo a pronti di 90 euro, rimborsa dopo tre anni 100 euro; un titolo a cedola fissa annuale, di tasso nominale annuo 3.5%, capitale nominale 200 euro, durata due anni e prezzo a pronti di 200 euro; un titolo che rimborsa 100 euro a tre anni al prezzo, contrattato in t 0 e pagabile dopo un anno, di 93 euro. In riferimento allo scadenzario t = {1, 2, 3} anni si determini la struttura per scadenza dei fattori di sconto a pronti, dei tassi di interesse a pronti e dei tassi di interesse a termine. v(0, 1) = v(0, 2) = v(0, 3) = i(0, 1) = % i(0, 2) = % i(0, 3) = % i(0, 0, 1) = % i(0, 1, 2) = % i(0, 2, 3) = % Esercizio 4. Si consideri, al tempo t = 0, un mercato di titoli obbligazionari, con due contratti: il titolo x, con valore 100 euro e duration 5 anni; il titolo a cedola nulla a un anno y, con valore 300 euro; Si consideri il caso di un investitore con un capitale di 1000 euro. Si determini anzitutto quale è la durata media finanziaria minima D min e quale quella massima D max dei portafogli di questo mercato che l investitore può acquistare senza operare vendite allo scoperto. Infine, nel caso voglia investire tutto il suo capitale in un portafoglio con durata media finanziaria di 4 anni, si determini quante quote α x e α y, dei titoli x e y rispettivamente, deve acquistare. D min = anni D max = anni α x = α y =
3 Esercizio 5. Si consideri un mercato di titoli obbligazionari in cui, al tempo t = 0 ed in riferimento allo scadenzario t = {1, 2, 3} sono quotati i seguenti titoli: x = {10, 10, 10} euro, al prezzo a pronti di 27 euro; y = { 0, 10, 10} euro, al prezzo a pronti di 17.5 euro. Si supponga che il flusso z = {20, 70, 70} euro sia quotato al prezzo a pronti di 140 euro. Si costruisca un arbitraggio non rischioso che coinvolga i due titoli del mercato ed il flusso z, in modo da ottenere un profitto immediato di 15 euro, avendo chiuso in pareggio le posizioni ad istanti successivi. azione (A): acquisto oppure vendita a pronti in 0 di unità del titolo x azione (B): acquisto oppure vendita a pronti in 0 di unità del titolo y azione (C): acquisto oppure vendita a pronti in 0 di unità del titolo z Tabella di payoff : azione (A) (B) (C) totale
4 Esercizio 6. Si consideri l ammortamento di una somma S = 100 euro in 3 anni, a rata annuale posticipata variabile e tasso d ammortamento i = 5% su base annua. Sapendo che C 1 = 30 e R 2 = 50 euro, determinare le altre due rate, decomporre ciascuna rata in quota capitale e quota interesse e calcolare il debito residuo dopo il pagamento di ciascuna rata. [Attenzione: è un ammortamento non standard!] k R k C k I k M k
5 MATEMATICA FINANZIARIA Appello dell 8 ottobre 2010 programma a.a. precedenti Cognome e Nome C.d.L Matricola n Firma Corso: dott. Quaranta (SI) prof. Pacati (SI) dott. Riccarelli (AR) dott. Falini (GR). Fornire le risposte richieste utilizzando esclusivamente gli spazi nelle caselle; eventuali punti decimali e/o segni negativi occupano una casella. Non consegnare fogli aggiuntivi. Scrivere con chiarezza i passi essenziali del procedimento negli appositi spazi. Esercizio 1. Si consideri l operazione finanziaria di investimento di P = 100 euro, che garantisce il rimborso di C = euro dopo τ = un anno e 27 giorni. Si utilizzi, in questo esercizio, la convenzione che la durata dell anno è di 365 giorni. Si calcolino anzitutto le grandezze periodali: l interesse I = euro il tasso di interesse j = % il tasso di sconto k = % l intensità di interesse γ = giorni 1 l intensità di sconto κ = giorni 1 Si calcolino quindi le grandezze annue, ipotizzando una sottostante legge degli interessi composti: il tasso di interesse i = % l intensità istantanea di interesse δ = anni 1 Si determini infine di quanti giorni g bisogna aumentare la durata dell operazione in modo che, a parità di somma investita e di somma rimborsata, il tasso annuale di interesse (composto) dell operazione risulti il 3.5%. g = giorni Esercizio 2. Si consideri l operazione finanziaria di acquisto, alla data odierna e al prezzo di P = 250 euro, di una rendita perpetua immediata e posticipata a rata mensile costante di R = 1 euro e se ne calcoli il tasso interno di rendimento i, esprimendolo in forma percentuale e su base annua. Si calcoli quindi il valore (complessivo) W dell operazione finanziaria dopo 10 anni e secondo la legge esponenziale individuata da i e lo si decomponga in valore montante M e valore residuo V. i = % W = euro M = euro V = euro
