La fisica di Feynmann Termodinamica



Documenti analoghi
Termodinamica. Sistema termodinamico. Piano di Clapeyron. Sistema termodinamico. Esempio. Cosa è la termodinamica? TERMODINAMICA

Il lavoro nelle macchine

Temperatura. V(t) = Vo (1+at) Strumento di misura: termometro

Fisica Generale 1 per Chimica Formulario di Termodinamica e di Teoria Cinetica

Formulario di Termodinamica

Seconda legge della termodinamica

Formulario di Fisica Tecnica Matteo Guarnerio 1

QUESITI DI FISICA RISOLTI A LEZIONE TERMODINAMICA

CHIMICA GENERALE MODULO

FONDAMENTI CHIMICO FISICI DEI PROCESSI IL SECONDO E IL TERZO PRINCIPIO DELLA TERMODINAMICA

Fisica per scienze ed ingegneria

LEGGE GAS PERFETTI. Gas perfetto è governato dalla legge: PV=nRT=(N/NA) RT. kb=1.38*10-23 (J/K) cost Boltzmann

Energia e Lavoro. In pratica, si determina la dipendenza dallo spazio invece che dal tempo

Macchine termiche. Alla fine di ogni ciclo il fluido ripassa per lo stesso stato.

Preparazione alle gare di II livello delle Olimpiadi della Fisica 2013

LEGGI DEI GAS / CALORI SPECIFICI. Introduzione 1

LO STATO GASSOSO. Proprietà fisiche dei gas Leggi dei gas Legge dei gas ideali Teoria cinetico-molecolare dei gas Solubilità dei gas nei liquidi

I FENOMENI TERMICI. I fenomeni termici Fisica Medica Lauree triennali nelle Professioni Sanitarie. P.Montagna ott-07. pag.1

Prova scritta di Fisica Generale I Corso di studio in Astronomia 22 giugno 2012

3. Le Trasformazioni Termodinamiche

Cenni di Teoria Cinetica dei Gas

Gas, liquidi, solidi. Tutti i gas, tranne l'elio, solidificano a basse temperature (alcuni richiedono anche alte pressioni).

Termologia. Introduzione Scale Termometriche Espansione termica Capacità termica e calori specifici Cambiamenti di fase e calori latenti

FACOLTÀ DI INGEGNERIA. 2. Exergia. Roberto Lensi

Secondo principio della Termodinamica

GLI STATI DI AGGREGAZIONE DELLA MATERIA. Lo stato gassoso

C V. gas monoatomici 3 R/2 5 R/2 gas biatomici 5 R/2 7 R/2 gas pluriatomici 6 R/2 8 R/2

CORRENTE ELETTRICA Intensità e densità di corrente sistema formato da due conduttori carichi a potenziali V 1 e V 2 isolati tra loro V 2 > V 1 V 2

Lezione estd 29 pagina 1. Argomenti di questa lezione (esercitazione) Iniziare ad affrontare esercizi di termodinamica

Corrente ele)rica. Cariche in movimento e legge di Ohm

p atm 1. V B ; 2. T B ; 3. W A B 4. il calore specifico a volume costante c V

Una soluzione è un sistema omogeneo (cioè costituito da una sola fase, che può essere liquida, solida o gassosa) a due o più componenti.

Le macchine termiche e il secondo principio della termodinamica

IMPIANTI DI CLIMATIZZAZIONE: TERMODINAMICA DEI CICLI FRIGORIFERI AD ARIA ED ACQUA. Ing. Attilio Pianese (commissione Energia e Impianti)

Esercitazione X - Legge dei gas perfetti e trasformazioni

Motori e cicli termodinamici

Secondo principio della termodinamica. Macchine termiche Rendimento Secondo principio della Termodinamica Macchina di Carnot Entropia

Complementi di Termologia. I parte

POLITECNICO DI MILANO CORSO DI LAUREA ON LINE IN INGEGNERIA INFORMATICA ESAME DI FISICA

CAFFE` Il segreto è nel fisico

Proprieta meccaniche dei fluidi

Esercizi di Fisica Generale

Correnti e circuiti a corrente continua. La corrente elettrica

Michele D'Amico (premiere) 6 May 2012

TEORIA CINETICA DEI GAS

Temperatura e Calore

I.S.S Via Silvestri Roma S. A. Liceo Scientifico L. Malpighi Classe III F A. S Prof. Silvia Nocera PROGRAMMA DI FISICA MECCANICA

Capitolo 10 Il primo principio 113

LA TERMOLOGIA. studia le variazioni di dimensione di un corpo a causa di una

Esercizi e Problemi di Termodinamica.

