Geometria Anali-ca. DOCENTE: Vincenzo Pappalardo MATERIA: Matematica LA PARABOLA

Documenti analoghi
Geometria Anali-ca. DOCENTE: Vincenzo Pappalardo MATERIA: Matematica L ELLISSE

Geometria Anali-ca. DOCENTE: Vincenzo Pappalardo MATERIA: Matematica L IPERBOLE

LA PARABOLA E LA SUA EQUAZIONE

La parabola terza parte Sintesi

1. conoscere le nozioni fondamentali della geometria analitica del piano e dello spazio

Unità Didattica N 9 : La parabola

CORSI I.D.E.I. - LA PARABOLA CLASSI QUARTE Prof. E. Modica

Corso di Matematica II

Ellisse. Come fa un giardiniere a creare un aiuola di forma ellittica?

Le coniche retta generatrice

Il punto di intersezione degli assi coordinati prende il nome di origine O degli assi

Note di geometria analitica nel piano

Le coniche: circonferenza, parabola, ellisse e iperbole.

x = x. Si ha quindi: Macerata 6 marzo 2015 classe 3M COMPITO DI MATEMATICA SOLUZIONE QUESITO 1 Considera il fascio di parabole di equazione: ( )

[ RITORNA ALLE DOMANDE] 2) Definisci la parabola come luogo geometrico. 1) Che cos è una conica?

PIANO CARTESIANO E RETTA

Lezione 6 Richiami di Geometria Analitica

Geometria analitica del piano

RELAZIONI e CORRISPONDENZE

LE CONICHE. CIRCONFERENZA ELLISSE PARABOLA IPERBOLE Un po di storia. Con materiale liberamente scaricabile da Internet.

Mutue posizioni della parabola con gli assi cartesiani

Equazione cartesiana della parabola con asse di simmetria parallelo all'asse delle ordinate Siano F(x F; y

Matematica Lezione 6

Esercizi riepilogativi sulle coniche verso l esame di stato

Analisi Matematica 1 e Matematica 1 Geometria Analitica: Coniche

Quaderno per il recupero del debito MATEMATICA ANNO SCOLASTICO 2016/2017 Prof.ssa Migliaccio Gabriella CLASSE III

RIPASSO E APPROFONDIMENTO DI ARGOMENTI DEL TERZO ANNO

f(x) = sin cos α = k2 2 k

MATEMATICA LA PARABOLA GSCATULLO

Punti nel piano cartesiano

MATEMATICA LA CIRCONFERENZA GSCATULLO

Una circonferenza e una parabola sono disegnate nel piano cartesiano. La circonferenza ha centro nel punto

Par_CircoRiassunto2.notebook. February 27, Conoscenza e comprensione pag. 20 LA PARABOLA

EQUAZIONE DELLA RETTA

Formulario di Geometria Analitica a.a

Un fascio di coniche è determinato da una qualsiasi coppia di sue coniche distinte.

Il sistema di riferimento cartesiano

Corso di Matematica B - Ingegneria Informatica Testi di Esercizi. A1. Siano u, v, w vettori. Quali tra le seguenti operazioni hanno senso?

Condizione di allineamento di tre punti

GEOMETRIA ANALITICA

Fissiamo nel piano un sistema di riferimento cartesiano ortogonale O, x, y, u.

(x B x A, y B y A ) = (4, 2) ha modulo

LA PARABOLA. Prof. Walter Pugliese

1. (Da Medicina e Odontoiatria 2012) Determinare l'area del triangolo che ha come vertici i punti (0,0), (0,1), (13,12) del piano cartesiano:

CORSO ZERO DI MATEMATICA

Precorso di Matematica

1 Geometria analitica nel piano

LA PARABOLA. Parabola con asse di simmetria coincidente con l asse y e passante per l origine. Equazione canonica Vertice V ( 0,0) Fuoco

Nel caso particolare in cui il vertice si trovi nell'origine, la parabola assume la forma: y ˆ ax 2.

Corso di Geometria BIAR, BSIR Esercizi 10: soluzioni

LA CIRCONFERENZA La circonferenza è il luogo geometrico dei punti equidistanti da un punto C, detto centro.

