Fondamenti di Fisica Matematica: Secondo parziale Cognome e nome:...matricola:... es.1 es.2 es.3 es.4 es.5 somma

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Fondamenti di Fisica Matematica: Secondo parziale Cognome e nome:...matricola:... es.1 es.2 es.3 es.4 es.5 somma"

Transcript

1 Fondamenti di Fisica Matematica: Secondo parziale Cognome e nome: matricola: es. es. es.3 es.4 es.5 somma Voto: es.+es.+es.3+max(es.4,es.5). Discutere la risoluzione numerica, mediante il metodo delle differenze finite, del seguente problema differenziale: u t = u x 3 u, x 4, t 0, x u(, t) =, u(4, t) =, u(x, 0) = (x + ), u(x, 0) = 4. 3 t Discutere le caratteristiche del sistema lineare ottenuto.. Discutere la risoluzione numerica, mediante il metodo degli elementi finiti, del seguente problema differenziale: u t = (x u ) + x u x, t 0, x 3, u(, t) = 0, u(3, t) = 0, u(x, 0) = x. Discutere le caratteristiche del sistema lineare ottenuto. 3. Discutere la risoluzione numerica, mediante il metodo degli elementi finiti, del seguente problema differenziale: (x + y ] u) + xyu = f, (x, y) = (, 3) (, 5), u = 0. Discutere le caratteristiche del sistema lineare ottenuto. Si potrà far iniziare la discussione partendo dalla seguente formulazione variazionale: rovare u H0() tale che per ogni ϕ H0() x + y ] u ϕ + xyuϕ ] dxdy = fϕ dxdy.

2 4. Per risolvere l equazione z = w nel piano complesso per w 0, poniamo z = x + iy e w = u + iv per x, y, u, v R e scriviamo z = w nella forma ( ) ( ) ( ) x def x f = y u 0 =. y xy v 0 Indicare come si risolve tale equazione mediante il metodo di Newton, specificando la scelta iniziale (x 0, y 0 ) che garantisce la convergenza. 5. Applicare il metodo di Newton per calcolare gli zeri,, 3 dell equazione x 3 6x + x 6 = (x )(x )(x 3) = 0. Discutere, per il calcolo di ciascuno dei tre zeri, lo schema di iterazione, la scelta di x 0 che garantisce la convergenza, e la velocità della convergenza.

3 SOLUZIONI:. Siano h = 3/(n + ), k = /(m + ), x i = + ih, t j = jk. Secondo lo schema dei sette punti si ha: u i,j+ u i,j + u i,j = ui+,j+ u i,j+ + u i,j+ + u ] i+,j u i,j + u i,j k h h 3 ui+,j+ u i,j+ + u ] i+,j u i,j, h h dove Inoltre, u 0,j =, u n+,j =, u i,0 = 3 (x i + ) = + ih 3. (i,j+) (i,j+) (i+,j+) (i,j) (i,j ) (i,j ) (i+,j ) ] u u i, u i,0 + k t u u i,0 + k t = + ih 3 + 4k k. ] (x i, 0) + u k (x t i, 0) ] (x i, 0) + ui+,0 u i,0 + u i,0 k 3 u i+,0 u i,0 h h ] Spostando tutti i termini non omogeni a destra e gli altri termini a sinistra, si ha: ( h + ) ( u k i,j+ h + 3 ) ( u i+,j+ 4h h 3 ) u i,j+ = b i,j+, 4h

4 dove b i,j+ è nota (per i =,,..., n). ale equazione è da risolvere successivamente per j =,,..., m. La matrice del sistema lineare è tridiagonale con elementi diagonali positivi. ale matrice è strettamente diagonalmente dominante se 0 < 3 4h h, cioè, se 0 < h ; cioè, se n = 4, 5, 6, Scegliamo i nodi = x 0 < x <... < x n < x n+ = 3, non necessariamente equidistanti. Si definisca lo spline 0, x x i, x x i x φ i (x) = i x i, x i x x i, x i+ x x i+ x i, x i x x i+, 0, x i+ x 3. In forma variazionale bisogna trovare (, t) H0(, 3), dipendente dal tempo t R +, tale che per ogni ϕ H0(, 3) si ha: d dt u(x, t)ϕ(x) dx = xux (x, t)ϕ (x) + x u(x, t)ϕ(x) ] 3 dx x ϕ(x) dx, dove u(x, 0)ϕ(x) dx = x ϕ(x) dx. Ponendo n u(x, t) = c j (t)φ j (x), ϕ(x) = φ i (x), j= arriviamo al sistema di equazioni differenziali ordinarie c (t) = A c(t) + b, dove A ij = b i = c i (0) = xφ i (x)φ j(x) + x φ i (x)φ j (x) ] dx, x φ i (x) dx, xφ i (x) dx.

5 Allora (A c, c) = n x c i φ i(x) i= n + x c i φ i (x) dx 0 qualunque sia il vettore colonna c. Inoltre, se A c = 0, allora (usando x ), 3 n c i φ i (x) dx = 0 e quindi i= i= n c i φ i (x) = 0, x 3. i= Sostituendo x = x j otteniamo c =... = c n = 0. Di conseguenza, A è una matrices reale, simmetrica e tridiagonale con autovalori positivi. Quindi c(t) = e ta c(0) + e ta I n ] A b. 3. Scegliamo = x 0 < x <... < x n < x n+ = 3 e = y 0 < y <... < y m < y m+ = 5, non necessariamente equidistanti. Per ciascun nodo interno (x i, y j ) (i =,..., n, j =,..., m) definiamo la funzione spline φ (i,j) (x, y) = x x i x i x i, (x, y), y y j y j y j, (x, y), y y j y j y j + x i x x i+ x i, (x, y) 3, x i+ x x i+ x i, (x, y) 4, y j+ y y j+ y j, (x, y) 5, y j+ y y j+ y j + x x i x i x i, (x, y) 6, 0, (x, y), 3], 5] \ 6 σ= σ. Poi enumeriamo i nodi in modo lessicografico: x s = (x i, y j ), s = (j )n + i, i =,..., n, j =,..., m. In tal caso, φ s (x) = φ (i,j) (x, y), s =,,..., mn,

6 x=x i x=x i+ y=y j+ x=x i y=y j y=y j dove φ s (x r ) = δ r,s per r, s =,,..., mn. Ponendo u = mn r= c rφ r e ϕ = φ s, risulta il sistema lineare Ac = b, dove ( ] A sr = x + y ] φ s φ r + xyφ s φ r dxdy, b s = fφ s dxdy. Poichè (Ac, c) = x + y mn mn ] c s φ s + xy s= s= c s φ s dxdy 0, la matrice A è reale, simmetrica e sparsa con autovalori non negativi. Se Ac = 0, allora mn (Ac, c) c s φ s dxdy = 0, e dunque mn s= s= c s φ s (x, y) = 0, (x, y). Di conseguenza, c =... = c mn = 0, implicando l invertibilità della matrice A.