ENERGIA INTERNA ENERGIA INTERNA SPECIFICA. e = E/m = cv T ENTALPIA. H = E + pv ENTALPIA SPECIFICA. h = H/m = cp T h = e + pv = e + p/d L-1

Il trasporto di materia. Principi di Ingegneria Chimica Ambientale

PROGRAMMA OPERATIVO NAZIONALE

STATO LIQUIDO. Si definisce tensione superficiale (γ) il lavoro che bisogna fare per aumentare di 1 cm 2 la superficie del liquido.

Indice generale 1 INTRODUZIONE, CINEMATICA IN DUE O TRE DIMENSIONI; VETTORI 71 DINAMICA: LE LEGGI DI NEWTON 115 MOTO: CINEMATICA IN UNA DIMENSIONE 25

Bruno Jannamorelli, traduzione ed edizione critica La potenza motrice del fuoco di Sadi Carnot, Cuen 1996, pp. 19 e 20. 2

quale agisce una forza e viceversa. situazioni. applicate a due corpi che interagiscono. Determinare la forza centripeta di un

CORRENTE ELETTRICA Corso di Fisica per la Facoltà di Farmacia, Università G. D Annunzio, Cosimo Del Gratta 2007

COMPONENTI TERMODINAMICI APERTI

Facoltà di Ingegneria. Fisica 1. AA.2007/08. Prova in itinere n.2. Cognome Nome Anno di corso

AUTODIFFUSIONE Autodiffusione

Lezione IX - 19/03/2003 ora 8:30-10:30 - Ciclo di Carnot, Otto, Diesel - Originale di Spinosa Alessandro.

Corrente Elettrica. dq dt

LA CORRENTE ELETTRICA

Simulazione test di ingresso Ingegneria Industriale Viterbo. Quesiti di Logica, Chimica e Fisica. Logica

La corrente elettrica

Selezione test GIOCHI DELLA CHIMICA

Esercizi di Fisica Tecnica Termodinamica

CALORE. Compie lavoro. Il calore è energia. Temperatura e calore. L energia è la capacità di un corpo di compiere un lavoro

LEZIONE 5-6 GAS PERFETTI, CALORE, ENERGIA TERMICA ESERCITAZIONI 1: SOLUZIONI

LEGGE DI STEVIN (EQUAZIONE FONDAMENTALE DELLA STATICA DEI FLUIDI PESANTI INCOMPRIMIBILI) z + p / γ = costante

Definiamo Entalpia la funzione: DH = DU + PDV. Variando lo stato del sistema possiamo misurare la variazione di entalpia: DU = Q - PDV.

Simulazione test di ingresso Ingegneria Industriale Viterbo. Quesiti di Logica, Chimica e Fisica. Logica

CICLO FRIGORIFERO PER RAFFREDDAMENTO

FISICA-TECNICA Miscela di gas e vapori. Igrometria

CLASSE: 1^ CAT. E 1^ GRA

Gas e gas perfetti. Marina Cobal - Dipt.di Fisica - Universita' di Udine 1

PINCH TECHNOLOGY. Il target può essere: minima area degli scambiatori minimo consumo di energia minimo costo annuo totale

9. TRASFORMAZIONI TERMODINAMICHE E CICLI REALI

CALCOLO DELL'ENERGIA INTERNA

Una forza, per la fisica, compie un lavoro se provoca uno spostamento.

Definizione di sorgente di calore e di macchina termica

Prova Scritta Completa-Fisica 9 CFU Corso di Laurea in Tossicologia dell ambiente e degli alimenti Novembre 2013

ENERGIA. Energia e Lavoro Potenza Energia cinetica Energia potenziale Principio di conservazione dell energia meccanica

Anche nel caso che ci si muova e si regga una valigia il lavoro compiuto è nullo: la forza è verticale e lo spostamento orizzontale quindi F s =0 J.

modulo: CHIMICA DEI POLIMERI

Stati di aggregazione della materia unità 2, modulo A del libro

Prof. Federico Rossi

L'ENTROPIA. Lezioni d'autore

Lezione 7 I e II Prinicipio

Temperatura e Calore

Unità di misura. Perché servono le unità di misura nella pratica di laboratorio e in corsia? Le unità di misura sono molto importanti

Esercizi di fisica per Medicina C.Patrignani, Univ. Genova (rev: 9 Ottobre 2003) 1. Termodinamica

Ripasso sulla temperatura, i gas perfetti e il calore

approfondimento Corrente elettrica e circuiti in corrente continua

L H 2 O nelle cellule vegetali e

Pressione. Esempio. Definizione di pressione. Legge di Stevino. Pressione nei fluidi EQUILIBRIO E CONSERVAZIONE DELL ENERGIA NEI FLUIDI

