Figura Per la sezione in figura (lato esterno di 21 cm ed interno di 19 cm), il momento d inerzia è lo stesso in ogni direzione e risulta:

Documenti analoghi
TRAVE SU SUOLO ELASTICO

Solai e solette con armatura incrociata: comportamento e calcolo

Nome: Cognome: Data: 01/04/2017

Nome: Cognome: Data: 14/02/2017

sin =0 (1.1) Risolvendo l equazione (1.1) rispetto alla forza adimesionalizzata =, si ottiene: =

Presentazione 5/2017 SINTETICA I PONTI IMPALCATI A GRATICCIO

ESERCITAZIONE N. 2 Richiami - Analisi modale

CORSO DI LAUREA IN ING. ELETTRICA CORSO DI MECCANICA E TECNICA DELLE COSTRUZIONI MECCANICHE ANNO ACCADEMICO VERIFICA DI RIGIDEZZA DI ALBERO

Scienza delle Costruzioni: Tracce d esami. Claudio Franciosi

Calcolo delle caratteristiche della sollecitazione nella struttura di fondazione. Interazione terreno-struttura. Procedimento tradizionale:

Solai e solette con armatura incrociata

BOZZA. Lezione n. 6. Rigidezze e coefficienti di trasmissione

Progetto di un solaio laterocementizio

Soluzione dei compiti del Corso di Tecnica delle Costruzioni

Costruzioni in zona sismica

σ x = -3 N/mm 2 σ y = 13 N/mm 2 τ xy = -6 N/mm 2

Lezione 34 - I vincoli imperfetti

TRAVE SU SUOLO ELASTICO

Nome: Cognome: Data: 15/02/2016

Trave isostatica Studio della deformata con il metodo della LINEA ELASTICA

Lezione 33- Le travi ad una campata II

ESERCIZI SVOLTI O CON TRACCIA DI SOLUZIONE SU STRUTTURE IPERSTATICHE

Ulteriori considerazioni sui vincoli di un solaio

Lezione 40 - I corollari di Mohr

Sommario 1 VOLUME CAPITOLO 1 - Matrici 1 VOLUME CAPITOLO 3 - Geometria delle masse 1 VOLUME CAPITOLO 2 - Notazione indiciale

Lezione 39 - Le equazioni di congruenza

TEORIA DELLE LASTRE SOTTILI

Nome: Cognome: Data: 18/06/2015

Lezione PONTI E GRANDI STRUTTURE. Prof. Pier Paolo Rossi Università degli Studi di Catania

Indice I vettori Geometria delle masse

Prefazione... Introduzione... xvii

Verifiche di strutture in muratura secondo le NTC 2008

Lezione 33- Le travi ad una campata II

Il progetto di travi in c.a.p Iperstatiche Il calcolo delle reazioni iperstatiche dovute alla precompressione

Università degli studi di Cagliari. Corso di aggiornamento. Unità 4 PIASTRE IN C.A. E INSTABILITÀ

Nome: Cognome: Data: 4/11/2017

Il progetto di travi in c.a.p Iperstatiche Il calcolo delle reazioni iperstatiche dovute alla precompressione

Il modello di trave adottato dal Saint-Venant si basa sulle seguenti ipotesi:

Lezione PONTI E GRANDI STRUTTURE. Prof. Pier Paolo Rossi Università degli Studi di Catania

Soluzione dei compiti del Corso di Tecnica delle Costruzioni

EDIFICIO IN CEMENTO ARMATO. Il modello strutturale e gli schemi statici degli elementi strutturali

Setti in C.A. -Trave parete forata

ESERCIZI SVOLTI. 12 Travi iperstatiche 12.2 Travi continue

Lezione 34 - I vincoli imperfetti

Setti in C.A. -Trave parete forata

MST.1.01 Sia dato il portale in figura, con il trasverso BC indeformabile ed i montanti di rigidezza EJ.