7 4. Si ha la seguente mappa di Newton: ( ) ( ) ( ) ( ) x x x y x F = y u y y (x + y ) y x xy v ( ) x(x = + y ) + xu + yv (x + y ) y(x + y ) yu + xv = ( ) ( ) ( ) x x y u +. y (x + y ) y x v Allora ( ) x F = y Sostituendo ( ) (x + y ) + (y x )u xyv xyu + (x y )v (x + y ) xyu + (y x )v (x + y ) + (y x. )u xyv u = x y, v = xy, si trova F ( x y ) = ( ). Secondo il eorema di Ostrowski, esiste un intorno di ciascuna soluzione che è un bacino di attrazione. Alternativamente, ponendo z = x + iy, w = u + iv e f(z) = z w si può anche scrivere Dunque F (z) = z + wz z = z + w z = z f(z) f (z). F (z) = f(z)f (z) f (z) = z w z. Di conseguenza, se scegliamo z 0 = x 0 + iy 0 nel dominio {( ) } {( ) } x : z w x y z < = : (x y u) + (xy v) < 4(x + y ), y la successione degli iterati converge allo zero contenuto nello stesso componente connesso. 5. Si ha: f(x) = (x )(x )(x 3), f (x) = 3(x ), f (x) = 6(x ).

8 Quindi il metodo di Newton riguarda l applicazione ripetuta della seguente mappa: x n+ = x n f(x n) f (x n ). La funzione f ha un massimo in x = e un minimo in x = +, 3 3 mentre f (x) è negativa per x < e positiva per x >. Quindi: Se, 3 x 0 <, la successione degli iterati x 3 n tende a ; se x 0 > + la successione degli iterati tende a 3. Sia F (x) = x f(x) f (x). Allora F (x) = f(x)f (x), x ± f (x). 3 Nell intervallo tra ± la funzione F è continua, ha un singolo zero 3 (doppio) in x = e è decrescente e tende a se x ± 3 ]. Inoltre F (x) tende a se x ± ξ δ e η δ due numeri reali tali che 3 < ξ δ < < η δ < + 3 ]. Per 0 δ < 3, 3, siano + δ < F (x) 0 per ξ δ < x < η δ e F (ξ δ ) = F (η δ ) = + δ. In tal caso F (x) F (y) = F (ζ)(x y) ( δ) x y, x, y ξ δ, η δ ], implicando che F è una contrazione in ξ δ, η δ ]. Di conseguenza, scegliendo x 0 (ξ 0, η 0 ) la successione degli iterati x n tende a. x 0 = 5 6 ].696, η 0 = ].3074.

Calcolo Scientifico e Matematica Applicata Scritto Generale, , Ingegneria Meccanica

Calcolo Scientifico e Matematica Applicata Scritto Generale, , Ingegneria Meccanica Calcolo Scientifico e Matematica Applicata Scritto Generale, 17.12.2018, Ingegneria Meccanica Valutazione degli esercizi: 1 4, 2 10, 3 8, 4 8 1. Risolvere, con il metodo degli integrali generali, il seguente

Dettagli

Calcolo Scientifico e Matematica Applicata Primo Parziale,

Calcolo Scientifico e Matematica Applicata Primo Parziale, Calcolo Scientifico e Matematica Applicata Primo Parziale, 19.11.2018 Risolvere gli esercizi 2,, 4 oppure, in alternativa, gli esercizi 1, 2,, 5. Valutazione degli esercizi: 1 4, 2 14, 8, 4 8, 5 4. 1.

Dettagli

EQUAZIONI DIFFERENZIALI Esercizi con soluzione

EQUAZIONI DIFFERENZIALI Esercizi con soluzione EQUAZIONI DIFFERENZIALI Esercizi con soluzione 1. Calcolare l integrale generale delle seguenti equazioni differenziali lineari del primo ordine: (a) y 2y = 1 (b) y + y = e x (c) y 2y = x 2 + x (d) 3y

Dettagli

SISSA Area Matematica Esame di ammissione per il corso di Analisi Matematica, Modelli e Applicazioni 2 maggio 2017

SISSA Area Matematica Esame di ammissione per il corso di Analisi Matematica, Modelli e Applicazioni 2 maggio 2017 SISSA Area Matematica Esame di ammissione per il corso di Analisi Matematica, Modelli e Applicazioni 2 maggio 217 Il candidato risolva CINQUE dei seguenti problemi, e indichi chiaramente sulla prima pagina

Dettagli

Il metodo di Galerkin Elementi Finiti Lineari

Il metodo di Galerkin Elementi Finiti Lineari Il metodo di Galerkin Elementi Finiti Lineari Si consideri il problema: u(x) = f(x), x (, ), u() = 0, u() = 0. Se ne fornisca la corrispondente formulazione debole. Si costruiscano inoltre la matrice di

Dettagli

Analisi Matematica 2: Scritto Generale, Cognome e nome:...matricola:...

Analisi Matematica 2: Scritto Generale, Cognome e nome:...matricola:... Analisi Matematica 2: Scritto Generale, 21.02.2017 Cognome e nome:....................................matricola:......... es.1 es.2 es.3 es.4 es.5 es.6 es.7 somma 5cr. 6 6 6 6 6 - - 30 6/9cr. 5 5 5 5 5

Dettagli

Approssimazione numerica

Approssimazione numerica Approssimazione numerica Laboratorio di programmazione e calcolo (Chimica e Tecnologie chimiche) Pierluigi Amodio Dipartimento di Matematica Università di Bari Approssimazione numerica p.1/10 Problema

Dettagli

Analisi Matematica III

Analisi Matematica III Università di Pisa - Corso di Laurea in Ingegneria Civile dell ambiente e territorio Analisi Matematica III Pisa, 1 giugno 4 (Cognome (Nome (Numero di matricola Esercizio 1 Si consideri la successione

Dettagli

Risoluzione di sistemi lineari sparsi e di grandi dimensioni

Risoluzione di sistemi lineari sparsi e di grandi dimensioni Risoluzione di sistemi lineari sparsi e di grandi dimensioni Un sistema lineare Ax = b con A R n n, b R n, è sparso quando il numero di elementi della matrice A diversi da zero è αn, con n α. Una caratteristica

Dettagli

ANALISI MATEMATICA II 8 Febbraio 2010 ore 11:00 Versione A. Analisi II 7,5 cr. Analisi D Analisi II V.O. es. 1,2,3 es. 2,4,5 es 2,4,5.