6 Esercizio 3. Si consideri un mercato in cui, al tempo t 0 = 0, sono quotati: un titolo a cedola nulla che, al prezzo a pronti di 88 euro, rimborsa dopo tre anni 100 euro; un titolo a cedola fissa annuale, di tasso nominale annuo 4%, capitale nominale 200 euro, durata due anni e prezzo a pronti di 200 euro; un titolo che rimborsa 100 euro a tre anni al prezzo, contrattato in t 0 e pagabile dopo un anno, di 91 euro. In riferimento allo scadenzario t = {1, 2, 3} anni si determini la struttura per scadenza dei fattori di sconto a pronti, dei tassi di interesse a pronti e dei tassi di interesse a termine. v(0, 1) = v(0, 2) = v(0, 3) = i(0, 1) = % i(0, 2) = % i(0, 3) = % i(0, 0, 1) = % i(0, 1, 2) = % i(0, 2, 3) = % Esercizio 4. Si consideri, al tempo t = 0, un mercato di titoli obbligazionari, con due contratti: il titolo x, con valore 200 euro e duration 5 anni; il titolo a cedola nulla a un anno y, con valore 400 euro; Si consideri il caso di un investitore con un capitale di 1000 euro. Si determini anzitutto quale è la durata media finanziaria minima D min e quale quella massima D max dei portafogli di questo mercato che l investitore può acquistare senza operare vendite allo scoperto. Infine, nel caso voglia investire tutto il suo capitale in un portafoglio con durata media finanziaria di 4 anni, si determini quante quote α x e α y, dei titoli x e y rispettivamente, deve acquistare. D min = anni D max = anni α x = α y =
7 Esercizio 5. Si consideri un mercato di titoli obbligazionari in cui, al tempo t = 0 ed in riferimento allo scadenzario t = {1, 2, 3} sono quotati i seguenti titoli: x = {10, 10, 10} euro, al prezzo a pronti di 27 euro; y = { 0, 10, 10} euro, al prezzo a pronti di 17.5 euro. Si supponga che il flusso z = {30, 50, 50} euro sia quotato al prezzo a pronti di 117 euro. Si costruisca un arbitraggio non rischioso che coinvolga i due titoli del mercato ed il flusso z, in modo da ottenere un profitto immediato di 10 euro, avendo chiuso in pareggio le posizioni ad istanti successivi. azione (A): acquisto oppure vendita a pronti in 0 di unità del titolo x azione (B): acquisto oppure vendita a pronti in 0 di unità del titolo y azione (C): acquisto oppure vendita a pronti in 0 di unità del titolo z Tabella di payoff : azione (A) (B) (C) totale
8 Esercizio 6. Si consideri l ammortamento di una somma S = 100 euro in 3 anni, a rata annuale posticipata variabile e tasso d ammortamento i = 6% su base annua. Sapendo che C 1 = 30 e R 2 = 50 euro, determinare le altre due rate, decomporre ciascuna rata in quota capitale e quota interesse e calcolare il debito residuo dopo il pagamento di ciascuna rata. [Attenzione: è un ammortamento non standard!] k R k C k I k M k
MATEMATICA FINANZIARIA Appello del 23 giugno 2003 studenti nuovo ordinamento
MATEMATICA FINANZIARIA Appello del 23 giugno 2003 studenti nuovo ordinamento Cognome e Nome................................................................... C.d.L....................... Matricola n................................................
MATEMATICA FINANZIARIA Appello del 13 06 2008. Cattedra: prof. Pacati prof. Renò dott. Quaranta dott. Falini dott. Riccarelli
MATEMATICA FINANZIARIA Appello del 13 06 2008 Cognome e Nome................................................................... C.d.L....................... Matricola n................................................
MATEMATICA FINANZIARIA Appello del 2 marzo 2010 programma vecchio ordinamento
MATEMATICA FINANZIARIA Appello del 2 marzo 2010 programma vecchio ordinamento Cognome e Nome........................................................................... C.d.L....................... Matricola
MATEMATICA FINANZIARIA Appello del 10 luglio 2000
MATEMATICA FINANZIARIA Appello del 10 luglio 2000 Cognome e Nome................................................................... C.d.L....................... Matricola n................................................
MATEMATICA FINANZIARIA Appello del 22 gennaio 2004 studenti vecchio ordinamento
MATEMATICA FINANZIARIA Appello del 22 gennaio 2004 studenti vecchio ordinamento Cognome e Nome................................................................... C.d.L....................... Matricola
MATEMATICA FINANZIARIA Appello del 10 febbraio 2004 studenti vecchio ordinamento
MATEMATICA FINANZIARIA Appello del 10 febbraio 2004 studenti vecchio ordinamento Cognome e Nome................................................................... C.d.L....................... Matricola
MATEMATICA FINANZIARIA Appello del 4 settembre 2013. Cattedra: prof. Pacati (SI) prof. Renò (SI) dott. Quaranta (GR) dott. Riccarelli (AR).
