La soluzione approssimata consiste nella soluzione di un problema pi u facile che approssima quello dato. Nella tecnica di rilassamento l'approssimazi

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "La soluzione approssimata consiste nella soluzione di un problema pi u facile che approssima quello dato. Nella tecnica di rilassamento l'approssimazi"

Transcript

1 Tecniche di soluzione di sistemi di equazioni non-lineari Le tecniche di rilassamento riguardano principalmente la soluzione per via numerica di sistemi di equazioni. Risultano particolarmente semplici dal punto di vista della formulazione e di grande utilit a. Consideriamo come classe di problemi di riferimento: la soluzione dei problemi circuitali. Con riferimento a questa classe di problemi considereremo le altre per estensione. Prendiamo in esame il simulatore circuitale standard SPICE. Possiamo riassumere l'algoritmo di risoluzione Figura : Diagramma della soluzione di un sistema di equazioni differenziali del primo ordine nel modo di figura. Il percorso che si segue per giungere alla soluzione consiste nel passaggio dall'equazione algebrica a un sistema non lineare, e di qui a un problema lineare. passi dell'algoritmo cresce pi u che linearmente con il numero di incognite. N! o(n fi ) fi =; Ξ ; 5 Il numero di Per la soluzione del problema si possono usare tecniche di integrazione di tipo esplicito che consistono nel risolvere l'equazione _x = f (x (t);x (t)) tramite x (t + x) x (t) t ο= f (x (t);x (t)) Con tale sistema non risolvo l'equazione ma calcolo un valore all'istante t+ t a partire dagli istanti precedenti. Tale procedimento ha l'inconveniente di non essere stabile se t non e piccolissimo. E` un problema STIFF e sono presenti costanti di tempo molto diverse, il che fa aumentare eccessivamente il numero di passi di integrazione. (formulazione implicita) che risolve l'equazione differenziale come x (t + t) x (t) t Alternativamente uso un metodo di Eulero = f (x (t + t);x (t + t)) e riesco a ottenere un risultato ragionevole 8 t assuma. Terminata tale panoramica introduttiva procediamo passando alle tecniche di rilassamento. Si tratta di tecniche iterative diverse da quelle dirette, si determina una successione di soluzioni approssimate che convergono alla soluzione esatta. Tecniche di rilassamento per sistemi di equazioni lineari Il nostro sistema da risolvere abbia la forma Ax = b dove [A] = n n. Invece di considerare il problema originario, si considera un problema approssimato per il quale si conosce la soluzione.

2 La soluzione approssimata consiste nella soluzione di un problema pi u facile che approssima quello dato. Nella tecnica di rilassamento l'approssimazione consiste nel considerare la soluzione di un sistema di equazioni disaccoppiate. Si rilascia che le equazioni del sistema non sono risolte simultaneamente. Esempio: ρ ax + a x = b a x + a x = b il rilassamento provoca il disaccoppiamento. Gli schemi principali sono due, vanno sotto il nome di: ffl Tecnica di Gauss-Jacobi ffl Tecnica di Gauss-Seidel.0. Tecnica di Gauss-Jacobi Ogni equazione viene risolta indipendentemente dalle altre in ogni passo di iterazione. La matrice Figura : La matrice A A (vedi fig: ) la possiamo scrivere come A = L + D + U e chiaramente questa non e una fattorizzazione. A questo punto possiamo scrivere al posto di Ax = b Dx (L + U )x + b e si determina la soluzione approssimata tramite Dx k+ (L + U )x k + b =) x (k+) D (L + U ) z } M GJx (K) + D b da cui segue che (.0. Tecnica di Gauss-Seidel In questo caso l'equazione Ax = b la riscriviamo e successivamente la soluzione da ovvero esplicitamente ( x k+ a a x k + a b x k+ a a x k + a b (D + L)x Ux + b (D + L)x (k+) =(D + L) U z } M GS x k+ a a x k + a b x k+ a a x k+ + a b notiamo che qui riutilizziamo il nuovo valore di x. x (k) +(D + L) b