CORSO DI MODELLAZIONE STRUTTURALE

Travi Staticamente Indeterminate

Le deformazioni nelle travi rettilinee inflesse

Costruzione di Macchine (MECC-10-15, 15 CFU), I parte Fondamenti di Costruzione di Macchine (MECC-31, 6 CFU)

Le piastre:classificazione

Lezione 36 - Le travi a piu' campate. Parte II

Alcune strutture, seppur adeguatamente dimensionate dal punto di vista della resistenza, raggiungono il cedimento per fenomeni di instabilità.

Università degli Studi della Basilicata Facoltà di Ingegneria

Nome: Cognome: Data: 18/01/2018

IMBOZZAMENTO. ν = modulo di Poisson = 0.3 per l acciaio

Quaderni di Complementi di Scienza delle Costruzioni - Ingegneria Meccanica -

Tutti i diritti riservati

Prova scritta di SCIENZA DELLE COSTRUZIONI

Formulazione delle equazioni del moto per un sistema lineare a tre gradi di libertà. Proprietà delle matrici di rigidezza e di flessibilità

LEZIONE 1. IL PROGETTO STRUTTURALE Parte 2. La modellazione. Corso di TECNICA DELLE COSTRUZIONI Chiara CALDERINI A.A

Prefazione all'edizione italiana Prefazione Simbologia Azioni e sollecitazioni... Introduzione

FONDAMENTI DI INGEGNERIA STRUTTURALE PER L INGEGNERIA CHIMICA

ESERCIZI SVOLTI. 13 Le strutture a telaio 13.1 I canali statici delle forze

2. Vibrazioni longitudinali nelle barre

Risolvendo l equazione (6.1) rispetto alla forza adimesionalizzata f = F L/k, si ottiene: f = FL k = ϕ

ESERCITAZIONE 2.1_Predimensionamento travi, pilastri e mensole

Esame di Costruzioni Aerospaziali Prof. P. Gasbarri. Nome: Cognome: Data: 17/01/ Si

1.4 Modelli di calcolo

Formulazione dell equazione del moto. Prof. Adolfo Santini - Dinamica delle Strutture 1

Premessa 1. Notazione e simbologia Notazione matriciale Notazione tensoriale Operazioni tensoriali in notazione matriciale 7

Presentazione 6 MEMBRATURE COMPRESSE

Università degli Studi di Cagliari - Facoltà di Ingegneria e Architettura

Lezione 40 - I corollari di Mohr

Verifiche di deformabilità e di stabilità degli elementi inflessi

EQUAZIONE DELLA LINEA ELASTICA

Meccanica del continuo

REGISTRO DELLE LEZIONI 2006/2007. Tipologia. Addì Tipologia. Addì Tipologia

Considerazioni introduttive

Dinamica dei Sistemi Aerospaziali Esercitazione 17

L scritto nel testo). Forza di reazione vincolare: deve bilanciare le forze esterne applicate, dunque è verso il basso (quindi positiva ql

Dispense del Corso di SCIENZA DELLE COSTRUZIONI. Sollecitazioni semplici. Prof. Daniele Zaccaria

Nm

4 SOLLECITAZIONI INDOTTE. 4.1 Generalità

Capitolo 2. Statica del corpo rigido. 2.1 Azioni su un corpo rigido

Lezione 44 - Le linee di influenza per distorsioni viaggianti.

ESERCIZI SVOLTI. 13 Le strutture a telaio 13.1 I canali statici delle forze

ELEMENTI MONODIMENSIONALI : TRAVE

FACOLTA DI INGEGNERIA PROGETTO DI STRUTTURE A/A Docente: Ing. M.Malena PROGETTO DI SCALE IN CEMENTO ARMATO

Metodo delle Forze nelle strutture a nodi spostabili

1 Sussidi didattici. Prof. Carmelo Roma. Rigidezza di un telaio shear type,

Esercitazione 1 C.A. DIAGRAMMI DI INVILUPPO

Teoria e Progetto dei Ponti

Il problema dell instabilità torsio-flessionale delle travi inflesse

Resistenza dei materiali

Lezione 43 - Le linee di influenza delle c.s.i.