MATEMATICA FINANZIARIA Appello del 4 settembre 2013 Cognome e Nome................................................................... C.d.L....................... Matricola n................................................
MATEMATICA FINANZIARIA Appello del 6 luglio 2011. Cattedra: prof. Pacati (SI) prof. Renò (SI) dott. Quaranta (GR) dott. Riccarelli (AR).
MATEMATICA FINANZIARIA Appello del 6 luglio 2011 Cognome e Nome................................................................... C.d.L....................... Matricola n................................................
MATEMATICA FINANZIARIA Appello del 20 gennaio 2014. Cattedra: prof. Pacati (SI) prof. Renò (SI) dott. Quaranta (GR).
MATEMATICA FINANZIARIA Appello del 20 gennaio 2014 Cognome e Nome................................................................... C.d.L....................... Matricola n................................................
MATEMATICA FINANZIARIA Appello del 28 gennaio 2002
MATEMATICA FINANZIARIA Appello del 28 gennaio 2002 Cognome e Nome................................................................... C.d.L....................... Matricola n................................................
MATEMATICA FINANZIARIA Appello del 26 gennaio 2009. Cattedra: prof. Pacati prof. Renò dott. Quaranta dott. Falini dott. Riccarelli
MATEMATICA FINANZIARIA Appello del 26 gennaio 2009 Cognome e Nome................................................................... C.d.L....................... Matricola n................................................
MATEMATICA FINANZIARIA Appello del 12 febbraio 2014. Cattedra: prof. Pacati (SI) prof. Renò (SI) dott. Quaranta (GR).
MATEMATICA FINANZIARIA Appello del 12 febbraio 2014 Cognome e Nome................................................................... C.d.L....................... Matricola n................................................
MATEMATICA FINANZIARIA Appello del 9 ottobre 2015 appello straordinario
MATEMATICA FINANZIARIA Appello del 9 ottobre 2015 appello straordinario Cognome e Nome.......................................................................... C.d.L....................... Matricola n...................................................
MATEMATICA FINANZIARIA Appello dell 11 settembre 2013. Cattedra: prof. Pacati (SI) prof. Renò (SI) dott. Quaranta (GR) dott. Riccarelli (AR).
MATEMATICA FINANZIARIA Appello dell 11 settembre 2013 Cognome e Nome................................................................... C.d.L....................... Matricola n................................................
MATEMATICA FINANZIARIA Appello del 24 settembre 2003 studenti nuovo ordinamento
MATEMATICA FINANZIARIA Appello del 24 settembre 2003 studenti nuovo ordinamento Cognome e Nome................................................................... C.d.L....................... Matricola
MATEMATICA FINANZIARIA Appello del 18 marzo 2013. Cattedra: prof. Pacati (SI) prof. Renò (SI) dott. Quaranta (GR) dott. Riccarelli (AR).
MATEMATICA FINANZIARIA Appello del 18 marzo 2013 Cognome e Nome.......................................................................... C.d.L....................... Matricola n...................................................
MATEMATICA FINANZIARIA Appello del 22 gennaio 2015
MATEMATICA FINANZIARIA Appello del 22 gennaio 2015 Cognome e Nome................................................................... C.d.L....................... Matricola n................................................
MATEMATICA FINANZIARIA Appello del 16 giugno 2014
MATEMATICA FINANZIARIA Appello del 16 giugno 2014 Cognome e Nome................................................................... C.d.L....................... Matricola n................................................
MATEMATICA FINANZIARIA Appello del 10 luglio 2013. Cattedra: prof. Pacati (SI) prof. Renò (SI) dott. Quaranta (GR) dott. Riccarelli (AR).
MATEMATICA FINANZIARIA Appello del 10 luglio 2013 Cognome e Nome.......................................................................... C.d.L....................... Matricola n...................................................
MATEMATICA FINANZIARIA Appello del 24 marzo 2015
MATEMATICA FINANZIARIA Appello del 24 marzo 2015 Cognome.................................. Nome.................................. C.d.L....................... Matricola n................................................
MATEMATICA FINANZIARIA Appello dell 8 ottobre 2014
MATEMATICA FINANZIARIA Appello dell 8 ottobre 2014 Cognome e Nome................................................................... C.d.L....................... Matricola n................................................
Ipotizzando una sottostante legge esponenziale e considerando l anno commerciale (360 gg), determinare:
MATEMATICA FINANZIARIA - 6 cfu Prova del 22 Gennaio 2015 Cognome Nome e matr.................................................................................. Anno di Corso..........................................
