9.6 Struttura quaternaria



Documenti analoghi
Capitolo 7. La «sintesi neoclassica» e il modello IS-LM. 2. La curva IS

MACROECONOMIA A.A. 2014/2015

Ministero della Salute D.G. della programmazione sanitaria --- GLI ACC - L ANALISI DELLA VARIABILITÀ METODOLOGIA

Studio grafico-analitico di una funzioni reale in una variabile reale

Macchine. 5 Esercitazione 5

Lezione 10. L equilibrio del mercato finanziario: la struttura dei tassi d interesse

A. AUMENTO DELLA SPESA PUBBLICA FINANZIATO ESCLUSIVAMENTE TRAMITE INDEBITAMENTO

Soluzione esercizio Mountbatten

La retroazione negli amplificatori

Capitolo 3 Covarianza, correlazione, bestfit lineari e non lineari

Progetto Lauree Scientifiche. La corrente elettrica

Condensatori e resistenze

Metodi e Modelli per l Ottimizzazione Combinatoria Progetto: Metodo di soluzione basato su generazione di colonne

STATISTICA DESCRITTIVA - SCHEDA N. 5 REGRESSIONE LINEARE

Economie di scala, concorrenza imperfetta e commercio internazionale

Corso di Statistica (canale P-Z) A.A. 2009/10 Prof.ssa P. Vicard

Il modello markoviano per la rappresentazione del Sistema Bonus Malus. Prof. Cerchiara Rocco Roberto. Materiale e Riferimenti

Corso di laurea in Ingegneria Meccatronica. DINAMICI CA - 04 ModiStabilita

Relazione funzionale e statistica tra due variabili Modello di regressione lineare semplice Stima puntuale dei coefficienti di regressione

CAPITOLO IV CENNI SULLE MACCHINE SEQUENZIALI

* PROBABILITÀ - SCHEDA N. 2 LE VARIABILI ALEATORIE *

PARENTELA e CONSANGUINEITÀ di Dario Ravarro

Strutture deformabili torsionalmente: analisi in FaTA-E

Università degli Studi di Urbino Facoltà di Economia

Trigger di Schmitt. e +V t

3. Esercitazioni di Teoria delle code

LE FREQUENZE CUMULATE

Relazioni tra variabili: Correlazione e regressione lineare

Calcolo della caduta di tensione con il metodo vettoriale

LA COMPATIBILITA tra due misure:

PROCEDURA INFORMATIZZATA PER LA COMPENSAZIONE DELLE RETI DI LIVELLAZIONE. (Metodo delle Osservazioni Indirette) - 1 -

Valore attuale di una rendita. Valore attuale in Excel: funzione VA

RETI TELEMATICHE Lucidi delle Lezioni Capitolo VII

Corrente elettrica e circuiti

7. TERMODINAMICA RICHIAMI DI TEORIA

Fondamenti di meccanica classica: simmetrie e leggi di conservazione

Il diagramma PSICROMETRICO

Trasformazioni termodinamiche - I parte

Variabili statistiche - Sommario

Prova di verifica n.0 Elettronica I (26/2/2015)

TITOLO: L INCERTEZZA DI TARATURA DELLE MACCHINE PROVA MATERIALI (MPM)

NOTE DALLE LEZIONI DI STATISTICA MEDICA ED ESERCIZI CONFRONTO DI PIU MEDIE IL METODO DI ANALISI DELLA VARIANZA

Principi di ingegneria elettrica. Lezione 6 a. Analisi delle reti resistive

Programmazione e Controllo della Produzione. Analisi dei flussi

Ottimizzazione nella gestione dei progetti Capitolo 6 Project Scheduling con vincoli sulle risorse CARLO MANNINO

Introduzione al Machine Learning

Calibrazione. Lo strumento idealizzato

2. Le soluzioni elettrolitiche

Dai circuiti ai grafi

Norma UNI CEI ENV 13005: Guida all'espressione dell'incertezza di misura

Premessa essa sulle soluzioni

Leggere i dati da file

Lezione n. 10. Legge di Raoult Legge di Henry Soluzioni ideali Deviazioni dall idealit. idealità Convenzioni per le soluzioni reali