DETERMINAZIONE DELLE REAZIONI VINCOLARI E DIAGRAMMI DELLE CARATTERISTICHE DELLA SOLLECITAZIONE

Vibrazioni Meccaniche

Transcript:

7. TEORIA DELLE PIASTRE 7.4.2.4 Esercizio sull instabilità piastre sottili L asta in Figura 7-69 è vincolata con appoggi ad entrambi gli estremi. Tracciare il diagramma P cr l, tenendo presente che l asta può diventare instabile sia per inflessione che per instabilità locale (comportamento a lastra). Determinare il valore di l al quale si verifica la transizione tra instabilità locale e globale. Figura 7-69 Per la sezione in figura (lato esterno di 21 cm ed interno di 19 cm), il momento d inerzia è lo stesso in ogni direzione e risulta: J = 5333 cm 4 (7.256) Dalla formula di Eulero P cr = π 2 EJ/l 2 si ottiene pertanto il carico critico per instabilità globale (inflessione) come: P cr E = 52500 l 2 (7.257) L instabilità locale si verifica come in Figura 7-70. Da essa si vede che ognuna delle quattro parti si comporta come una lastra con b = 20 cm e a = l. Il carico p per unità di lunghezza cui la lastra è sottoposta risulta p = P/80 (essendo 80 cm la lunghezza della linea media della sezione). 291

7. TEORIA DELLE PIASTRE Figura 7-70 Il carico critico per questa struttura è dato dalla (7.258): P cr = Kπ 2 B b 2 (7.258) Dove K può essere ricavato dalla Figura 7-72, ponendo a = l e b = 20. Dal momento che nel nostro caso risulta: B = Si ottiene: Es 3 12(1 υ 2 ) = E 10.9 (7.259) P cr E = 80P cr E = 0.181K(l) (7.260) La Figura 7-71 indica il diagramma P cr l cercato, dove P cr è dato, per ogni l, dal più piccolo dei due valori forniti da (7.257) e (7.260). Da esso si vede che per l < 269 cm l instabilità è di tipo locale, mentre per l > 269 cm l instabilità avviene per inflessione (instabilità globale). Si noti che per l > 100 cm (a/b>5), si può porre nella (7.260) K(l) = 4 = cost. (Figura 7-72). Il valore l = 269 cm per cui avviene la transizione tra i due fenomeni può essere quindi ricavato, oltre che graficamente, uguagliando il P cr fornito dalla (7.260) con K = 4 a quello dato dalla (7.257). 292

7. TEORIA DELLE PIASTRE Figura 7-71 Figura 7-72 293

Capitolo 3 TRAVE SU SUOLO ELASTICO (3.1) Combinando la (3.1) con la (3.2) si ottiene: (3.2) L equazione differenziale può essere così riscritta: (3.3) La soluzione dell equazione differenziale di ordine IV a coefficienti costanti (3.3) costituisce la soluzione del problema della trave su suolo elastico. La soluzione dell equazione differenziale sarà la somma di un integrale particolare yp(x) e dell integrale generale dell equazione omogenea associata y0(x), secondo la seguente relazione: (3.4) 3.1.1.1 Integrale particolare Si consideri come integrale particolare la seguente espressione: (3.5) L integrale particolare rappresenta l abbassamento della struttura dovuto alla presenza di un carico distribuito p(x) di tipo lineare, parabolico o cubico, tale che: (3.6) In generale gli effetti del carico distribuito p(x) sono trascurabili rispetto a quelli dovuti ai carichi concentrati. Ad esempio, in un edificio con struttura in calcestruzzo armato, i carichi distribuiti agenti sulle travi di fondazione, dovuti agli elementi gravanti direttamente su di esse, risultano ampiamente inferiori ai carichi concentrati trasmessi dai pilastri. 3.1.1.2 Integrale generale Trascurando gli effetti del carico distribuito, si consideri l equazione omogenea associata all equazione differenziale (3.3):