Ipotizzando una sottostante legge esponenziale e considerando l anno solare (365 gg), determinare:
MATEMATICA FINANZIARIA - 6 cfu quadrate, i punti che saranno assegnati se l esercizio è stato svolto in modo corretto. con le seguenti caratteristiche: prezzo di emissione: 99,467e, valore a scadenza 100e,
Esercizi di Matematica Finanziaria
Università degli Studi di Siena Facoltà di Economia Esercizi di Matematica Finanziaria relativi ai capitoli I-IV del testo Claudio Pacati a.a. 1998 99 c Claudio Pacati tutti i diritti riservati. Il presente
MATEMATICA FINANZIARIA Appello del 14 luglio 2015
MATEMATICA FINANZIARIA Appello del 14 luglio 2015 Cognome e Nome................................................................... C.d.L....................... Matricola n................................................
Per motivi di bilancio, la Banca può scegliere di finanziare una sola delle due imprese. Quale sceglierà, e per quale motivo?
MATEMATICA FINANZIARIA Prova intermedia dell 11/11/2014 Pacati Renò non iscritto Cognome e Nome..................................................................... Matricola...................... Fornire
MATEMATICA FINANZIARIA - 6 cfu Prova del 15 luglio 2014 Cognome Nome e matr... Anno di Corso... Firma... Scelta dell appello per l esame orale
MATEMATICA FINANZIARIA - 6 cfu Prova del 15 luglio 2014 Cognome Nome e matr.................................................................................. Anno di Corso..........................................
1b. [2] Stessa richiesta del punto 1a., con gli stessi dati salvo che la valutazione deve essere fatta rispetto alla legge lineare.
MATEMATICA FINANZIARIA - 6 cfu Prova del 14 aprile 2015 - Riservata a studenti fuori corso Cognome Nome e matr.................................................................................. Anno di
3b. [2] Dopo aver determinato la rata esatta, scrivere il piano di ammortamento.
MATEMATICA FINANZIARIA - 6 cfu Prova del 23 aprile 2014 - Riservata a studenti fuori corso Cognome Nome e matr.................................................................................. Anno di
VI Esercitazione di Matematica Finanziaria
VI Esercitazione di Matematica Finanziaria 2 Dicembre 200 Esercizio. Verificare la proprietà di scindibilità delle leggi del prezzo { v(t, s) = exp } 2 (s2 t 2 ) e v(t, s) = e t(s t) Soluzione. Possiamo
1a. [2] Determinare il tasso annuo d interesse della legge lineare cui avviene l operazione finanziaria.
MATEMATICA FINANZIARIA - 6 cfu Prova del 5 febbraio 2015 Cognome Nome e matr.................................................................................. Anno di Corso..........................................
ELABORAZIONE AUTOMATICA DEI DATI PER LE DECISIONI ECONOMICHE E FINANZIARIE
ELABORAZIONE AUTOMATICA DEI DATI PER LE DECISIONI ECONOMICHE E FINANZIARIE Calcolo Finanziario Esercizi proposti Gli esercizi contrassegnati con (*) è consigliato svolgerli con il foglio elettronico, quelli
ELABORAZIONE AUTOMATICA DEI DATI PER LE DECISIONI ECONOMICHE E FINANZIARIE. Prova del 23 giugno 2009. Cognome Nome e matr... Anno di Corso... Firma...
ELABORAZIONE AUTOMATICA DEI DATI PER LE DECISIONI ECONOMICHE E FINANZIARIE Prova del 23 giugno 2009 Cognome Nome e matr..................................................................................
Esercizi di Matematica Finanziaria - Corso Part Time scheda 1 - Leggi finanziarie, rendite ed ammortamenti
Esercizi di Matematica Finanziaria - Corso Part Time scheda 1 - Leggi finanziarie, rendite ed ammortamenti 1. Un capitale d ammontare 100 viene investito, in regime di interesse semplice, al tasso annuo
MATEMATICA FINANZIARIA A.A. 2007 2008 Prova del 4 luglio 2008. Esercizio 1 (6 punti)
MATEMATICA FINANZIARIA A.A. 2007 2008 Prova del 4 luglio 2008 Nome Cognome Matricola Esercizio 1 (6 punti) Dato un debito di 20 000, lo si voglia rimborsare mediante il pagamento di 12 rate mensili posticipate
Corso di Matematica finanziaria
Corso di Matematica finanziaria modulo "Fondamenti della valutazione finanziaria" Eserciziario di Matematica finanziaria Università degli studi Roma Tre 2 Esercizi dal corso di Matematica finanziaria,
Matricola: Cognome e Nome: Firma: Numero di identificazione: 1 MATEMATICA FINANZIARIA E ATTUARIALE (A-G) E (H-Z) - Prova scritta del 15 gennaio 2014
Matricola: Cognome e Nome: Firma: Numero di identificazione: 1 MATEMATICA FINANZIARIA E ATTUARIALE (A-G) E (H-Z) - Prova scritta del 15 gennaio 2014 Avvertenze Durante lo svolgimento degli esercizi tenere
Matematica Finanziaria A - corso part time prova d esame del 21 Aprile 2010 modalità A
prova d esame del 21 Aprile 2010 modalità A 1. Un tizio ha bisogno di 600 euro che può chiedere, in alternativa, a due banche: A e B. La banca A propone un rimborso a quote capitale costanti mediante tre
Esercizi svolti in aula
Esercizi svolti in aula 23 maggio 2012 Esercizio 1 (Esercizio 1 del compito di matematica finanziaria 1 (CdL EA) del 16-02-10) Un individuo vuole accumulare su un conto corrente la somma di 10.000 Euro
MATEMATICA FINANZIARIA Appello del 25 gennaio 2010 studenti nuovo ordinamento
MATEMATICA FINANZIARIA Appello del 25 gennaio 2010 studenti nuovo ordinamento Cognome e Nome................................................................... C.d.L....................... Matricola n................................................