ANALISI MATEMATICA II 8 Febbraio 2010 ore 11:00 Versione A. Analisi II 7,5 cr. Analisi D Analisi II V.O. es. 1,2,3 es. 2,4,5 es 2,4,5. ANALISI MAEMAICA II 8 Feraio ore : Versione A Nome, Cognome: Docente: Corso di Laurea: Matricola Analisi II 7,5 cr. Analisi D Analisi II V.O. es.,,3 es.,4,5 es,4,5 Codice corso 9ACI ESERCIZIO Dato il sistema

Dettagli

Matematica e Statistica

Matematica e Statistica Matematica e Statistica Prova d Esame (0/09/200) Università di Verona - Laurea in Biotecnologie - A.A. 2009/0 Matematica e Statistica Prova d Esame di MATEMATICA (0/09/200) Università di Verona - Laurea

Dettagli

Metodi Numerici con elementi di Programmazione (A.A )

Metodi Numerici con elementi di Programmazione (A.A ) Metodi Numerici con elementi di Programmazione (A.A. 2018-2019) Metodi Numerici Appunti delle lezioni: Sistemi non lineari Docente Vittoria Bruni Email: vittoria.bruni@sbai.uniroma1.it Ufficio: Via A.

Dettagli

Raccolta di Esercizi d esame ( di Calcolo Numerico) Prof. Laura Pezza. Equazioni non lineari

Raccolta di Esercizi d esame ( di Calcolo Numerico) Prof. Laura Pezza. Equazioni non lineari Raccolta di Esercizi d esame ( di Calcolo Numerico) Prof. Laura Pezza Equazioni non lineari ESERCIZIO 1 Data l equazione ln(e + x) = 1 (1 + 4x) + 1 2 1.1 verificare analiticamente se sono soddisfatte le

Dettagli

Equazioni e sistemi non lineari

Equazioni e sistemi non lineari Equazioni e sistemi non lineari Lucia Gastaldi Dipartimento di Matematica, http://dm.ing.unibs.it/gastaldi/ 4 novembre 2007 Outline 1 Ricerca degli zeri di una funzione Problema e definizioni Metodo di

Dettagli

Corso di Laurea in Ingegneria delle Telecomunicazioni ANALISI MATEMATICA 1. Prova scritta del 24 luglio 2018

Corso di Laurea in Ingegneria delle Telecomunicazioni ANALISI MATEMATICA 1. Prova scritta del 24 luglio 2018 Corso di Laurea in Ingegneria delle Telecomunicazioni ANALISI MATEMATICA Prova scritta del 4 luglio 08 Esporre il procedimento di risoluzione degli esercizi in maniera completa e leggibile.. (Punti 5)

Dettagli

Cognome Nome Matricola Codice ESEMPIO 1

Cognome Nome Matricola Codice ESEMPIO 1 Cognome Nome Matricola Codice ESEMPIO 1 [1]. (***) Definizione di sistema fondamentale di soluzioni di un equazione differenziale lineare d ordine n omogenea. Sia I un intervallo non banale di R; siano

Dettagli

MATEMATICA A Commissione Albertini, Mannucci, Motta, Zanella Ingegneria Gestionale, Meccanica, Meccatronica, Vicenza

MATEMATICA A Commissione Albertini, Mannucci, Motta, Zanella Ingegneria Gestionale, Meccanica, Meccatronica, Vicenza TEMA ( ) f() = log (determinare il dominio D; calcolare i limiti per che tende agli estremi finiti o infiniti z 4 + (3 + 6i)z + 5 + i = 0. ( + 3 ) α α (log + log + ) d. y = e y, y() = α. TEMA ( ) f() =

Dettagli

Introduzione al Metodo agli Elementi Finiti (FEM) (x, y) Γ Tale formulazione viene detta Formulazione forte del problema.

Introduzione al Metodo agli Elementi Finiti (FEM) (x, y) Γ Tale formulazione viene detta Formulazione forte del problema. Introduzione al Metodo agli Elementi Finiti (FEM) Consideriamo come problema test l equazione di Poisson 2 u x 2 + 2 u = f(x, y) u = f y2 definita su un dominio Ω R 2 avente come frontiera la curva Γ,

Dettagli

Analisi Matematica III

Analisi Matematica III Università di Pisa - Corso di Laurea in Ingegneria Civile dell ambiente e territorio Analisi Matematica III Pisa, 7 gennaio 00 (Cognome) (Nome) (Numero di matricola) Esercizio Si consideri la successione

Dettagli

Cognome Nome Matricola Codice ESEMPIO 1

Cognome Nome Matricola Codice ESEMPIO 1 Cognome Nome Matricola Codice ESEMPIO 1 [1]. (***) Definizione di derivata di una funzione in un punto. Sia A R N ; sia a A; sia f : A R M ; sia f differenziabile in a; allora la derivata di f in a è...

Dettagli

Esonero di Analisi Matematica II (A)

Esonero di Analisi Matematica II (A) Esonero di Analisi Matematica II (A) Ingegneria Edile, 8 aprile 3. Studiare la convergenza del seguente integrale improprio: + x log 3 x (x ) 3 dx.. Studiare la convergenza puntuale ed uniforme della seguente

Dettagli

Facoltà di Scienze MM.FF.NN. Corso di Laurea in Matematica - A.A Prova scritta di Analisi Matematica II del c.1.

Facoltà di Scienze MM.FF.NN. Corso di Laurea in Matematica - A.A Prova scritta di Analisi Matematica II del c.1. Prova scritta di Analisi Matematica II del 14-07-1999 - c.1 1) Sia (d n ) una successione di numeri reali tali che inf d n > 0. Studiare il carattere della serie + n=1 al variare del parametro reale positivo

Dettagli

I teoremi della funzione inversa e della funzione implicita

I teoremi della funzione inversa e della funzione implicita I teoremi della funzione inversa e della funzione implicita Appunti per il corso di Analisi Matematica 4 G. Mauceri Indice 1 Il teorema della funzione inversa 1 Il teorema della funzione implicita 3 1

Dettagli

Esercizi di autovalutazione - Matlab Metodi Numerici con Elementi di Programmazione A.A

Esercizi di autovalutazione - Matlab Metodi Numerici con Elementi di Programmazione A.A Esercizi di autovalutazione - Matlab Metodi Numerici con Elementi di Programmazione A.A. 2017-18 1. Scrivere la function Matlab myfun.m che calcoli la funzione e la sua derivata. La function deve ricevere

Dettagli

Analisi Matematica 2: Scritto Generale, , Versione A. Cognome e nome:...matricola:...