(3.7) Ponendo: (3.8) Si può scrivere la (3.7) nella forma: (3.9) dove: è il rapporto fra la rigidezza del supporto elastico (terreno nel caso più frequente) e la rigidezza della trave. L integrale generale è dato dalla seguente relazione: (3.10) 3.2 Trave illimitata soggetta a carico concentrato Per semplicità si consideri la trave su suolo elastico di lunghezza illimitata e soggetta ad carico concentrato Q, indicata nella seguente figura. Figura 3.1 Posto come asse x l asse geometrico della trave e come asse y l asse di applicazione del carico, allora l asse y costituisce l asse di simmetria della deformata della trave. La soluzione del problema è data dalla somma di un integrale particolare, dovuto alla presenza di carichi distribuiti, ed un integrale generale. Tuttavia, trascurando la presenza di carichi distribuiti, la soluzione si riduce all intergale generale dato dalla (3.10). La soluzione del problema risulta nota a meno di quattro costanti di integrazione che possono essere facilmente determinate imponendo la congruenza con le condizioni al contorno che sono sia di tipo statico, legate alle azioni interne, sia di tipo cinematico, legate alle deformazioni ed alle rotazioni della trave. 3.2.1.1 Condizioni al contorno 1 e 2 (condizioni cinematiche) A distanza infinita dal punto di applicazione del carico il fenomeno diffusivo potrà considerarsi, a buon ragione, esaurito e gli spostamenti verticali y(x) della trave potranno considerarsi nulli. Infatti si ha:

Condizione al contorno 1 (3.11) e per simmetria rispetto all origine: Condizione al contorno 2 (3.12) Queste condizioni al contorno possono essere verificate solo con l annullarsi dei termini che moltiplicano l esponenziale positivo della (3.10) e quindi si ha: (3.13) La soluzione dell omogenea associata può essere così riscritta: (3.14) Derivando la (3.14) rispetto a x si ottiene: (3.15) 3.2.1.2 Condizione al contorno 3 (condizione cinematica) Nel punto di applicazione del carico, per la simmetria della deformata rispetto all orgine, potrà considerasi nulla la rotazione y (x). Pertanto si ha: Condizione al contorno 3 (3.16) Questa condizione al contorno si verifica solo con l annullarsi del termine che moltiplica il coseno della (3.15) e pertanto: (3.17) La soluzione dell omogenea associata può essere nuovamente riscritta: (3.18) Derivando la (3.18) rispetto a x si ottengono le seguenti espressioni: (3.19) (3.20) (3.21) 3.2.1.3 Condizione al contorno 4 (condizione statica) Si consideri il concio di trave di lunghezza infinitesima nell intorno dell origine soggetto all azione del carico Q e soggetto a due forze di taglio V sulle estremità del concio.

Figura 3.2 Per equilibrio alla traslazione verticale e alla rotazione le forze di taglio assumono verso concorde e modulo pari a: Condizione al contorno 4 (3.22) L equazione della linea elastica alle derivate quarte, stabilendo un legame fra gli spostamenti y della linea elastica ed i carichi applicati alla trave, ci consente di esprimere l azione di taglio come: Sostituendo l espressione si ottiene: (3.23) e quindi: (3.24) (3.25) dove (3.26) 3.2.1.4 Soluzione del problema La deformata della struttura risulta infine: (3.27) Derivando la (3.27) rispetto a x si ottengono le seguenti espressioni: (3.28) (3.29) (3.30)