MODELLISTICA DI SISTEMI DINAMICI

Verifica termoigrometrica delle pareti

Analisi di mercurio in matrici solide mediante spettrometria di assorbimento atomico a vapori freddi

E. Il campo magnetico

CAPITOLO 3 Incertezza di misura Pagina 26

Il diagramma cartesiano

Transcript:

9.6 Struttura quaternara L'ultmo lvello strutturale é la struttura quaternara. Non per tutte le protene è defnble una struttura quaternara. Infatt l esstenza d una struttura quaternara é condzonata alla presenza d domn o subuntà struttural dstnt, dove l termne domno ndca una regone ben dentfcable della protena la cu struttura trdmensonale sa conservata (o n teora conservable ndpendentemente dalla presenza degl altr domn. In un prmo momento s era pensato che la dsposzone spazale de domn n una protena dovesse rspettare qualche regola d smmetra, ma c s é presto res conto che, quas sempre, le eventual smmetre nella dsposzone spazale de domn hanno un nteresse puramente descrttvo e non sono n apparenza legate a nessun ruolo funzonale. V è però una mportantssma propretà che può emergere solo se la protena é costtuta da pù d una subuntà, la cooperatvtà nell nterazone con l legante. Il prototpo delle protene cooperatve é l'emoglobna. Non voglamo qu descrvere n dettaglo l fenomeno e l modello matematco che lo descrve, ma c preme ctarlo perché é uno degl esemp pù effcac del fatto che modell matematc semplfcat possono descrvere le propretà essenzal d fenomen bologc molto complcat. L'effetto bologcamente rlevante della cooperatvtà é l fatto che l'affntà per l legante (l'ossgeno nel caso dell'emoglobna camba n modo drammatco n rsposta ad un cambamento conformazonale della protena. Il cambamento conformazonale dell ntera protena, che convolge coè tutte le subuntà, è modulato dal legame d una (o pù d una subuntà con l legante. Nel caso dell'emoglobna s osserva che lo scatto conformazonale provocato dal legame d un certo numero (da due a tre delle quattro subuntà con l legante determna un cambamento conformazonale (della struttura quaternara che provoca l'aumento dell'affntà per l legante delle subuntà non ancora legate d crca volte. Il fenomeno della cooperatvtà è quello che permette all emoglobna d funzonare n modo effcente come trasportatore d ossgeno da polmon a tessut. Il fatto che la struttura trdmensonale s conserv ndpendentemente dalla presenza degl altr domn é n alcun cas verfcable spermentalmente, come per esempo nel caso dell'emoglobna che, nella sua forma natva, é costtuta da quattro subuntà (domn, ma può esstere anche n forma monomerca. In altre crcostanze l'espermento (la separazone materale de domn non é possble, ma c sono dat oggettv che consentono d supporre la presenza d domn dstnt. A questo proposto può essere nteressante vstare un sto che contene una sorta d Banca Dat de domn http://pawsonlab.mshr.on.ca/html/bh-.html Sono dette operazon d smmetra quelle trasformazon spazal (rotazon, traslazon e rflesson o combnazon d queste che lascano l'oggetto mmutato. Sono noltre dette operazon d smmetra puntual quelle trasformazon spazal che, oltre a lascare l'oggetto mmutato, lascano almeno un punto dell'oggetto fermo. h fosse nteressato ad approfondre l problema può utlmente leggere l lavoro orgnale: J.Monod, J.Wyman and J.-P.hangeux 965, "On the nature of allosterc transtons: a plausble model." Journal of Molecular Bology, 88 8.