Analisi Matematica 2: Scritto Generale, , Versione A. Cognome e nome:...matricola:... Analisi Matematica : Scritto Generale, 7.9.16, Versione A Cognome e nome:....................................matricola:......... es.1 es. es.3 es.4 es.5 es.6/7 somma 5cr. 6 6 6 6 6 3 9cr. 5 5 5 5 5 /3

Dettagli

25 - Funzioni di più Variabili Introduzione

25 - Funzioni di più Variabili Introduzione Università degli Studi di Palermo Facoltà di Economia CdS Statistica per l Analisi dei Dati Appunti del corso di Matematica 25 - Funzioni di più Variabili Introduzione Anno Accademico 2013/2014 M. Tumminello

Dettagli

Prima prova in Itinere Ist. Mat. 1, Prima parte, Tema ALFA COGNOME: NOME: MATR.:

Prima prova in Itinere Ist. Mat. 1, Prima parte, Tema ALFA COGNOME: NOME: MATR.: Prima prova in Itinere Ist. Mat. 1, Prima parte, Tema ALFA 1) L applicazione lineare f : R 3 R 2 data da f(x, y, z) = (3x + 2y + z, kx + 2y + kz) è suriettiva A: sempre; B: mai; C: per k 1 D: per k 2;

Dettagli

Facoltà di Scienze MM.FF.NN. Corso di Laurea in Matematica - A.A Prova scritta di Analisi Matematica II del

Facoltà di Scienze MM.FF.NN. Corso di Laurea in Matematica - A.A Prova scritta di Analisi Matematica II del Prova scritta di nalisi Matematica II del 12-06-2001. C1 1) Studiare la convergenza semplice, uniforme e totale della serie di funzioni seguente ( 1) [ n 2 ] n x 1 + n 2 x. n=0 2) Data la funzione (x 2

Dettagli

Implementazione del metodo Galerkin/Elementi Finiti in 1d. Corso di Metodi Numerici per La Microelettronica, 2 o Semestre A.

Implementazione del metodo Galerkin/Elementi Finiti in 1d. Corso di Metodi Numerici per La Microelettronica, 2 o Semestre A. Implementazione del metodo Galerkin/Elementi Finiti in 1d Corso di Metodi Numerici per La Microelettronica, 2 o Semestre A.A 23 24 Definizione del problema Vogliamo risolvere il problema: { u = 1 in (,

Dettagli

Autovalori e autovettori

Autovalori e autovettori Autovalori e autovettori Ax = λx x 0 Allora λ è un autovalore della matrice A corrispondente all autovettore x Risolviamo l equazione secolare det(a λi) = 0 Trasformazioni di similarità det(sas 1 λi) =

Dettagli

Equazioni e sistemi non lineari

Equazioni e sistemi non lineari Equazioni e sistemi non lineari Lucia Gastaldi DICATAM - Sezione di Matematica, http://lucia-gastaldi.unibs.it Indice 1 Ricerca degli zeri di una funzione Problema e definizioni Metodo di Newton-Raphson

Dettagli

Calcolo differenziale 2: Massimi e minimi. Studio di una funzione. (M.S.Bernabei & H. Thaler)

Calcolo differenziale 2: Massimi e minimi. Studio di una funzione. (M.S.Bernabei & H. Thaler) Calcolo differenziale 2: Massimi e minimi. Studio di una funzione. (M.S.Bernabei & H. Thaler) Studio di una funzione Funzioni crescenti e decrescenti Una funzione f è crescente nell intervallo (a, b) se

Dettagli

Equazioni e sistemi non lineari

Equazioni e sistemi non lineari Equazioni e sistemi non lineari Lucia Gastaldi DICATAM - Sezione di Matematica, http://lucia-gastaldi.unibs.it Indice 1 Ricerca degli zeri di una funzione Problema e definizioni Metodo di Newton-Raphson

Dettagli

Compiti d Esame A.A. 2005/2006

Compiti d Esame A.A. 2005/2006 Compiti d Esame A.A. 25/26 UNIVERSITÀ DEGLI STUDI DI PERUGIA A.A. 25/26 I Esercitazione 21 Aprile 26 { y = xy ln(xy) si chiede di dimostrare che: y(1) = 1, (a) ammette un unica soluzione massimale y =

Dettagli

Es.1 Es.2 Es.3 Es.4 Totale. Analisi e Geometria 2 Docente: 15 Luglio 2013

Es.1 Es.2 Es.3 Es.4 Totale. Analisi e Geometria 2 Docente: 15 Luglio 2013 Es.1 Es.2 Es.3 Es.4 Totale Analisi e Geometria 2 Docente: 15 Luglio 213 Cognome: Nome: Matricola: Ogni risposta dev essere giustificata. Gli esercizi vanno svolti su questi fogli, nello spazio sotto il

Dettagli

Laboratorio di Calcolo Numerico A.A Laboratorio 4 Risoluzione di sistemi non lineari Metodo di punto fisso

Laboratorio di Calcolo Numerico A.A Laboratorio 4 Risoluzione di sistemi non lineari Metodo di punto fisso Laboratorio di Calcolo Numerico A.A. 2007-2008 Laboratorio 4 Risoluzione di sistemi non lineari Metodo di punto fisso Esercizio 1. Risoluzione di sistemi non lineari Si consideri il seguente sistema non

Dettagli

MODELLI e METODI MATEMATICI della FISICA. Esercizi - A.A

MODELLI e METODI MATEMATICI della FISICA. Esercizi - A.A MODELLI e METODI MATEMATICI della FISICA Esercizi - A.A. 08-9 settimana Esercizi:. Risolvere il problema di Cauchy y (x) = αy (x) + y (x) y (x) = αy (x) + y 3 (x) y 3(x) = αy 3 (x) con condizioni iniziali

Dettagli

Es. 1 Es. 2 Es. 3 Es. 4 Totale. Analisi e Geometria 2 Docente: 13 febbraio 2014

Es. 1 Es. 2 Es. 3 Es. 4 Totale. Analisi e Geometria 2 Docente: 13 febbraio 2014 Es. 1 Es. 2 Es. 3 Es. 4 Totale Analisi e Geometria 2 Docente: 13 febbraio 214 Cognome: Nome: Matricola: Ogni risposta dev essere giustificata. Gli esercizi vanno svolti su questi fogli, nello spazio sotto

Dettagli

Corso di Laurea in Matematica I prova intermedia di Analisi Matematica 3

Corso di Laurea in Matematica I prova intermedia di Analisi Matematica 3 Corso di Laurea in Matematica I prova intermedia di Analisi Matematica 3 12 novembre 2015 1. Sia f : [0, 2π[ R una funzione decrescente e regolare (C 1 a tratti), prolungata poi per periodicità su tutto

Dettagli

Esercizi di autovalutazione - Matlab Metodi Numerici con Elementi di Programmazione A.A

Esercizi di autovalutazione - Matlab Metodi Numerici con Elementi di Programmazione A.A Esercizi di autovalutazione - Matlab Metodi Numerici con Elementi di Programmazione A.A. 2018-19 1. Scrivere la function Matlab myfun.m che valuti la funzione e la sua derivata in corrispondenza delle

Dettagli

ANALISI MATEMATICA 3. esercizi assegnati per la prova scritta del 31 gennaio 2011

ANALISI MATEMATICA 3. esercizi assegnati per la prova scritta del 31 gennaio 2011 esercizi assegnati per la prova scritta del 31 gennaio 2011 Esercizio 1. Per x > 0 e n N si ponga f n (x) = ln ( n 5 x ) a) Provare l integrabilità delle funzioni f n in (0, + ). 3 + n 4 x 2. b) Studiare

Dettagli

1. Si scriva una function Matlab che implementa il seguente metodo di punto fisso

1. Si scriva una function Matlab che implementa il seguente metodo di punto fisso Domanda 1 1. Si scriva una function Matlab che implementa il seguente metodo di punto fisso x n+1 = x n f(x n), n = 0, 1, 2,... K dove x 0 è il punto iniziale, f(x) = x 3 cos(x) e K è una costante assegnata.