IV Esercitazione di Matematica Finanziaria
IV Esercitazione di Matematica Finanziaria 28 Ottobre 2010 Esercizio 1. Si consideri l acquisto di un titolo a cedola nulla con vita a scadenza di 85 giorni, prezzo di acquisto (lordo) P = 97.40 euro e
II Esercitazione di Matematica Finanziaria
II Esercitazione di Matematica Finanziaria Esercizio 1. Si consideri l acquisto di un titolo a cedola nulla con vita a scadenza di 90 giorni, prezzo di acquisto (lordo) P = 98.50 euro e valore facciale
M 1 + i = 1017.1 1.05 = 968.67 = 1000 968.67 0.05 12 3 12
Esercizi di matematica finanziaria 1 Titoli con cedola Esercizio 1.1. Un tesoriere d impresa considera la possibilità d impiego della somma C = 1000 nell acquisto d un titolo, rimborsato alla pari, con
Temi d esame di Matematica Finanziarie e Attuariale. Matematica Finanziaria ed Attuariale Prova scritta dell 8 aprile 2005
Temi d esame di Matematica Finanziarie e Attuariale Matematica Finanziaria ed Attuariale Prova scritta dell 8 aprile 2005 1. 7 pti Una somma di denaro raddoppia dopo 10 anni: qual è il tasso di rendimento?
MATEMATICA FINANZIARIA
MATEMATICA FINANZIARIA E. Michetti Esercitazioni in aula MOD. 2 E. Michetti (Esercitazioni in aula MOD. 2) MATEMATICA FINANZIARIA 1 / 18 Rendite Esercizi 2.1 1. Un flusso di cassa prevede la riscossione
MATEMATICA FINANZIARIA Schede Esercizi a.a. 2014-2015 Elisabetta Michetti
MATEMATICA FINANZIARIA Schede Esercizi a.a. 2014-2015 Elisabetta Michetti 1 MODULO 1 1.1 Principali grandezze finanziarie 1. Si consideri una operazione finanziaria di provvista che prevede di ottenere
Soluzioni del Capitolo 5
Soluzioni del Capitolo 5 5. Tizio contrae un prestito di 5.000 al cui rimborso provvede mediante il pagamento di cinque rate annue; le prime quattro rate sono ciascuna di importo.00. Determinare l importo
MATEMATICA FINANZIARIA Appello del 15 luglio 2009
MATEMATICA FINANZIARIA Appello del 15 luglio 2009 Cognome e Nome................................................................... C.d.L....................... Matricola n................................................
Matematica finanziaria: svolgimento prova di esame del 5 luglio 2005
Matematica finanziaria: svolgimento prova di esame del 5 luglio 5. [5 punti cleai, 5 punti altri] Prestiamo e a un amico. Ci si accorda per un tasso di remunerazione del 6% annuale (posticipato), per un
1.a [3] Trovare quale importo può essere finanziato pagando una rata mensile posticipata di 1000e per 5 anni, al tasso semestrale del 5%.
ELABORAZIONE AUTOMATICA DEI DATI PER LE DECISIONI ECONOMICHE E FINANZIARIE PROVA DI COMPLETAMENTO 16 maggio 2008 Cognome Nome e matr..................................................................................
TRACCE DI MATEMATICA FINANZIARIA
TRACCE DI MATEMATICA FINANZIARIA 1. Determinare il capitale da investire tra tre mesi per ottenere, nel regime dello sconto commerciale, un montante di 2800 tra tre anni e tre mesi sapendo che il tasso
Nome e Cognome... Matricola...
