4 FUNZIONE ESPONENZIALE E FUNZIONE LOGARITMO 4.0. Esponenziale. Nella prima sezione abbiamo definito le potenze con esponente reale. Vediamo ora in dettaglio le proprietà della funzione esponenziale a, a > 0, R. Proprietà 4. (Proprietà dell esponenziale). Siano, z R e a > 0. Allora (i) a 0 = 0. (ii) a > 0 R. (iii) a +z = a a z R. (iv) Se a >, allora: a < a z < z. (vi) Se 0 < a <, allora: a > a z < z. (v) Se a >, allora: (vii) Se 0 < a <, allora: lim = a = 0 e lim =+ a = +. lim = a = + e lim =+ a = 0. Esempio 4.2 Grafico di f() = 2 e g() = ( 2) = 2 = f( ). g() = 2 f() = 2 La funzione f() = a, con a >, gode delle seguenti proprietà. f ha come dominio tutta la retta reale. Intersezioni con gli assi: punto di coordinate (0,). f() > 0 R. f è strettamente crescente su R. lim = a = 0 e lim =+ a = +. 38
La funzione f() = a, con 0 < a <, gode delle seguenti proprietà. f ha come dominio tutta la retta reale. Intersezioni con gli assi: punto di coordinate (0,). f() > 0 R. f è strettamente decrescente su R. lim =+ a = 0 e lim = a = +. Proprietà 4.3 (Altre proprietà delle potenze). Siano a, b > 0,, R. Allora (i) (a b) = a b. (ii) (a ) = a. (iii) a + = a a R. (iv) a < b a < b > 0 (v) a > b a < b < 0 Esempio 4.4 Il disegno sottostante illustra le proprietà (iv) e (v) con a = 2 e b = 3. f() = 2 g() = 3 Esercizio 4.5 Risolvere la disequazione: 3 >. Ricordiamo che = 3 0, quindi 3 > 3 > 3 0 > 0 < 0 39
4. Numero e di Nepero Definizione 4.6 Definiamo il numero e di Nepero mediante ( e = lim + n. n + n) Osserviamo che il limite nella definizione presenta la forma di indecisione. Inoltre l esistenza del limite è garantita dal fatto (non ovvio) che la successione n ( + n) n è monotona crescente e limitata, quindi il limite esiste ed è finito (si veda per esempio Bramanti, Pagani, Salsa, MATEMATICA Calcolo infinitesimale e algebra lineare, Zanichelli). il numero e di Nepero è irrazionale, ovvero ha infinite cifre dopo la virgola. Una prima approssimazione di e è la seguente: e = 2, 78... Ricordiamo la definizione di k! con k intero non negativo. Abbiamo 0! = k! = k (k ) (k 2) (k 3) 3 2 Si dimostra che In particolare e = + k=0 e = + k=0 k k! R. k! = + + 2 + 6 + 24 + Questa espressione permette di calcolare valori approssimati di e. Esempio 4.7 Grafico di f() = e e g() = e. g() = e f() = e 40
4.2 Logaritmo. La funzione logaritmo è definita come la funzione inversa della funzione esponenziale. Più precisamente se a > 0 e a, allora il logaritmo in base a di > 0 è il numero reale dato da: = log a a =. In altre parole = log a è l esponente da dare alla base a per ottenere l argomento del logaritmo. Per esempio log 2 8 = 3, infatti 2 3 = 8. In generale dalla definizione segue log a a =. Proprietà 4.8 (Proprietà del logaritmo). Siano, z > 0, a > 0 e a. Allora (i) a log a = ; (ii) log a = 0; (iii) log a a = ; (iv) log a (z) = log a + log a z; (v) log a ( β ) = β log a ; (vi) log a z = log a log a z; (vii) log a = log a ; (viii) log a = log b log b a, b > 0 e b. Dimostrazione. (i) L uguaglianza a log a = segue direttamente dalla definizione; (ii) log a = a = = 0. (iii) log a a = a = a =. (iv) Dalla (i) otteniamo: log a (z) = log a +log a z z = a log a (z) = a log a +log a z = a log a a log a z = z. (v) Dalla (i) otteniamo: log a ( β ) = β log a a log a (β) = a β log a a log a (β) = ( a log a ) β ( β ) = () β ; (vi) Dalla (iv) e dalla (v) otteniamo: log a z = log a z = log a + log a z = log a log a z; (vii) Dalla (i) otteniamo: log a = log alog a = a log ( ) a a = a log a ( = ) log a a = ; (viii) Dalla (i) otteniamo: log a = log b log b a log b = log b a log a b log b = b log b a log a = ( b log b a) log a = a log a. 4
Esempio 4.9 Grafico di f() = log a e g() = log = f(). Nel disegno abbiamo preso a = 2. Come a osservato nella sottosezione??, il grafico di f() = log a è simmetrico al grafico di f () = a rispetto alla bisettrice di equazione =. f() = log a g() = log a Definizione 4.0 La funzione f() = ln = log e prende il nome di logaritmo naturale. La funzione f() = log a, con a > (quindi in particolare f() = ln), gode delle seguenti proprietà. Il dominio di f è la semiretta positiva (0, + ). Intersezioni con gli assi: punto di coordinate (,0). f() > 0 per > 0 e f() < 0 per 0 < <. f è strettamente crescente su R, ovvero: log a < log a z < z. lim 0 + log a = e lim + log a = +. La retta di equazione = 0 è un asintoto verticale. La funzione f() = log b, con 0 < b <, gode delle seguenti proprietà. Il dominio di f è la semiretta positiva (0, + ). Intersezioni con gli assi: punto di coordinate (,0). 42
f() > 0 per 0 < < e f() < 0 per > 0. f è strettamente decrescente su R, ovvero: log a < log a z > z. lim 0 + log a = + e lim + log a =. La retta di equazione = 0 è un asintoto verticale. Esempio 4. Risolvere la disequazione ln() > 3. Essendo 3 = ln(e 3 ) ed essendo f() = ln() una funzione strettamente crescente, otteniamo: ln() > 3 ln() > ln(e 3 ) ln() > ln(e 3 ) > e 3. Esempio 4.2 Risolvere la disequazione log 2 < 3. Essendo 3 = log 2(2 3) = log 2 ( 3 2 ) ed essendo f() = log 2 una funzione strettamente crescente, otteniamo: log 2 < 3 log 2 < log 2 ( 3 2 ) 0 < < 3 2. = log 2 3 2 = 3 43