9.6. Il modello d Monod-Wymann-hangeux L emoglobna (Hb appartene alla classe degl enzm allosterc (allo=altro. on questo termne vengono ndcate quegl enzm che, oltre al sto d legame per l loro legante specfco (sto attvo, hanno uno o pù st d legame dstnt dal sto attvo per un legante che svolge l ruolo d regolatore dell attvtà enzmatca. Nella maggor parte de cas l legante allosterco è dverso dal legante del sto attvo. La cooperatvtà, che può percò essere consderata un tpo partcolare d allostera, emerge quando c sono st attv dstnt coscchè uno de st attv funzona da sto allosterco e l legame con l legante n uno de st attv regola l attvtà enzmatca degl altr: Il caso prototpco d questo comportamento è l Hb la cu attvtà enzmatca consste nel legare reversblmente molecole d ossgeno (O n quattro st dstnt, uno per ognuna della subuntà (domn d cu è costtuta la protena. Il legame con l O avvene va un atomo d Fe che s trova al centro d un gruppo prostetco (non proteco, l eme (ved Fgg. 9.5 e 9.6. Il comportamento cooperatvo è generalmente llustrato confrontando le curve d saturazone con l O dell Hb (a pù subuntà e del suo equvalente mono-subuntà, la Moglobna (Mb. Le due curve sono mostrate n Fg.9.??. Nell asse delle ordnate è rportata la saturazone frazonara Y che è l rapporto tra concentrazone d protena (o subuntà, nel caso dell Hb legata con O e concentrazone totale. In ascsse è rportata la pressone parzale d ossgeno, po. La curva d saturazone della Mb è rportata n grgo e quella dell Hb n nero. Nell Hb la cooperatvtà è postva nel senso che l legame n un sto aumenta l affntà degl altr st per l legante. Esstono anche cas d cooperatvtà negatva dove, vceversa, l legame del legante n un sto dmnusce l affntà degl altr st d legame. 6

Fgura??? La Mb è scelta come prototpo d protena con un sngolo domno e un sngolo sto d legame per l legante. La reazone d legame è la seguente Mb + O MbO Eq.??? qund la saturazone frazonara è defnta dal rapporto Y MbO MbO Mb Eq.??? dove le parentes quadre ndcato la concentrazone. Dalla reazone n Eq.??? s rcava anche la costante d equlbro MbO Mb O Eq.??? La concentrazone d O è proporzonale alla pressone parzale d ossgeno, po, qund MbO po Eq.??? Mb 6

Dalla??? s ha che Y Mb MbO po Eq.5??? che con facl passagg dventa Y po Eq.6??? po che è appunto l equazone d un perbole equlatera come mostrato dalla curva n grgo della Fg.???. La curva n nero che rporta l andamento della saturazone frazonara nel caso dell Hb è una sgmode. La sua forma generale è Y n n po Eq.7??? po con n>. Il sgnfcato d questo andamento è che a basse concentrazon la saturazone frazonara cresce lentamente all aumentare della pressone parzale d ossgeno. Ad un certo lvello d po la pendenza dventa pù rpda ndcando che la saturazone aumenta rapdamente n rsposta a pccol aument d pressone. Questo comportamento è quello che vene defnto cooperatvtà. Infatt esso può essere espresso dcendo che l affntà per l legante dventa molto pù alta quando la frazone d saturazone ha raggunto un certo lvello, quando coè, un cero numero d st sono saturat con l legante. on l modello d Monod-Wymann-hangeux (MW s resce a spegare l comportamento cooperatvo descrtto dall Eq.7??? e rappresentato n Fg.???. Il modello MW è un modello generale della cooperatvtà. Per prma l modello rchede che s dstngua tra due tp d untà struttural: promotero e subuntà. Mentre la subuntà concde con l domno (o la subuntà defnto sopra, con promotero s ntende ndcare l untà strutturale n cu sa presente un sto per ognuno de dvers lgand 5, qund un promotero può essere formato da pù subuntà. Il modello s basa sulle seguent potes:. promoter dentc occupano poszon strutturalmente equvalent nella protena, che equvale a dre che la protena ha almeno un asse d smmetra;. cascun promotero ha almeno un sto per cascuno de dvers lgand;. esstono almeno due stat conformazonal (strutture reversblmente accessbl alla protena per qual deve valere che n cascuno degl stat la smmetra d cu al punto è conservata 5 Essendoc qu lmtat all esempo dell Hb, non è probablmente suffcentemente charo cosa s ntenda. V sono molt cas (anche nell Hb è descrtto un caso d questo tpo n cu l sto allosterco è l sto d legame per un legante che non è l substrato naturale dell enzma. In questo caso, quando l legame del legante nel sto allosterco ha effetto sull affntà dell enzma per l propro substrato, s parla d effettore allosterco. Un tpco effettore allosterco per l Hb è l DPG (,-dphosphoglycerate. 6