Dettagli

Esercitazione di Calcolo Numerico 1 27 Maggio Calcolare la fattorizzazione P A = LU della matrice A =

Esercitazione di Calcolo Numerico 1 27 Maggio Calcolare la fattorizzazione P A = LU della matrice A = Esercitazione di Calcolo Numerico 1 27 Maggio 29 1. Calcolare la fattorizzazione P A = LU della matrice 1 2 3 A = 2 3 3, ed utilizzarla per risolvere il sistema lineare Ax = b, con b = (1, 2,, 16) T. 2.

Dettagli

CALCOLO NUMERICO Prof. L. Gori Prova d esame

CALCOLO NUMERICO Prof. L. Gori Prova d esame CALCOLO NUMERICO Prof. L. Gori Prova d esame 2-7-998 ESERCIZIO. Data la seguente formula di quadratura: f(x)dx = ( ) 3 3 2 f + Af( x) + R 6 0 (.) Determinare A e x in modo che il grado di precisione sia.

Dettagli

Es.1 Es.2 Es.3 Es.4 Es.5 Totale Analisi e Geometria 2 Docente: 15 Luglio 2013

Es.1 Es.2 Es.3 Es.4 Es.5 Totale Analisi e Geometria 2 Docente: 15 Luglio 2013 Es.1 Es.2 Es.3 Es.4 Es.5 Totale 4+4+2 5 2 5+2 4+4 32 Analisi e Geometria 2 Docente: 15 Luglio 213 Cognome: Nome: Matricola: Ogni risposta dev essere giustificata. Gli esercizi vanno svolti su questi fogli,

Dettagli

ANALISI MATEMATICA II PROVA DI TEORIA (23/6/2009)

ANALISI MATEMATICA II PROVA DI TEORIA (23/6/2009) ANALISI MATEMATICA II PROVA DI TEORIA (23/6/2009) 1. Sia S = { } (x, y, z) : x 2 + y 2 = 4, 0 z 3 + x. Scrivere le equazioni parametriche di una superficie regolare che abbia S come sostegno. 2. Enunciare

Dettagli

FUNZIONI DI DUE VARIABILI REALI. f(x, y) = ax + by + c. f(x, y) = x 2 + y 2

FUNZIONI DI DUE VARIABILI REALI. f(x, y) = ax + by + c. f(x, y) = x 2 + y 2 0.1 FUNZIONI DI DUE VARIABILI REALI Sia A R 2. Una applicazione f : A R si chiama funzione reale di due variabili reali ESEMPI: 1. La funzione affine di due variabili reali: 2. f(x, y) = ax + by + c f(x,

Dettagli

CORSO DI LAUREA IN INGEGNERIA ELETTRONICA Prof. A. Avantaggiati (prova scritta di ANALISI MATEMATICA II - 17 gennaio 2000) vecchio ordinamento COGNOME

CORSO DI LAUREA IN INGEGNERIA ELETTRONICA Prof. A. Avantaggiati (prova scritta di ANALISI MATEMATICA II - 17 gennaio 2000) vecchio ordinamento COGNOME CORSO DI LAUREA IN INGEGNERIA ELETTRONICA Prof. A. Avantaggiati (prova scritta di ANALISI MATEMATICA II - 17 gennaio 2000) vecchio ordinamento COGNOME... NOME... Data l'equazione differenziale y 000 +2y

Dettagli

1 Punti di equilibrio e stabilità: definizioni

1 Punti di equilibrio e stabilità: definizioni ASPETTI QUALITATIVI DELLA TEORIA DELLE EQUAZIONI DIFFERENZIALI (Schema del contenuto delle lezioni e riferimenti bibliografici) Testi [HS] M. Hirsch and S. Smale Differential Equations, Dynamical Systems

Dettagli

Equazioni differenziali e teoria della misura

Equazioni differenziali e teoria della misura SISSA Area Matematica Esame di ammissione per il corso di Analisi Matematica, Modelli e Applicazioni 2 settembre 23 Il candidato risolva CINQUE dei seguenti problemi, e indichi chiaramente sulla prima

Dettagli

Analisi Matematica 2: Secondo Parziale, , Versione A. Cognome e nome:...matricola:...

Analisi Matematica 2: Secondo Parziale, , Versione A. Cognome e nome:...matricola:... Analisi Matematica : Secondo Parziale, 1.6.17, Versione A Cognome e nome:....................................matricola:......... es.1 es. es.3 es. es.5 es.6 es.7 somma 5cr. 6 6 6 6 6 - - 3 9cr. 5 5 5 5

Dettagli

Risolvere il seguente sistema lineare ESERCIZIO 2

Risolvere il seguente sistema lineare ESERCIZIO 2 PROVA SCRITTA di MATEMATICA Laurea triennale in Sc. Geologiche e Sc. Naturali Facoltà di S.M.F.N. Prima sessione, appello invernale - A.A. 1/11-1 febb 11 Gli esercizi sono da risolvere in modo esplicito.

Dettagli

Le derivate parziali

Le derivate parziali Sia f(x, y) una funzione definita in un insieme aperto A R 2 e sia P 0 = x 0, y 0 un punto di A. Essendo A un aperto, esiste un intorno I(P 0, δ) A. Preso un punto P(x, y) I(P 0, δ), P P 0, possiamo definire

Dettagli

La soluzione approssimata consiste nella soluzione di un problema pi u facile che approssima quello dato. Nella tecnica di rilassamento l'approssimazi

La soluzione approssimata consiste nella soluzione di un problema pi u facile che approssima quello dato. Nella tecnica di rilassamento l'approssimazi Tecniche di soluzione di sistemi di equazioni non-lineari Le tecniche di rilassamento riguardano principalmente la soluzione per via numerica di sistemi di equazioni. Risultano particolarmente semplici

Dettagli

Ingegneria civile - ambientale - edile

Ingegneria civile - ambientale - edile Ingegneria civile - ambientale - edile Analisi - Prove scritte dal 7 Prova scritta del 9 giugno 7 Esercizio Determinare i numeri complessi z che risolvono l equazione Esercizio (i) Posto a n = n i z z

Dettagli

Analisi IV - esercizi. G.P.Leonardi 2008

Analisi IV - esercizi. G.P.Leonardi 2008 Analisi IV - esercizi G.P.Leonardi 2008 1 1 Esercizi settimana n.1 1.1 Siano (X, d) e (X, d ) due spazi metrici. Dimostrare che la funzione d : (X X ) (X X ) [0, ) definita da d((x, x ), (y, y )) = d(x,

Dettagli

Compito di Matematica I A.A.2008/09 - C.d.L. in Chimica 16 Novembre 2009 Prof. Elena Comparini