Le espressioni del momento flettente M(x) ed del taglio V(x) risultano pertanto: (3.31) (3.32) 3.2.1.5 Tracciamento della deformata e delle azioni interne La deformata e le azioni interne assumono il valore massimo in corrispondenza del punto di applicazione del carico, per x = 0, ed un andamento periodico smorzato dovuto al prodotto tra le funzioni periodiche e l esponenziale negativo. I valori massimi della deformata e delle azioni interne sono dati dalle seguenti espressioni: (3.33) (3.34) (3.35) Inoltre se definiamo lunghezza d onda λ la distanza fra due punti di massimo o di minimo di una funzione periodica di argomento αx, si ottiene la seguente relazione: La lunghezza d onda λ può essere espressa come: (3.36) (3.37) Ad una distanza λ dal punto di applicazione del carico lo smorzamento assume un valore pari al 2, infatti: (3.38) Inoltre ad una distanza λ/2 dal punto di applicazione del carico lo smorzamento assume un valore pari al 4 %, infatti: (3.39) La seguente figura mostra l andamento qualitativo della deformata strutturale e delle azioni interne sul semiasse positivo della trave ma, grazie alla simmetria del problema, i risultati ottenuti possono essere estesi al semiasse negativo.

Figura 3.3

3. TRAVE SU SUOLO ELASTICO 3.7 Il graticcio di travi Il graticcio di travi è un modello strutturale bidimensionale che può essere adottato nel dimensionamento dei solai con lo scopo di ripartire le sollecitazioni su travi e travetti in ragione della loro rigidezza flessionale. Nello schema di solaio classico la trave di spina costituisce un appoggio rigido per il travetto mentre nello schema di graticcio di travi si considera la deformabilità della trave di spina. L utilizzo del modello a graticcio di travi può essere utile quando le travi di spina hanno luci elevate: considerando il mutuo effetto della trave e dei travetti si può ottenere una vantaggiosa riduzione delle sollecitazioni sulla trave di spina e, per contro, l aumento delle sollecitazioni sui travetti. Tale modellazione è infine maggiormente sensata in presenza di rigidezze flessionali simili tra trave principale e secondaria, il che non avviene nei solai in latero-cemento. Si consideri il solaio schematizzato nella seguente figura: Figura 3.16 La trave costituisce un appoggio cedevole per i travetti mentre, a sua volta, risulta essere incastrata agli estremi e appoggiata su una serie di appoggi di continuità cedevoli, costituiti dai travetti. Se il rapporto d/l fra l interasse dei travetti e la lunghezza della trave principale è sufficientemente piccolo, gli appoggi isolati possono essere ricondotti ad un suolo continuo alla Winkler. Si assumono alcune ipotesi semplificative: - I materiali abbiano un comportamento elastico lineare, omogeneo ed isotropo; - La trave sia soggetta a spostamenti verticali che ricadono nel campo dei piccoli spostamenti; - La trave principale e le secondarie siano prismatiche di luce L e l; - La rigidezza flessionale della trave (EJ)L e dei travetti (EJ)t siano considerati costanti; - La trave principale sia vincolata nella mezzeria dei travetti; - Si consideri la presenza di un vincolo sferico bilatero tra la trave principale e le travi secondarie in modo che si possa trascurare la torsione dei travetti generata dalla flessione 68

3. TRAVE SU SUOLO ELASTICO della trave. Il vincolo pertanto trasmette unicamente forze, non momenti. In realtà, come già osservato nella teoria delle piastre sottili, la flessione della trave principale torce i travetti secondari e viceversa. Questo spetto viene qui trascurato, assumendo che la rigidezza torsionale sia trascurabile (lo è nella realtà soprattutto dopo la fessurazione). Staticamente, il problema può essere trattato schematizzando la trave principale su letto di molle elastiche, costituito dalle travi secondarie. Si assume inoltre convenzionalmente che tutto il carico sia attribuito alle travi secondarie. Si consideri il travetto del graticcio, a sua volta schematizzato come illustrato in figura: Figura 3.17 La trave principale viene schematizzata come una molla traslazionale posta nella mezzeria del travetto. La reazione della molla può essere ottenuta grazie al principio di sovrapposizione degli effetti: (3.76) dove R è la reazione del vincolo supposto infinitamente rigido (come nel caso del travetto in latero-cemento) mentre R rappresenta la reazione della molla elastica dovuta alla deformabilità y, incognita del problema. R è tanto maggiore quanto più il vincolo è cedevole, determinando infatti una diminuzione della reazione totale R. Inoltre, è il carico totale; 69