l affntà per una dato legante può essere anche molto dversa ne due stat. l affntà per uno specfco legante dpende dallo stato conformazonale dell ntero enzma. Fgura???? Nel modello s dstngue anche l nterazone omotropca da quella eterotropca. S dce omotropca l nterazone che comporta che l affntà d legame per un legante sa nfluenzata da quanto legante dello stesso tpo è gà legato ( cooperatvtà. Mentre con nterazone etrotropca s ntende che l legame d un legante al suo specfco sto d legame abba effetto sull affntà d legame d un altro, dverso, legante nel suo, dverso, sto d legame 6. Per descrvere l modello MW con qualche maggor dettaglo prendamo l caso dell Hb. L Hb è composta d n= promoter. ascun promotero può esstere n due conformazon dverse che ndchamo con (relaxed e (tense. Perchè l sstema rspett la condzone ( del modello solo alcune combnazon d stat de sngol promoter sono permesse (ved Fg.???. S defnscono qund le costant d dssocazone mcroscopche della reazone d dssocazone del sngolo legante con l sngolo sto d legame, e rspettvamente per le due confgurazon relaxed e tense. Nella Fgura??? sono llustrate le reazon d 6 Un tpco effetto dell nterazone eterotropca è l cosddetto effetto Bohr (da hrstan Bohr, l padre d Nels che scoprì che l affntà per l O nell Hb dpendeva dal ph. S è po scoperto che questo effetto era dovuto all nterazone, n un sto specfco, degl on cloro con la protena. L effetto Bohr, ed effett ad esso analogh, provocano uno spostamento rgdo della sgmode d Fg.???. 65

dssocazone e defnte le relatve costant per la forma relaxed. on L abbamo ndcato l generco legante (O per l Hb e le parentes hanno lo stesso sgnfcato delle parentes quadre dell Eq.???. Per la forma tense le defnzon sono del tutto analoghe. S fa notare che abbamo mplctamente potzzato che st sano ndpendent perchè abbamo scrtto che la costante d dssocazone mcroscopca è sempre la stessa ndpendentemente dallo stato d occupazone degl altr st. S possono qund scrvere le seguent reazon d equlbro + L + L + L + L Eq.8??? + L + L + L + L dove con e abbamo ndcato l nseme d tutte le spece mcroscopche, ndstngubl, che hanno legant L legat rspettvamente nello stato e nello stato 7. Per una molecola, M, generca n una generca confgurazone ( o c saranno n! n, Eq.9???!( n! mod dstnt d dsporre legant n n st. Le costant d equlbro delle reazon equvalent a quelle d Eq. 7??? per una generca molecola M s possono scrvere le costant d equlbro macroscopche M K M M K M M K n M n L L L n Eq.??? 7 Se per esempo s consdera la prma reazone della Fg.??? è ovvo che c sono possbl reazon del tutto equvalent che corrspondono al legame della protena con una molecola d legante n uno de promoter equvalent. 66

Fgura??? e n generale K L M Eq.??? M dalla quale L M M Eq.??? K M L M Eq.??? K che sosttuendo la nella dventa L L M M KK Eq.??? Iterando l procedmento s ottene nfne M j L M Eq. 5??? K j La relazone tra costant mcroscopche e macroscopche é data, tenendo conto dell Eq.9???, dalla seguente espressone 67

K n, n, n!!( n!!( n! (!( n! n! (!( n! Eq.6??? prendamo adesso l esempo specfco dell Hb e qund le reazon d equlbro dell Eq. 8???, tenendo presente che nel rspetto dell potes (, assumamo che ne due stat conformazonal, e, le costant mcroscopche sano dverse e le ndcandole rspettvamente con e, supponamo che sa Eq. 7??? con = costante >, ovvero mponamo che la costante d dssocazone mcroscopca sa maggore per la subuntà nello stato che equvale ad mporre che l legante prefersca stare legato alla forma. ò premesso, utlzzamo leq.6??? per calcolare le costant macroscopche, per esempo nello stato. K n, n,!( n! (!( n!!(!!(! Eq. 8??? ed equvalentemente K ; K ; K Eq. 9??? enendo conto le reazon a snstra n Eq.8???, le 8 e 9 dventano L K L K L K L K Eq.??? e analoghe per. Defnamo ora le seguent due quanttà L ; Q Eq.??? dove con e abbamo ndcato la concentrazone d subuntà prve d legant ne due stat conformazonal e. scrvamo le relazon a destra nell Eq.??? utlzzando, la prma delle defnzon n Eq.??? 68