Fissiamo nel piano un sistema di riferimento cartesiano ortogonale O, x, y, u.

Geometria analitica piana

GEOMETRIA LINEARE E CONICHE - GIUGNO Nello spazio ordinario, assegnato un riferimento ortonormale si considerino le rette: x = z 2 y = z

Macerata 24 marzo 2015 classe 3M COMPITO DI RECUPERO ASSENTI. k <, mentre se. x = e. x = che sono le soluzioni dell equazione, 3 9

Appunti di geometria analitica: Parte n.1 Retta,circonferenza,parabola

Esercizi svolti sulla parabola

CLASSE 3^ A LICEO SCIENTIFICO 31 Agosto 2015 Recupero MATEMATICA

il discriminante uguale a zero; sviluppando i calcoli si ottiene che deve essere

La circonferenza nel piano cartesiano

Circonferenza. Domande, problemi, esercizi. 1) Scrivi un equazione per la circonferenza del disegno

ax 2 +bx+c è anche il trinomio che compare al I membro nelle equazioni di

b) Ricava l equazione della retta che passa per A e che è parallela all asse delle ascisse

Testi verifiche 3 C 3 I a. s. 2008/2009

Geometria Analitica Domande e Risposte

Liceo Scientifico Severi salerno

Verifica del 8 febbraio 2018

GEOMETRIA ANALITICA NELLO SPAZIO (3D Geometry)

y = [Sol. y 2x = 4x Verifica n.1

c) Determina per quali valori di k il segmento BC ha misura 2. 3) Ricava l equazione della spezzata rappresentata in figura

Svolgimento degli esercizi sulla circonferenza

CLASSE 3^ A LICEO SCIENTIFICO 25 Febbraio 2015 Geometria analitica: la parabola (recupero per assenti)

GEOMETRIA ANALITICA 2

Capitolo 2. Cenni di geometria analitica nel piano

SYLLABUS DI GEOMETRIA ANALITICA 3A DON BOSCO

Geometria Analitica Domande, Risposte & Esercizi

Esercizi geometria analitica nel piano. Corso di Laurea in Informatica A.A. Docente: Andrea Loi. Correzione

Studia il seguente fascio di parabole: 3= 1. Determiniamo la forma canonica: 2. Determiniamo le coordinate dei vertici al variare del parametro a :

Verifiche anno scolastico 2009/2010 Classi 3 C 3 H

Compito di matematica Classe III ASA 23 aprile 2015

Corso di Geometria, a.a Ing. Informatica e Automatica Esercizi VI: soluzioni

Corso di Geometria, a.a Ing. Informatica e Automatica Esercizi VII: soluzioni

Coniche in forma generale

ESERCITAZIONE 9 : FUNZIONI QUADRATICHE

PROGRAMMA SVOLTO E INDICAZIONI LAVORO ESTIVO. a. s CLASSE 3Cs. Insegnante: prof.ssa Franca TORCHIA Disciplina: MATEMATICA

Equazione implicita della circonferenza. b= 2 c= 2 2 r 2

COMPLEMENTI DEL CORSO DI MATEMATICA Anno Accademico 2012/2013 Prof. Francesca Visentin

GEOMETRIA ANALITICA: LE CONICHE

BO CA x 3 BO : OA PC : CA PC OA 2. 3 x 3 1 MD MO PC Applichiamo il teorema di Pitagora al triangolo MDP. (2) y 7x 22x 19

Appunti ed esercizi sulle coniche

1. LA GEOMETRIA ANALITICA

Ricordiamo. 1. Tra le equazioni delle seguenti rette individua e disegna quelle parallele all asse delle ascisse:

Tutti gli esercizi della verifica di Ottobre più altri

1 Introduzione alla geometria analitica

Marco Martini. 18 March Definiamo l ellisse come il luogo geometrico dei punti del piano per i quali è costante

Ripasso Formule sulle parabole:

Esercizi e problemi sulla parabola

LA CIRCONFERENZA E LA SUA EQUAZIONE

Liceo Scientifico Michelangelo - Forte dei Marmi. Esercizi sulla circonferenza svolti - Classe Terza

determinare le coordinate di P ricordando la relazione che permette di calcolare le coordinate del punto medio di un segmento si

Transcript:

Geometria Anali-ca DOCENTE: Vincenzo Pappalardo MATERIA: Matematica LA PARABOLA

INTRODUZIONE La parabola fa parte di un insieme di curve (circonferenza, ellisse, iperbole) chiamate coniche, perché si possono ottenere tagliando un cono con un piano. Consideriamo un cono di asse r con angolo al vertice 2β. Sezioniamo la superficie del cono con un piano che formi con l asse del cono un angolo α=β. La figura che si ottiene dall intersezione è una parabola.