Indice PREFAZIONE. Capitolo 5 LE LEGGI DEL MOTO DI NEWTON La terza legge di Newton 58

PRINCIPI DI TRASMISSIONE DEL CALORE

Sadi Carnot e le macchine termiche. Primi progetti : Giovanni Branca Un motore perpetuo. Prime macchine a vapore. Evoluzione

Transcript:

La fisica di Feynmann Termodinamica 3.1 TEORIA CINETICA Teoria cinetica dei gas Pressione Lavoro per comprimere un gas Compressione adiabatica Compressione della radiazione Temperatura Energia cinetica media di un gas Legge dei gas ideali Gradi di libertà Moto browniano Rumore di Johnson forza esercitata dagli atomi di un gas sulle pareti dw = -P dv PV = ( γ - 1 ) U compressione in cui non è aggiunta né sottratta energia termica P dv = -du per un gas monoatomico si ha γ = 5/3 PV 5/3 = costante data una stella molto calda si ha γ = 4/3 PV 4/3 = costante in due gas che hanno la stessa temperatura le energie cinetiche medie dei moti dei centri di massa sono uguali <Ec> = (3/2) k T (non dipende dal gas) In una direzione il valore medio dell energia è ½ kt P V = n R T n = numero di moli direzioni indipendenti per le quali l energia cinetica media di una oggetto formato da più atomi è kt/3 in un liquido piccole particelle si muovono in continuazione l energia cinetica media è: <Ec> = (3/2) kt, il cammino casuale è dato da: <R 2 > = 6 k T t/µ t = tempo, µ = resistenza al movimento del fluido rumore associato alle fluttuazioni termiche in un circuito elettrico risonante; il voltaggio che fluttua ai capi dell induttanza è: <VL 2 > = L ω0 2 k T la potenza P(ω) dω è indipendente dalla resistenza Meccanica statistica Meccanica statistica leggi della meccanica applicabili all equilibrio termico Distribuzione delle molecole data un atmosfera in equilibrio termico e priva di attriti, si ha: dn/dh = - ( mg / kt ) n la soluzione dell equazione è: n = n0 e -mgh/kt h = altezza, m = massa, n = densità (n0 = densità ad altezza nulla) Legge di Boltzmann se sulle molecole di un gas agisce una forza conservativa, si ha: n = cost. e -U/kT se la forza non è conservativa non si ha alcun equilibrio termico Distribuzione nello spazio dato un insieme di molecole che si attraggono, la probabilità di trovare le particelle in una determinata combinazione è: e - V(r ij )/kt a basse temperature aumenta la probabilità di trovare le molecole alla distanza di energia minima (i gas si riducono a liquidi e solidi) Distribuzione delle velocità dato un gas perfetto, la parte di molecole con velocità tra u e u+du è: f(u) du = C e -mu²/k2t du (non valido in relatività) f(p) dp = C e -E c /kt dp (valido in relatività) C = m/2πkt 1

APPLICAZIONI DELLA TEORIA CINETICA Evaporazione a T costante e all equilibrio vale: Ne = v R/Va e -W/kT n = densità molecolare, Va = volume molecolare, W = lavoro per trasportare una molecola dal liquido al gas, R = coefficiente di riflessione Ionizzazione termica dato un gas ionizzabile, vale: ne ni / na = e -W/kT / Va (equazione di ionizzazione di Saha) na = numero di atomi neutri, ne = numero di elettroni, ni = numero di ioni, W = energia di ionizzazione se la densità degli atomi diminuisce (o aumenta il volume) la frazione di elettroni e ioni aumenta (vedi gli ioni presenti nello spazio freddo tra le stelle) Cinetica chimica dati i composti A e B che si combinano nel composto AB, vale: na nb / nab = c e -W/kT (equazione approssimata) una reazione avviene ad una certa energia di attivazione (la velocità delle reazioni chimiche è molto sensibile alle condizioni esterne) DIFFUSIONE Numero di collisioni tra molecole N = T/τ (τ = tempo medio) la probabilità di non avere collisioni è: P(t) = e -τ /T le particelle che non hanno avuto collisioni sono: N(t) = N0 e -τ /T Cammino libero medio l = 1/( σ0 n0 ) Velocità di trasferimento Conduttività ionica Diffusione molecolare Conducibilità termica di un gas σ0 = sezione d urto, n0 = densità molecolare data una molecola sollecitata da una forza in un gas di fondo, si ha: v = F τ / m = µ F (m = massa della molecola, µ = mobilità) dati ioni in un gas tra due armature cariche si ha: corrente elettrica: I = [ µ q 2 ni (A/b) ] V A = area dell'armatura, b = distanza tra le armature, ni = ioni per unità di volume corrente: Jx = -D dna/dx coefficiente di diffusione: D = µ k T dna/dx = na F / ( k T ) κ = [ 1 / ( γ - 1 ) ] k v / σc è indipendente dalla densità 2