Compito di Matematica I A.A.2008/09 - C.d.L. in Chimica 16 Novembre 2009 Prof. Elena Comparini A.A.2008/09 - C.d.L. in Chimica 6 Novembre 2009 Prof. Elena Comparini f(x) = x x 2 x +, Esercizio 2. Data la funzione dell esercizio precedente, calcolare l area della regione di piano compresa tra il

Dettagli

1) D0MINIO FUNZIONE. Determinare il dominio della funzione f (x) = 4 x 2 4x + 3 x 2 6x + 8 Deve essere. x 2 6x + 5 (x 1) (x 5)

1) D0MINIO FUNZIONE. Determinare il dominio della funzione f (x) = 4 x 2 4x + 3 x 2 6x + 8 Deve essere. x 2 6x + 5 (x 1) (x 5) ) DMINIO FUNZIONE Determinare il dominio della funzione f (x) = x x + x x + 8 x x + (x ) (x ) Deve essere = quindi x (, ] (, ] (, + ). x x + 8 (x ) (x ) Determinare il dominio della funzione f (x) = x

Dettagli

Cognome Nome Matricola Codice ESEMPIO 1

Cognome Nome Matricola Codice ESEMPIO 1 Cognome Nome Matricola Codice ESEMPIO 1 [1]. (***) Definizione di forma differenziale chiusa. Sia A R N ; sia A aperto; sia ω = N i=1 ω i dx i una forma differenziale su A; sia ω di classe C 1 ; si dice

Dettagli

Dispense del corso di Metodi Numerici per le Equazioni Differenziali

Dispense del corso di Metodi Numerici per le Equazioni Differenziali Dispense del corso di Metodi Numerici per le Equazioni Differenziali Progetto numerico al calcolatore - Parte III Soluzione agli elementi finiti di un problema parabolico Mario Putti Dipartimento di Matematica

Dettagli

Analisi 4 - SOLUZIONI (17/01/2013)

Analisi 4 - SOLUZIONI (17/01/2013) Corso di Laurea in Matematica Analisi 4 - SOLUZIONI 7//23 Docente: Claudia Anedda Utilizzando uno sviluppo in serie noto, scrivere lo sviluppo in serie di MacLaurin della funzione fx = 32 + x, specificando

Dettagli

Metodi Numerici con elementi di Programmazione (A.A )

Metodi Numerici con elementi di Programmazione (A.A ) Metodi Numerici con elementi di Programmazione (A.A. 2013-2014) Metodi Numerici Appunti delle lezioni: Sistemi non lineari Docente Vittoria Bruni Email: vittoria.bruni@sbai.uniroma1.it Ufficio: Via A.

Dettagli

I Appello di Processi Stocastici Cognome: Laurea Magistrale in Matematica 2014/15 Nome: 23 Giugno

I Appello di Processi Stocastici Cognome: Laurea Magistrale in Matematica 2014/15 Nome: 23 Giugno I Appello di Processi Stocastici Cognome: Laurea Magistrale in Matematica 014/15 Nome: 3 Giugno 015 Email: Quando non è espressamente indicato il contrario, per la soluzione degli esercizi è possibile

Dettagli

Facoltá di Scienze MM.FF.NN. Corso di Studi in Informatica- A.A

Facoltá di Scienze MM.FF.NN. Corso di Studi in Informatica- A.A Facoltá di Scienze MM.FF.NN. Corso di Studi in Informatica- A.A. 4-5 Corso di CALCOLO NUMERICO / ANALISI NUMERICA : Esempi di esercizi svolti in aula 9//4 ) Determinare la rappresentazione in base di.

Dettagli

Matematica A Corso di Laurea in Chimica. Prova scritta del Tema A

Matematica A Corso di Laurea in Chimica. Prova scritta del Tema A Matematica A Corso di Laurea in Chimica Prova scritta del 7..6 Tema A P) Data la funzione f(x) = ex+ x determinarne (a) campo di esistenza; (b) zeri e segno; (c) iti agli estremi del campo di esistenza

Dettagli

Metodi Numerici Prova di Laboratorio Esami del Stefano Gualandi

Metodi Numerici Prova di Laboratorio Esami del Stefano Gualandi Metodi Numerici Prova di Laboratorio Esami del 2018 Stefano Gualandi October 11, 2018 ii Premessa Questo documento presenta la raccolta dei testi di esame degli appelli del corso di Metodi Numerici, Prova

Dettagli

2) Scrivere la soluzione generale del seguente sistema di equazioni differenziali lineari del primo ordine. y 1 = 2y 1 5y 3 y 2

2) Scrivere la soluzione generale del seguente sistema di equazioni differenziali lineari del primo ordine. y 1 = 2y 1 5y 3 y 2 Corso di Laurea in Matematica Analisi Matematica 3/Analisi 4 - SOLUZIONI (8/6/5) Docente: Claudia Anedda ) Trovare il limite puntuale della successione di funzioni f k (t) = cos(kt), t R. Stabilire se

Dettagli

TEMI D ESAME DI ANALISI MATEMATICA I Corso di laurea (quadriennale) in Fisica a.a. 2002/03

TEMI D ESAME DI ANALISI MATEMATICA I Corso di laurea (quadriennale) in Fisica a.a. 2002/03 I seguenti quesiti ed il relativo svolgimento sono coperti dal diritto d autore, pertanto essi non possono essere sfruttati a fini commerciali o di pubblicazione editoriale senza autorizzazione esplicita

Dettagli

Calcolo I - Corso di Laurea in Fisica - 18 Giugno 2019 Soluzioni Scritto. a) Calcolare il dominio, asintoti ed eventuali punti di non derivabilità;

Calcolo I - Corso di Laurea in Fisica - 18 Giugno 2019 Soluzioni Scritto. a) Calcolare il dominio, asintoti ed eventuali punti di non derivabilità; Calcolo I - Corso di Laurea in Fisica - 8 Giugno 209 Soluzioni Scritto Data la funzione fx = x 2 x 6 x /3 a Calcolare il dominio, asintoti ed eventuali punti di non derivabilità; b Calcolare, se esistono,

Dettagli

Prova di ammissione al Dottorato di Ricerca in Matematica XXVIII ciclo. Universitá del Salento, 9 Aprile 2013

Prova di ammissione al Dottorato di Ricerca in Matematica XXVIII ciclo. Universitá del Salento, 9 Aprile 2013 Prova di ammissione al Dottorato di Ricerca in Matematica XXVIII ciclo Universitá del Salento, 9 Aprile 2013 1 1 TEMA I Il candidato svolga una ed una sola delle dissertazioni proposte, illustrando sinteticamente

Dettagli

Corsi del S.S.D. MAT08 - Analisi Numerica (Laurea Triennale e Laurea Magistrale in Ingegneria)

Corsi del S.S.D. MAT08 - Analisi Numerica (Laurea Triennale e Laurea Magistrale in Ingegneria) Corsi del S.S.D. MAT08 - Analisi Numerica Laurea Triennale e Laurea Magistrale in Ingegneria PROBLEMI AI LIMITI PER EQUAZIONI DIFFERENZIALI ORDINARIE Metodi alle differenze finite Prof. F. Pitolli, A.A

Dettagli

MATLAB:Metodi Numerici per zeri di funzioni.