1. LA PARABOLA E LA SUA EQUAZIONE DEFINIZIONE Scegliamo sul piano un punto F e una retta d. Possiamo tracciare sul piano i punti equidistanti da F e da d. Il luogo geometrico di ques- pun- è de7o parabola.

Il punto F e la retta d sono detti, rispettivamente, fuoco e direttrice della parabola. La retta passante per il fuoco e perpendicolare alla direttrice si chiama asse della parabola. Il punto V in cui la parabola interseca il suo asse è detto vertice della parabola.

Determiniamo l equazione della parabola con asse coincidente con l asse y e vertice nell origine degli assi cartesiani. Fissiamo il fuoco nel punto F(0;f) e la direttrice nella retta d di equazione y = - f Indichiamo con P(x;y) un punto generico equidistante da F e da d: PF = PH x 2 + (y f ) 2 = y + f x 2 + (y f ) 2 = (y + f ) 2 x 2 4 fy = 0 y = 1 4 f x2 Posto a = 1/4f, l equazione precedente diventa:

Equazione della parabola con vertice nell origine e asse verticale: y=ax 2 Coordinate del fuoco: Equazione della direttrice:

a > 0 y = ax 2 è posi0va o nulla la distanza focale è f > 0 F ha ordinata posi0va a < 0 y = ax 2 è nega0va o nulla la distanza focale è f < 0 F ha ordinata nega0va Concavità rivolta verso l alto Concavità rivolta verso il basso.

Come si comporta l apertura della parabola al variare del coefficiente a? a = a = a = 2 Per a > 0, all aumentare di a diminuisce l apertura della parabola.

Ø Equazione di una parabola generica con asse verticale Ci servono alcuni elementi sulle trasformazioni geometriche DEFINIZIONE Una trasformazione geometrica nel piano è una corrispondenza biunivoca che associa a ogni punto del piano uno e un solo punto del piano stesso. y O x ESEMPIO P (2; 1) P' (6; -2)

Le isometrie sono tutte le trasformazioni (movimenti, spostamenti) che mantengono inalterate le figure, più precisamente che mantengono inalterate le caratteristiche misurabili (la lunghezza dei lati, l'ampiezza degli angoli). Una traslazione è una isometria di equazioni: Le equazioni permettono di trovare le coordinate di un punto P (x ;y ) note quelle del punto P(x;y).

ESEMPIO Ogni punto viene traslato aumentando di 1 unità la sua ascissa e di 3 unità la sua ordinata. I segmenti orientati AA, BB, CC sono tutti equipollenti e si chiamano vettori.

ESEMPIO Data la funzione (parabola) y = 4x 2 trasliamo il suo grafico secondo il vettore y = 4(x 2) 2 +1 y = 4x 2 16x +17

Generalizziamo: La trasformazione: trasla i punti del piano. Sotto questa trasformazione, la parabola di equazione y = ax 2 diventa: y y V = a(x x V ) 2 In particolare, le coordinate del vertice diventano: V(x V ; y V )

Esplicitiamo y, svolgiamo i calcoli e ordiniamo: EQUAZIONE DELLA PARABOLA CON ASSE PARALLELO ALL ASSE Y y = ax 2 + bx + c

Ø Alcuni casi particolari b = 0 L equazione diventa: y = ax 2 + c c = 0 L equazione diventa: y = ax 2 + bx b = 0, c = 0 L equazione diventa: y = ax 2 La parabola ha ver-ce V(0; c) e il suo asse di simmetria è l asse y. La parabola passa per l origine O. La parabola ha il ver-ce nell origine O.