3.2 TERMODINAMICA Termodinamica determina le relazioni tra le proprietà dei materiali senza conoscere la struttura interna Leggi Prima legge Seconda legge Terza legge U = Q P V l energia si conserva; se si compie lavoro su un sistema e gli si cede calore, la sua energia interna aumenta del calore ricevuto e del lavoro fatto W = V P = Q ( T/T) - non è possibile prendere del calore ad una data temperatura e convertirlo in lavoro senza alcun cambiamento nel sistema o nei dintorni - non è possibile far fluire spontaneamente il calore da un corpo freddo ad uno caldo - l entropia di qualsiasi corpo allo zero assoluto è 0 (teorema del calore di Nerst) Ciclo di Carnot data una macchina ideale in cui tutti i processi sono reversibili costituita da un cilindro dotato di un pistone senza attrito contenente gas perfetto e due sorgenti di calore a temperature T1 e T2 il ciclo è composto da 4 fasi: calore scambiato temperatura 1 espansione isoterma immesso Q1 T1 2 espansione adiabatica - T1 T2 3 compressione isoterma estratto Q2 T2 4 compressione adiabatica - T2 T1 percorrendo il ciclo in una direzione P 1 si compie lavoro sul gas, percorrendolo 4 2 nell altra il gas compie lavoro su di noi W = P dv (area compresa tra le curve) 3 V Entropia calore ceduto ad una sorgente di T = 1 S = dq / T l entropia è una funzione di stato in ogni processo irreversibile l entropia totale aumenta Temperatura termodin. assoluta temperatura definita in modo tale che Q = S T è proporzionale alla temperatura cinetica Lavoro di una macchina reversibile S = Q1 / T1 = Q2 / T2 se una macchina è reversibile il lavoro non dipende dalla struttura della macchina stessa Rendimento di una macchina revers. W / Q1 = ( T1 T2 ) / T1 essendo T>0, il rendimento è <1 Entropia di un gas perfetto S(V,T) = N k [ ln V + (1/(γ-1)) ln T ] + a a = costante chimica che dipende dalla natura del gas Lavoro di una macchina reale nessuna macchina termica che prende il calore Q1 da una sorgente a T1 e cede il calore Q2 a una sorgente a T2 può fare più lavoro di una macchina reversibile 3

Variazione dell energia interna T e V variano: U = T ( U/ T )V + V ( U/ V )T Calore specifico CV = ( U/ T )V quantità di calore da somministrare ad una sostanza per innalzare la temperatura di un grado a volume costante Entalpia H = U + PV H = Q + V P Relazione fondamentale se T è costante, vale: ( U/ T )T = T ( P/ T )V P se V fisso aumentando T la pressione aumenta come ( P/ T )V Entropia e disordine se V aumenta T costante somministrando il calore ( U/ V )T se P è costante, vale: -( H/ P )T = T ( V/ T )P V (relazione utilizzata dai chimici) le leggi della meccanica sono reversibili (t e t sono soluzioni delle equazioni), le leggi fisiche sono irreversibili (è più probabile il passaggio da una disposizione ordinata ad una disordinata S = dq / T = N k ln V2/V1 l entropia misura il disordine: l universo procede verso il disordine APPLICAZIONI DELLA TERMODINAMICA Evaporazione nel processo di evaporazione, a T costante, vale: Equazione di Clausius-Clapeyron: ( Pvap/ T ) = L / [ T ( VG VL ] ) Pevap = tensione di vapore alla temperatura T L = calore necessario all evaporazione VG, VL = volumi di gas e liquido Fusione ( Pfus/ T )V = M / [ T ( VL VG ] ) Radiazione di corpo nero U/V = ( 4σ/c ) T 4 σ =costante non calcolabile con la termodinamica 4

3.3 3 CONDUZIONE DEL CALORE Flusso di calore Equazione del flusso di calore h = J/ a ef J = energia termica che attraversa l unità di tempo l elemento di superficie a; ef = versore unitario diretto come il flusso il suo modulo è la misura dell energia termica che fluisce per unità di tempo attraverso l unità di superficie perpendicolare al flusso h = -K T K = conduttività termica Flusso di calore attrav. una superficie flusso di h attraverso S = S h n da Legge di conservazione del calore Equazione di diffusione del calore se il calore si conserva vale: S h n da = -dq/dt -dq/dt = h (calore che lascia l unità di volume nell unità di tempo) se il flusso di calore è stazionario vale: h = s, da cui vale: ( K T ) = -s dt/dt = D 2 T D = K / cv (coefficiente di diffusione) 5