69 6 Eq.??? per scrvere le Equazon equvalent per la conformazone utlzzamo la Eq. 7??? e la seconda delle Eq.??? 6 Q Q Q Q L Q Eq.??? defnamo adesso la saturazone frazonara come segue L Y Eq.??? la somma al numeratore è la concentrazone totale d st occupat con un numero qualsas,, d legant n entramb gl stat conformazonal e la somma al numeratore è la concentrazone totale. Utlzzando le Eq.??? e???, scrvamo var termn dell Eq.??? n funzone d,, e Q 6 6 Q Q Eq.5??? La??? dventa Q Q Y L per n= Eq. 6??? che per n qualsas dventa n n n n L Q Q Y Eq. 7???

L cordamo che e Q e notamo che se Y L Eq. 8??? ovvero quando la concentrazone delle subuntà n confgurazone nello stato non legato tende a zero, che è anche la stuazone n cu le subuntà sono ndpendent o la protena è a sngola subuntà (come nella Mb, la curva d saturazone è un perbole. Vedamo come s comporta la funzone d Eq.6??? per alcun valor selezonat de parametr e nell esempo con n=. Supponamo che sa = e Q>> ; Eq. 9??? che equvale a dre che la subuntà s lega solo nello stato. La condzone Q dce che la protena nello stato non legato s trova, vceversa, prevalentemente (o quas esclusvamente n. L Eq. 6??? dventa Y L Eq.??? Q Vedamo n questa approssmazone come s comporta la funzone a vare concentrazon d legante L questa condzone corrsponde ad una bassa concentrazone d legante lbero e la??? dventa Y L Eq.??? Q ovvero l grafco d Q Y L n funzone d è una retta con una pccola pendenza par a L Q Eq.??? e la??? dventa 7

Y L ( Eq.??? Q Q Q Q Q samo n una regone, qund, n cu Y L vara rapdamente per pccole varazon d e d L. L Q che corrsponde ad un valore grande d L dove tutt st sono saturat con l legante Y Eq.??? L L S not che la pendenza della sgmode dpende, n ogn regone, dal valore Q. In partcolare la sgmoctà della curva cresce al crescere d Q. Vceversa la sgmoctà decresce ntanto che. assumendo l modello MW per la cooperatvtà prevede che l comportamento cooperatvo sa esaltato quando Q è grande e è pccolo, ovvero le subuntà cambano stato n modo concertato (assunzone ( d smmetra nel modello per cu la maggor parte della protena è nzalmente nello stato ( Q, mentre l essendo l legame avvene preferblmente con la protena n stato e, per la condzone d smmetra, tutte le subuntà (promoter scattano da a una volta avvenuto l legame. Nella Fg.??? 8 rportamo uno schema generale ( smbol hanno lo stesso sgnfcato d Fg.???. I trattegg azzurr (colonna all estrema snstra e colonna all estrema dentfcano due possbl percors d un modello alla MW. Ovvamente è consentto l salto da una all altra delle confgurazon nelle due colonne perchè rmane rspettata la condzone d smmetra mposta dal modello. Il tratteggo n rosso evdenza l modello cosddetto sequenzale dove l cambamento conformazonale, da (quadrato rosso a (cercho azzurro del sngolo promotero avvene solo e sempre ad opera del legame con l legante (L. 8 Da J.P.hangeux & S.J.Edelsten, Allosterc receptors after years 998 Neuron,, 959-98. 7

Le frecce n verde ndcano nvece un modello ntermedo tra due che è, pù o meno, quello descrtto da Perutz 9 per l Hb 9 M.F.Perutz Mechansm of cooperatvty and allosterc regulaton n protens, 989 Quart.ev.Bophys.,, 9-6. 7