Ø Equazione di una parabola generica con asse orizzontale Simmetria rispe7o alla bise7rice y = x Ci servono alcuni elementi sulle trasformazioni geometriche, in particolare sulla simmetria.

Ogni parabola con asse parallelo all asse x si può ottenere dalla simmetria di una parabola con asse parallelo all asse y rispetto alla bisettrice y = x. Applichiamo le equazioni della simmetria: all equazione della parabola y=ax 2 +bx+c. In sostanza, sostituendo la variabile x con la variabile y, si ottiene:

EQUAZIONE DELLA PARABOLA CON ASSE PARALLELO ALL ASSE X x = ay 2 + by + c

ESERCIZIO

2. LA POSIZIONE DI UNA RETTA RISPETTO A UNA PARABOLA Per studiare la posizione di una retta rispetto a una parabola, dobbiamo determinare quante sono le soluzioni del seguente sistema: y = ax 2 + bx + c y = mx + q

ESERCIZI

3. LE RETTE TANGENTI A UNA PARABOLA Dato un punto P=(x 0 ;y 0 ) e una parabola qualsiasi, si possono presentare i seguenti tre casi: Per determinare le equazioni delle eventuali rette tangenti, è possibile seguire i seguenti metodi.

q Metodo generale, valido per tutte le coniche (circonferenza, ellisse, parabola, iperbole) METODO DEL DISCRIMINANTE NULLO Δ = 0 Determinare le equazioni delle rette tangenti alla parabola di equazione y = x 2 2 condotte dal punto P(1;-5). 1. Si scrive il sistema formato dall equazione della parabola e quella del fascio di rette passanti per P: " y = x 2 2 # $ y+5 = m(x 1)

2. Metodo di sostituzione: x 2 mx + m + 3 = 0 3. Calcoliamo Δ: Δ = m 2 4m 12 4. Poniamo la condizione di tangenza Δ=0, in quanto, affinchè le rette (o la retta) per P siano tangenti (o tangente) alla parabola, è necessario che l equazione risolvente ammetta due soluzioni coincidenti: Δ = 0 m 2 4m 12 = 0

Risolvendo l equazione di 2 grado rispetto a m, otteniamo le seguenti soluzioni: m 1 = 2 m 2 = 6 5. In definitiva, ci sono due rette tangenti alla parabola condotte dal punto P. Le equazioni sono: t 1 y = 2x 3 t 2 y = 6x 11

METODO DELLA FORMULA DI SDOPPIAMENTO Si applica solo se il punto P=(x 0 ;y 0 ) appartiene alla parabola y=ax 2 +bx+c Formula dello sdoppiamento y + y 0 2 = ax 0 x + b x + x 0 2 + c

IL SEGMENTO PARABOLICO Se una retta è secante a una parabola nei punti A e B, il segmento AB e l arco di parabola AB delimitano una parte di piano detta segmento parabolico. Tracciamo la retta parallela ad AB e tangente alla parabola, e consideriamo su di essa le proiezioni A e B di A e B. Si dimostra che: l area del segmento parabolico è uguale a 2/3 dell area del rettangolo AA B B.

4. CONDIZIONI PER DETERMINARE L EQUAZIONE DI UNA PARABOLA Per poter determinare l equazione di una parabola y=ax 2 +b+c occorre calcolare i tre coefficienti a,b,c presenti in essa. Pertanto il problema è: trovare tre condizioni tra loro indipendenti tali da tradurle in tre equazioni nelle tre incognite a,b,c.

Ecco alcuni casi: 1. Sono note le coordinate del vertice (due condizioni) e del fuoco (una condizione); 2. Sono note le coordinate del vertice o del fuoco (due condizioni) e l equazione della direttrice (una condizione); 3. La parabola passa per tre punti non allineati (una condizione per ogni punto); 4. La parabola passa per due punti (due condizioni) ed è nota l equazione dell asse (una condizione); 5. La parabola passa per un punto (una condizione) e si conosce il vertice o il fuoco (due condizioni); 6. La parabola è tangente a una retta (una condizione) e passa per due punti (due condizioni).