Università degli Studi di Perugia Facoltà di Economia Corso di Laurea in Statistica e Informatica per la Gestione delle Imprese (SIGI) Anno accademico 2006-2007 Matematica Finanziaria (5 crediti) - Prova
Metodi Matematici 2 B 28 ottobre 2010
Metodi Matematici 2 B 28 ottobre 2010 1 Prova Parziale - Matematica Finanziaria TEST Cognome Nome Matricola Rispondere alle dieci domande sbarrando, nel caso di risposta multipla, la casella che si ritiene
1 MATEMATICA FINANZIARIA
1 MATEMATICA FINANZIARIA 1.1 26.6.2000 Data la seguente operazione finanziaria: k = 0 1 2 3 4 F k = -800 200 300 300 400 a. determinare il TIR b. detreminare il VAN corrispondente ad un interesse periodale
Esercizi svolti di Matematica Finanziaria
Esercizi svolti di Matematica Finanziaria Esercizio I. Si consideri un obbligazione al 6%, con cedole trimestrali, vita a scadenza di anno, rendimento del 3, 7%. Calcolare il prezzo di tale obbligazione,
I Titoli Obbligazionari. S. Corsaro Matematica Finanziaria a.a. 2007/08 1
I Titoli Obbligazionari S. Corsaro Matematica Finanziaria a.a. 2007/08 1 Obbligazione (bond) E emessa da un unità in deficit (un impresa, un Comune, lo Stato). Il flusso di cassa, dal punto di vista dell
Leggi di capitalizzazione
Leggi di capitalizzazione Introduzione Nel capitolo precedente abbiamo introdotto la definizione di fattore montante M(t,s)=V(s)/V(t) Quando M(t,s) viene vista come funzione di t e di s, si chiama legge
MATEMATICA FINANZIARIA Appello del 14 gennaio 2016
MATEMATICA FINANZIARIA Appello del 14 gennaio 2016 Cognome e Nome............................................................. Matricola n....................... Cattedra: Pacati Quaranta Fornire le risposte
Determinare l ammontare x da versare per centrare l obiettivo di costituzione.
Esercizi di matematica finanziaria 1 VAN - DCF - TIR Esercizio 1.1. Un investitore desidera disporre tra 3 anni d un capitale M = 10000 euro. Investe subito la somma c 0 pari a 1/4 di M. Farà poi un ulteriore
Formulario. Legge di capitalizzazione dell Interesse semplice (CS)
Formulario Legge di capitalizzazione dell Interesse semplice (CS) Il montante M è una funzione lineare del capitale iniziale P. Di conseguenza M cresce proporzionalmente rispetto al tempo. M = P*(1+i*t)
Esercizi Svolti di Matematica Finanziaria
Esercizi Svolti di Matematica Finanziaria Esercizio. Nel mercato obbligazionario italiano del 0 Novembre 009 si osservano i seguenti prezzi: - prezzo 96, per un titolo il cui valore a scadenza in T è 0,
Matematica finanziaria: svolgimento prova di esame del 21 giugno 2005 (con esercizio 1 corretto)
Matematica finanziaria: svolgimento prova di esame del giugno 5 (con esercizio corretto). [6 punti cleai, 6 punti altri] Si possiede un capitale di e e lo si vuole impiegare per anni. Supponendo che eventuali
1 2 3 4 Prefazione Il presente volume raccoglie testi proposti dagli autori nell ambito dei vari appelli d esame per il corso di Matematica Finanziaria tenuto presso la Facoltà di Economia dell Università
Cognome Nome Matricola
Sede di SULMONA Prova scritta di esame del 01 02-2011 Cognome Nome Matricola Esercizio 1 (punti 5) Nel regime dell interesse iperbolico e dell interesse composto, calcolare il tasso semestrale di interesse
Pertanto la formula per una prima approssimazione del tasso di rendimento a scadenza fornisce
A. Peretti Svolgimento dei temi d esame di MDEF A.A. 015/16 1 PROVA CONCLUSIVA DI MATEMATICA per le DECISIONI ECONOMICO-FINANZIARIE Vicenza, 9/01/016 ESERCIZIO 1. Data l obbligazione con le seguenti caratteristiche:
Capitalizzazione composta, rendite, ammortamento
Capitalizzazione composta, rendite, ammortamento Paolo Malinconico 2 dicembre 2014 Montante Composto dove: C(t) = C(1+i) t C(t) = montante (o valore del capitale) al tempo t C = capitale impiegato (corrispondente
LABORATORIO DI MATEMATICA RENDITE, AMMORTAMENTI, LEASING CON EXCEL
LABORATORIO DI MATEMATICA RENDITE, AMMORTAMENTI, LEASING CON EXCEL ESERCITAZIONE GUIDATA: LE RENDITE 1. Il montante di una rendita immediata posticipata Utilizzando Excel, calcoliamo il montante di una
3. Determinare il numero di mesi m > 0 tale che i montanti generati dai due impieghi coincidano. M = 1000 1 + 0.1 9 ) = 1075 12
Esercizi di matematica finanziaria 1 Leggi finanziarie in una variabile Esercizio 1.1. Un soggetto può impiegare C o a interessi semplici con tasso annuo i oppure a interessi semplici anticipati con tasso
ELABORAZIONE AUTOMATICA DEI DATI PER LE DECISIONI ECONOMICHE E FINANZIARIE. PROVA DI COMPLETAMENTO 22 maggio 2009
ELABORAZIONE AUTOMATICA DEI DATI PER LE DECISIONI ECONOMICHE E FINANZIARIE PROVA DI COMPLETAMENTO 22 maggio 2009 Cognome Nome e matr..................................................................................