MATLAB:Metodi Numerici per zeri di funzioni. 1 Francesca Mazzia Dipartimento Interuniversitario di Matematica Università di Bari MATLAB:Metodi Numerici per zeri di funzioni Metodo delle successive bisezioni Sappiamo che la procedura definita dal

Dettagli

Terzo appello di Analisi Matematica 2 Ingegneria Elettronica. Politecnico di Milano A.A. 2018/2019. Prof. M. Bramanti. { y + y. 2 1 x 2 y (0) = 1.

Terzo appello di Analisi Matematica 2 Ingegneria Elettronica. Politecnico di Milano A.A. 2018/2019. Prof. M. Bramanti. { y + y. 2 1 x 2 y (0) = 1. Terzo appello di Analisi Matematica Ingegneria Elettronica. Politecnico di Milano A.A. 8/9. Prof. M. Bramanti Es. 5 6 7 Tot. Punti Cognome e nome in stampatello codice persona o n di matricola n d ordine

Dettagli

Corso di Laurea in Ingegneria Informatica Prova di Analisi Matematica 1

Corso di Laurea in Ingegneria Informatica Prova di Analisi Matematica 1 Corso di Laurea in Ingegneria Informatica Prova di Analisi Matematica 1 27 giugno 2017 Scrivere subito nome e cognome e matricola sul foglio risposte e preparare il libretto sul banco per il controllo.

Dettagli

Soluzione. Il dominio E consiste nella parte di spazio contenuta nella sfera ma esterna al cono rappresentata in Figura 1. Infatti

Soluzione. Il dominio E consiste nella parte di spazio contenuta nella sfera ma esterna al cono rappresentata in Figura 1. Infatti Esercizio 1 (G. Ziglio). (6 punti) Calcolare il volume della porzione di spazio E interna alla sfera di equazione x 2 + y 2 + z 2 = 1 ed esterna al cono di equazione z 2 = x 2 + y 2 E = (x, y, z) R x 2

Dettagli

Analisi Matematica A e B Soluzioni prova scritta parziale n. 4

Analisi Matematica A e B Soluzioni prova scritta parziale n. 4 Analisi Matematica A e B Soluzioni prova scritta parziale n. Corso di laurea in Fisica, 08-09 7 aprile 09. Determinare le soluzioni u(x) dell equazione differenziale u + u u = sin x + ex + e x. Soluzione.

Dettagli

CALCOLO NUMERICO Laurea di base in Ingegneria Elettronica ed Ing. delle Comunicazioni

CALCOLO NUMERICO Laurea di base in Ingegneria Elettronica ed Ing. delle Comunicazioni CALCOLO NUMERICO Laurea di base in Ingegneria Elettronica ed Ing. delle Comunicazioni Prof.ssa Laura Pezza (A.A. 2018-2019) XV Lezione del 02.04.2019 http://www.dmmm.uniroma1.it/ laura.pezza 1 Data A R

Dettagli

Analisi Matematica II Corso di Ingegneria Gestionale Compito del xy + 2x + 2y + 2xy + 2x + 2y + sin

Analisi Matematica II Corso di Ingegneria Gestionale Compito del xy + 2x + 2y + 2xy + 2x + 2y + sin Analisi Matematica II Corso di Ingegneria Gestionale Compito del 9--8 - È obbligatorio consegnare tutti i fogli, anche la brutta e il testo. - Le risposte senza giustificazione sono considerate nulle.

Dettagli

(1) Per ciascuno dei seguenti spazi dire se è o meno uno spazio vettoriale (spiegare)

(1) Per ciascuno dei seguenti spazi dire se è o meno uno spazio vettoriale (spiegare) 1 Spazi vettoriali (1) Per ciascuno dei seguenti spazi dire se è o meno uno spazio vettoriale (spiegare) (a) R 5 (b) [0, ) (c) x R 2 : x 1 + 2x 2 = 0} (d) x R 2 : x 2 1 + 2x 2 = 0} (e) x R 2 : x 1 > x

Dettagli

Analisi Matematica II Corso di Ingegneria Gestionale Compito del A

Analisi Matematica II Corso di Ingegneria Gestionale Compito del A Analisi Matematica II Corso di Ingegneria Gestionale Compito del -7-5 - A Esercizio ( punti Data la funzione f(x, y = x + y + 4xy 8x 4y + 4 i trovare tutti i punti critici e, se possibile, caratterizzarli

Dettagli

Cognome: Nome: Matricola: a. Si enunci e dimostri il teorema della media integrale per funzioni continue. (5 punti)

Cognome: Nome: Matricola: a. Si enunci e dimostri il teorema della media integrale per funzioni continue. (5 punti) Analisi e Geometria Seconda Prova 3 gennaio 207 Docente: Politecnico di Milano Scuola di Ingegneria Industriale e dell Informazione Cognome: Nome: Matricola: a. Si enunci e dimostri il teorema della media

Dettagli

Metodi numerici per zeri di funzioni

Metodi numerici per zeri di funzioni CALCOLO NUMERICO Francesca Mazzia Dipartimento Interuniversitario di Matematica Università di Bari Metodi numerici per zeri di funzioni 1 Metodo delle successive bisezioni Se f(x) C([a, b]) ed f(a) f(b)

Dettagli

Prova Finale di Tipo B e Prova di Accesso alla Laurea Magistrale 12 Giugno 2008

Prova Finale di Tipo B e Prova di Accesso alla Laurea Magistrale 12 Giugno 2008 Prova Finale di Tipo B e Prova di Accesso alla Laurea Magistrale 12 Giugno 2008 Dipartimento di Matematica Università di Roma Tre U. Bessi, A. Bruno, S. Gabelli, G. Gentile Istruzioni (a) La sufficienza

Dettagli

non solo otteniamo il valore cercato per la validità della (1.4), ma anche che tale valore non dipende da

non solo otteniamo il valore cercato per la validità della (1.4), ma anche che tale valore non dipende da NOTE INTEGRATIVE PER IL CORSO DI ANALISI MATEMATICA 2 ANNO ACCADEMICO 2012/13 NOTE SULLA CONTINUITÀ UNIFORME D.BARTOLUCCI, D.GUIDO Sia f(x) = x 3, x [ 1, 1]. Si ha 1. La continuità uniforme x 3 y 3 = x

Dettagli

ESERCIZI DI ANALISI MATEMATICA II. sin(tv) v. f(v) dv = (1 + t) (e 1/t + 1)

ESERCIZI DI ANALISI MATEMATICA II. sin(tv) v. f(v) dv = (1 + t) (e 1/t + 1) ESERCIZI DI ANALISI MATEMATICA II Equazioni differenziali ED 1 Stabilire se l equazione integrale f(t) 1/2 0 sin(tv) v f(v) dv = (1 + t) (e 1/t + 1) ammette una soluzione nello spazio C([0, 1/2]). (Suggerimento:

Dettagli

Facoltà di Scienze MM.FF.NN. Corso di Laurea in Matematica - A.A Prova scritta di Analisi Matematica I del c.