5. FASCI DI PARABOLE Date due parabole ϒ e ϒ, di equazioni: ϒ: y-ax 2 -bx-c=0 e ϒ : y-a x 2 -b x-c =0 si chiama fascio di parabole definito da ϒ e ϒ (generatrici del fascio), l insieme di ϒ e di tutte le parabole rappresentate dall equazione: Equazione fascio di parabole y ax 2 bx c + k(y a" x 2 b" x c ") = 0 Forma esplicita y = a + k a" 1+ k x2 + b + k b" 1+ k x + c + k c" 1+ k con k R

Ø STUDIO DI UN FASCIO DI PARABOLE Studiare un fascio di parabole vuol dire descriverne le caratteristiche. In particolare determinare: 1. Le generatrici 2. I punti base 3. Le parabole degeneri I casi possibili sono:

Procedimento Studiare il seguente fascio di parabole: y = -(k+2)x 2 x + k-1

1. Le generatrici Si riscrive in forma implicita l equazione del fascio e si raccoglie rispetto al parametro k: y + 2x 2 + x + 1 + k(x 2-1) = 0 Le equazioni delle due generatrici si ottengono una per k=0 e l altra uguagliando a zero l espressione che è moltiplicata per k (parabola degenere, ossia coppia di rette): ϒ: y + 2x 2 + x + 1 = 0 è y = -2x 2 x 1 ϒ : x 2 1 = 0 è x = 1 x = -1

2. Punti base Si risolve il sistema formato dalle equazioni delle due generatrici: " $ y = 2x 2 x 1 # %$ x 2 1= 0 " # x =1 % y = 4 e " x = 1 # % y = 2 I punti base sono due A=(1;-4) e B=(-1;-2), si tratta di un fascio di parabole secanti.

3. Parabole degeneri Sono rette che devono passare per gli eventuali punti base. Si ottengono: a) uguagliando a zero il coefficiente di x 2 (se dipende dal parametro k); la retta che si ottiene è parallela all asse x o non è parallela agli cartesiani; b) uguagliando a zero il coefficiente di y (se dipende dal parametro k); si ottiene sempre una retta o una coppia di rette parallele all asse y. Nel nostro esempio: y = -(k+2)x 2 x + k-1 è -(k+2) = 0 è k = -2 y = -x 3 è parabola degenere

4. Disegno del fascio di parabole Coordinate del vertice: " V = $ # 1 2(k + 2) ; 4k 2 + 4k 7 4(k + 2) % ' & Le parabole hanno il vertice variabile e quindi anche l asse di simmetria è variabile. Concavità: " se k < 2 le parabole hannoconcavità versol'alto $ # se k > 2 le parabole hanno concavità versoil basso $ % se k = 2 sihala paraboladegenere, ossialarettadiequazione y = x 3

Disegniamo qualche parabola del fascio, attribuendo alcuni valori a k:

Ø TROVARE L EQUAZIONE DI UN FASCIO DI PARABOLE Si deve scrivere la combinazione lineare delle equazioni di due parabole qualsiasi del fascio, prese come generatrici. Tali equazioni possono essere anche quelle delle parabole degeneri. Scrivere l equazione del fascio di parabole passanti per i punti A=(2;1) e B=(4;2)

A e B sono i punti base del fascio. Scriviamo le equazioni delle parabole degeneri, cioè la retta AB e la coppia di rette parallele all asse y passanti per A e B: γ 1 : y 1 2 1 = x 2 4 2 2y x = 0 γ 2 : (x 2)(x 4) = 0 Equazione del fascio di parabole: 2y x + k(x 2)(x 4) = 0

In generale possiamo distinguere i seguenti casi: ü Fasci di parabole per due punti distinti Dati i punti distinti A=(x A ;y A ) e B=(x B ;y B ) e indicata con y = mx + q l equazione della retta AB, si dimostra che l equazione: y = mx + q + k(x x A )(x x B ) rappresenta un fascio di parabole passanti per i punti base A e B.

ü Fasci di parabole tangenti in un punto a una retta data Dato il punto T=(x T ;y T ) appartenente alla retta r: y=mx+q, si dimostra che l equazione: y = mx + q + k(x x T ) 2 rappresenta un fascio di parabole tangenti in T alla retta r.

ESERCIZI INTEGRATIVI