Prestito Obbligazionario Banca di Imola SpA 185^ Emissione 02/04/2007-02/04/2010 TV% Media Mensile (Codice ISIN IT0004219223)
MODELLO DI CONDIZIONI DEFINITIVE relative alla Nota Informativa sul Programma di Offerta di Prestiti Obbligazionari denominati Obbligazioni Banca di Imola SPA a Tasso Variabile Media Mensile Il seguente
Matematica Finanziaria Soluzione della prova scritta del 15/05/09
Matematica Finanziaria Soluzione della prova scritta del 15/05/09 ESERCIZIO 1 Il valore in t = 60 semestri dei versamenti effettuati dall individuo è W (m) = R(1 + i 2 ) m + R(1 + i 2 ) m 1 +... R(1 +
Scheda prodotto. 100% dell importo nominale sottoscritto. 1 obbligazione per un valore nominale di Euro 1.000
Caratteristiche principali del Prestito Obbligazionario Scheda prodotto Denominazione Strumento Finanziario Tipo investimento Emittente Rating Emittente Durata Periodo di offerta Data di Godimento e Data
Regime finanziario dell interesse semplice: formule inverse
Regime finanziario dell interesse semplice: formule inverse Il valore attuale di K è il prodotto del capitale M disponibile al tempo t per il fattore di sconto 1/(1+it). 20 Regime finanziario dell interesse
FORWARD RATE AGREEMENT
FORWARD RATE AGREEMENT FLAVIO ANGELINI. Definizioni In generale, un contratto a termine o forward permette una compravendita di una certa quantità di un bene differita a una data futura a un prezzo fissato
PIANI DI AMMORTAMENTO, TIC, NUDA PROPRIETA E USUFRUTTO, TIR E ARBITRAGGIO
ESERCITAZIONE MATEMATICA FINANZIARIA 16/11/2013 1 PIANI DI AMMORTAMENTO, TIC, NUDA PROPRIETA E USUFRUTTO, TIR E ARBITRAGGIO Nuda proprietà e usufrutto Esercizio 1 2 ESERCIZIO 1 Una società prende in prestito
rata n. rata quota capitale quota interesse debito residuo 0 0 0 0 200 000
MATEMATICA FINANZIARIA Prova intermedia dell //05 Pacati Quaranta Esercizio. Anna è una giovane che ha appena ricevuto un eredità di 50 000 e decide di investirli in un conto di deposito fino a che non
OPERAZIONI DI PRESTITO
APPUNTI DI ESTIMO La matematica finanziaria si occupa delle operazioni finanziarie, delle loro valutazioni, nonché del loro confronto. Si definisce operazione finanziaria, qualsiasi operazione che prevede
23 Giugno 2003 Teoria Matematica del Portafoglio Finanziario e Modelli Matematici per i Mercati Finanziari ESERCIZIO 1
23 Giugno 2003 Teoria Matematica del Portafoglio Finanziario e Modelli Matematici per i Mercati Finanziari In uno schema uniperiodale e in un contesto di analisi media-varianza, si consideri un mercato
Elementi di Matematica Finanziaria. Mercati e operazioni finanziarie
Elementi di Matematica Finanziaria Mercati e operazioni finanziarie Mercati finanziari Punti di vista 1. Tipologie dei beni scambiati; 2. Partecipanti; 3. Ubicazione; 4. Regole e modalità contrattuali.
REGIONE TOSCANA. Bilancio di previsione per l anno finanziario 2013 e Bilancio pluriennale 2013 2015. Assestamento.
REGIONE TOSCANA Proposta di Legge Bilancio di previsione per l anno finanziario 2013 e Bilancio pluriennale 2013 2015 Assestamento SOMMARIO Preambolo Capo I Assestamento del bilancio Art. 1 - Variazioni
ESERCIZI DI MATEMATICA FINANZIARIA DIPARTIMENTO DI ECONOMIA E MANAGEMENT UNIFE A.A. 2015/2016. 1. Esercizi 4
ESERCIZI DI MATEMATICA FINANZIARIA DIPARTIMENTO DI ECONOMIA E MANAGEMENT UNIFE A.A. 2015/2016 1. Esercizi 4 Piani di ammortamento Esercizio 1. Un debito di 1000e viene rimborsato a tasso annuo i = 10%
Le Scelte Finanziarie. S. Corsaro Matematica Finanziaria a.a. 2007/08
Le Scelte Finanziarie 1 Tasso Interno di Rendimento Consideriamo un operazione finanziaria (t 0 =0): 0 x 0 t 1 t 2 t m...... x 1 x 2 x m Posto: x = x0, x1,, xm { } si definisce tasso interno di rendimento
AMMORTAMENTO. Generalità e Funzionamento dell applicativo
AMMORTAMENTO Generalità e Funzionamento dell applicativo Per ammortamento di un prestito (mutuo) indiviso si intende quel procedimento in base al quale un soggetto (unico) cede ad un tempo iniziale (es.