3. TRAVE SU SUOLO ELASTICO γ è il coefficiente di influenza del carico (carico uniformemente distribuito γ=5/4). La rigidezza della molla può essere facilmente determinata attraverso il teorema e il corollario di Mohr, come da figura seguente: (3.77) La rigidezza della molla risulta: Figura 3.18 (3.78) Osservazione Dalla relazione (3.78) si può osservare che la rigidezza flessionale (EJ)L della trave non influenza la rigidezza della molla k. La rigidezza flessionale (EJ)L della trave influenza, invece, l abbassamento y dei travetti che, collocati in punti diversi della trave subiscono abbassamenti diversi. Per questa ragione la reazione R della trave risulta diversa per ogni travetto. Se l interasse dei travetti d risulta molto piccolo rispetto alla luce della trave principale L allora l appoggio costituito dai travetti può essere schematizzato come un suolo elastico tipo Winkler. Il carico p(x) agente sulla trave è proporzionale alla reazione R che la trave esercita sui travetti ed inversamente proporzionale alla distanza d tra i travetti. Il carico p(x) è dato dalla seguente relazione: (3.79) L equazione della linea elastica alle derivate quarte per la struttura in esame risulta: (3.80) 70

3. TRAVE SU SUOLO ELASTICO Sostituendo si ottiene: (3.81) Definendo le seguenti quantità: (3.82) si ottiene la seguente relazione: (3.83) La soluzione dell equazione differenziale di ordine IV a coefficienti costanti (3.83) costituisce la soluzione del problema del graticcio di travi. Se tutti i travetti sono soggetti allo stesso carico Q (ipotesi aggiuntiva che viene introdotta ora), allora la quantità q0 è una quantità costante e la (3.83) può essere riscritta nella forma: (3.84) dove: (3.85) è il rapporto fra la rigidezza del supporto elastico e la rigidezza della trave (come nel caso della trave su suolo elastico: il suolo elastico è ora costituito dai travetti secondari). La soluzione dell equazione differenziale sarà la somma di un integrale particolare yp(x) e dell integrale generale dell equazione omogenea associata y0(x), secondo la seguente relazione: (3.86) dove: (3.87) (3.88) La soluzione del problema risulta nota a meno di quattro costanti di integrazione che possono essere determinate imponendo la congruenza con le condizioni al contorno di tipo cinematico, rappresentate dalle seguenti relazioni: Condizione al contorno 1 (3.89) Condizione al contorno 2 (3.90) Condizione al contorno 3 (3.91) Condizione al contorno 4 (3.92) Osservazione 71

3. TRAVE SU SUOLO ELASTICO L interazione fra la trave e i travetti dipende principalmente dallo spostamento verticale y(x) della trave: per i travetti prossimi agli incastri esso sarà ridotto e la trave costituirà un appoggio più rigido, mentre in corrispondenza della mezzeria, dove la trave si deforma maggiormente, i travetti trasmetteranno una reazione R minore e risulteranno, quindi, più sollecitati. Osservazione Nel caso in cui la trave principale non abbia gli estremi incastrati ma semplicemente appoggiati, la trave avrà una rigidezza k diversa e saranno necessarie nuove condizioni al contorno [y(0) = y (0) = y(l) = y (l) = 0]. 72