Facoltà di Scienze MM.FF.NN. Corso di Laurea in Matematica - A.A Prova scritta di Analisi Matematica I del c. Prova scritta di Analisi Matematica I del 22-5-2 - c. ) Provare che 3 3è irrazionale. 2) Provare che il grafico di f(x) =(x ) + 2 sin[(x ) ]:R \{} R ammette la retta di equazione x = come asintoto verticale.

Dettagli

Matrici delle differenze finite

Matrici delle differenze finite Capitolo 8 Matrici delle differenze finite Si riportano in questo capitolo alcuni risultati e proprietà delle matrici delle differenze finite ovvero delle matrici che intervengono nel metodo delle differenze

Dettagli

Metodi di Ricerca Lineare

Metodi di Ricerca Lineare Metodi di Ricerca Lineare Stefano Gualandi Università di Pavia, Dipartimento di Matematica email: twitter: blog: stefano.gualandi@unipv.it @famo2spaghi http://stegua.github.com Metodi di Ottimizzazione

Dettagli

Analisi Matematica 1 Soluzioni prova scritta n. 1

Analisi Matematica 1 Soluzioni prova scritta n. 1 Analisi Matematica Soluzioni prova scritta n Corso di laurea in Matematica, aa 008-009 5 giugno 009 Sia a n la successione definita per ricorrenza: a n+ 3 a n a 3 n, a 3 a n+ 3 a n a 3 n, a 3 a n+ 3 a

Dettagli

Esercizio 1. Esercizio 2

Esercizio 1. Esercizio 2 Sia data la matrice A A(α) = Esercizio α 2 2α 2 2, α R.) determinare per quali valori del parametro reale α é verificata la condizione necessaria e sufficiente di convergenza per il metodo di Jacobi;.2)

Dettagli

INTERPOLAZIONI CON SPLINE

INTERPOLAZIONI CON SPLINE INTERPOLAZIONI CON SPLINE Assegnati gli n +1valori che la funzione f assume nei nodi x i, si costruisce un interpolazione polinomiale a tratti. In ognuno degli intervalli [x i 1,x i ] il polinomio interpolatore

Dettagli

Soluzione della Prova Scritta di Analisi Matematica 4-25/06/13. C.L. in Matematica e Matematica per le Applicazioni. Proff. K. R. Payne e E.

Soluzione della Prova Scritta di Analisi Matematica 4-25/06/13. C.L. in Matematica e Matematica per le Applicazioni. Proff. K. R. Payne e E. Soluzione della Prova Scritta di Analisi Matematica 4-5/6/ C.L. in Matematica e Matematica per le Applicazioni Proff. K. R. Payne e E. Terraneo Esercizio. a. Le funzioni f n (x) sono continue e quindi

Dettagli

ANALISI MATEMATICA I, Compito scritto del 5/07/2016 Corso di Laurea in Matematica. COGNOME e NOME... MATR T

ANALISI MATEMATICA I, Compito scritto del 5/07/2016 Corso di Laurea in Matematica. COGNOME e NOME... MATR T ANALISI MATEMATICA I, Compito scritto del 5/7/6 Corso di Laurea in Matematica COGNOME e NOME... MATR... 3 4 T Nelle risposte devono essere riportati anche i conti principali e le motivazioni principali.

Dettagli

Esame di Calcolo Numerico per Informatica A.A. 2010/11 Proff. S. De Marchi e M. R. Russo 31 agosto 2011 Testo e soluzioni

Esame di Calcolo Numerico per Informatica A.A. 2010/11 Proff. S. De Marchi e M. R. Russo 31 agosto 2011 Testo e soluzioni Esame di Calcolo Numerico per Informatica A.A. 21/11 Proff. S. De Marchi e M. R. Russo 31 agosto 211 Testo e soluzioni L esame consiste di 4 domande aperte e 1 esercizi a risposta multipla. Per gli esercizi

Dettagli

Recupero 1 compitino di Analisi Matematica 2 Ingegneria Elettronica. Politecnico di Milano. A.A. 2016/2017. Prof. M. Bramanti.

Recupero 1 compitino di Analisi Matematica 2 Ingegneria Elettronica. Politecnico di Milano. A.A. 2016/2017. Prof. M. Bramanti. Recupero 1 compitino di Analisi Matematica Ingegneria Elettronica. Politecnico di Milano Es. Punti A.A. 16/17. Prof. M. Bramanti 1 Tema n 1 3 4 6 Tot. Cognome e nome in stampatello codice persona o n di

Dettagli

Ingegneria Elettronica Prova scritta di Analisi Matematica II del giorno ( 3) n x n n + 1

Ingegneria Elettronica Prova scritta di Analisi Matematica II del giorno ( 3) n x n n + 1 Prova scritta di Analisi Matematica II del giorno 31-01-2007 1) Studiare la serie di potenze ( 3) n x n n + 1 2) Determinare i punti di estremo relativo ed assoluto della funzione seguente f(x, y) = x

Dettagli

Soluzione della prova scritta di Analisi Matematica II del 15 Aprile 2009 (Ingegneria Edile e Architettura)

Soluzione della prova scritta di Analisi Matematica II del 15 Aprile 2009 (Ingegneria Edile e Architettura) Soluzione della prova scritta di Analisi Matematica II del 5 Aprile 009 Ingegneria Edile e Architettura x. Calcolare J = ds essendo γ la curva ottenuta intersecando γ + y il cilindro di equazione x + y

Dettagli

Calcolo differenziale 2: Massimi e minimi. Studio di una funzione. (M.S.Bernabei & H. Thaler)

Calcolo differenziale 2: Massimi e minimi. Studio di una funzione. (M.S.Bernabei & H. Thaler) Calcolo differenziale 2: Massimi e minimi. Studio di una funzione. (M.S.Bernabei & H. Thaler) Studio di una funzione Funzioni crescenti e decrescenti Una funzione f é crescente nell intervallo (a, b) se

Dettagli

Prova scritta di Analisi Matematica T-B, Ingegneria Meccanica, 17/06/2014

Prova scritta di Analisi Matematica T-B, Ingegneria Meccanica, 17/06/2014 Prova scritta di Analisi Matematica T-B, Ingegneria Meccanica, 17/06/2014 MATRICOLA:...NOME e COGNOME:............................................. Desidero sostenere la prova orale al prossimo appello

Dettagli

Laboratorio di Calcolo Numerico - Corso di Laurea in Matematica Appello d esame del 12/07/2012

Laboratorio di Calcolo Numerico - Corso di Laurea in Matematica Appello d esame del 12/07/2012 Cognome: Nome: Matricola: Laboratorio di Calcolo Numerico - Corso di Laurea in Matematica Appello d esame del 12/07/2012 ESERCIZIO 1 [10 punti] Si consideri il problema di approssimare le radici α 1 =

Dettagli