Banca Intermobiliare SpA Obbligazioni a tasso variabile
Sede legale in Torino, Via Gramsci, n. 7 Capitale sociale: Euro 154.737.342,00 interamente versato Registro delle imprese di Torino e codice fiscale n. 02751170016 Iscritta all Albo Banche n. 5319 e Capogruppo
Quesiti livello Application
1 2 3 4 Se la correlazione tra due attività A e B è pari a 0 e le deviazioni standard pari rispettivamente al 4% e all 8%, per quali dei seguenti valori dei loro pesi il portafoglio costruito con tali
studi e analisi finanziarie La Duration
La Duration Cerchiamo di capire perchè le obbligazioni a tasso fisso possono oscillare di prezzo e, quindi, anche il valore di un fondo di investimento obbligazionario possa diminuire. Spesso si crede
Corso di Corporate e Investment Banking
Anno Accademico 2010/2011 Corso di Corporate e Investment Banking Appello del 21 settembre 2011 Il tempo a disposizione è di 120 minuti. Scrivere subito su ogni pagina nome, cognome e numero di matricola.
Argomenti. Domande importanti. Teori della Finanza Aziendale. Il valore finanziario del tempo: tecniche di valutazione
Teori della Finanza Aziendale Il valore finanziario del tempo: tecniche di valutazione 3-2 Argomenti La valutazione delle attività a lungo termine Tecniche per il calcolo del valore attuale Rate costanti,
Ministero dello Sviluppo Economico DIREZIONE GENERALE PER LA POLITICA INDUSTRIALE E LA COMPETITIVITA
Ministero dello Sviluppo Economico DIREZIONE GENERALE PER LA POLITICA INDUSTRIALE E LA COMPETITIVITA Linee guida per l'applicazione del Metodo nazionale per calcolare l elemento di aiuto nelle garanzie
LA CASSETTA DEGLI ATTREZZI
LA CASSETTA DEGLI ATTREZZI I TASSI DI INTERESSE TASSO DI RENDIMENTO EFFETTIVO ALLA SCADENZA (TRES) O YIELD-TO- MATURITY (YTM) Lezione 3 1 I PUNTI PRINCIPALI DELLA LEZIONE o o Misurazione dei tassi di interesse
Università di Milano Bicocca Esercitazione 7 di Matematica per la Finanza 12 Marzo 2015
Università di Milano Bicocca Esercitazione 7 di Matematica per la Finanza 12 Marzo 2015 Esercizio 1 Si consideri la funzione f(t) := 2t/10 1 + 0, 04t, t 0. 1. Verificare che essa rappresenta il fattore
esercitazione EIF n 3 a.a. 2006-2007: CAMBI, TASSI SU MUTUI E PRESTITI, TITOLI DI STATO, OBBLIGAZIONI
esercitazione EIF n 3 a.a. 2006-2007: CAMBI, TASSI SU MUTUI E PRESTITI, TITOLI DI STATO, OBBLIGAZIONI 1 Cambi 2 Valuta: qualsiasi mezzo di pagamento utilizzabile negli scambi internazionali, es. banconote,
CLASSE TERZA - COMPITI DELLE VACANZE A.S. 2014/15 MATEMATICA
Risolvere le seguenti disequazioni: 0 ) x x ) x x x 0 CLASSE TERZA - COMPITI DELLE VACANZE A.S. 04/ MATEMATICA x 6 x x x x 4) x x x x x 4 ) 6) x x x ( x) 0 x x x x x x 6 0 7) x x x EQUAZIONI CON I MODULI
Prestiti divisi. 1 I prestiti obbligazionari. 1.1 Introduzione
Prestiti divisi 1 I prestiti obbligazionari 1.1 Introduzione Finora ci siamo occupati di prestiti indivisi (mutui in cui un unico soggetto (creditore o mutuante presta denaro ad un unico soggetto debitore
Epoca k Rata Rk Capitale Ck interessi Ik residuo Dk Ek 0 S 0 1 C1 Ik=i*S Dk=S-C1. n 0 S
L AMMORTAMENTO Gli ammortamenti sono un altra apllicazione delle rendite. Il prestito è un operazione finanziaria caratterizzata da un flusso di cassa positivo (mi prendo i soldi in prestito) seguito da