3 .0.3 Convergenza del metodo La convergenza dipende dalle caratteristiche delle matrici M GS e M GJ. Dal punto di vista tecnico si dimostra che la condizione necessaria e sufficiente e che gli autovalori delle due matrici siano in modulo minori dell'unit a, si dice anche che "il raggio spettrale" di M GJ (o M GS )deve essere minore di uno. Esiste una condizione sufficiente di pi u immediata verifica sui coefficienti della diagonale: A deve essere diagonalmente dominante. Ci o implica che il modulo degli elementi della diagonale sia maggiore della somma dei moduli dei restanti termini della riga. La convergenza e indipendente dal valore di partenza nell'iterazione..0.4 Rapidit a diconvergenza In questo caso e lineare e la esprimiamo con kx k+ ^xk μοkx k ^xk Dipende dall'ordine delle equazioni. In particolare, per la tecnica di Gauss-Seidel, e pi u rapida se A e triangolare inferiore. Tecniche di rilassamento per sistemi di equazioni algebriche non lineari Consideriamo sistemi di equazioni non lineari ρ g (x ;x ) = 0 g (x ;x ) = 0 Nel caso di tecnica di Gauss Jacobi l'equazione non lineare viene approssimata con g j (x k ;xk ; ::; xk+ j ;::;x k n )=0 che e incognita nella variabile x j per tutte le j. Invece nel secondo caso, quello di Gauss-Seidel, per ciascuna j abbiamo g j (x k+ ;x k+ ;::;x k+ j ;x k j+ ; ::; xk n )=0 In pratica possiamo notare che si segue l'ordine di una struttura triangolare inferiore. Da un sistema di n equazioni non lineari algebriche con la tecnica di rilassamento viene si perviene a n equazioni non lineari..0.5 Convergenza Dato il sistema g(x) = 0 consideriamo, in un intorno della soluzione x =^a, la matrice g 0 n n Possiamo scrivere che g 0 (^x) =L 0 + D 0 + U 0 la matrice jacobiana, valutata nel punto ^x, e scomponibile a sua volta nella somma di tre matrici e quindi siamo in grado di definire nuove matrici M 0 GJ D0 (L 0 + U 0 ) j x=^x 3

4 M 0 GS (D0 + L 0 ) U 0 j x=^x La convergenza riguarda queste matrici ed e formulata in modo del tutto ananlogo al precedente. Teorema della convergenza. Se il raggio spettrale di MGS 0 (M GJ 0 ) e minore di uno la tecnica di rilassamento converge se x 0 einunintorno limitato di ^x. La cosa importante da sottolineare e che la convergenza dipende dalla struttura delle equazioni ma anche dalla stima del valore iniziale x 0. Quindi devo premunirmi di avere pi u di una condizione iniziale. Passiamo a discutere come posso risolvere le singole equazioni algebriche non lineari. Adottiamo la tecnica di Newton-Ramsom secondo due schemi alternativi (vedi fig: 3). (a) (b) Figura 3: Applicazione della tecnica di Newton-Ramson secondo due alternative.0.6 Rapidit a diconvergenza Per quel che riguarda la rapidit a di convergenza dipende dall'ordine di risoluzione delle equazioni (G-S) e torna utile definire la matrice di dipendenza [P ij ]dove ciascun elemento p ij e unitario se g i dipende dalla variabile j, altrimenti nullo. Per incrementare la velocit a diconvergenza devo far in modo, riordinando, di avere una matrice P triangolare inferiore. 3 Confronto con un simulatore Concludiamo il discorso sul parallelo con la simulazione circuitale (vedi fig: 4). Non si trasforma Figura 4: Parallelo tra simulatore standard e tecnica di rilassamento il sistema differenziale in un sistema algebrico, ma ciascuna e risolta a s e. Rimuovo il vincolo del sistema anche a partire dall'equazione differenziale. Esempio: ( dx(t) dx (t) = f (x ;x ;t) = f (x ;x ;t) 4

5 con Gauss Seidel lo risolviamo grazie a dx k+ (t) = f (x k+ (t);x k (t);t) dx k+ (t) = f (x k+ (t);x k+ (t);t) usando una tecnica di rilassamento aformed'onda prima copro tutto il dominio temporale poi passo al k successivo. potenza inferiore all'unit a. Il tempo di risoluzione aumenta con il numero di incognite ma con una 4 Tecnica di sovrarilassamento Si tratta di una tecnica che circuitalmente e poco usata. Partendo da Gauss-Seidel ricaviamo x k+ (L + D) (Ux k b) scriviamo x k+ = x k (L + D) [(L + D + U )x k b] e definiamo una quantit a residuo al passo k r k Ax k b: A questo punto riscriviamo x k+ = x k (L + D) r k Facciamo intervenire la tecnica di sovrarilassamento e scriviamo x k+ = x k (!((L + D) r k dove! rappresenta il parametro di sovrarilassamento.si pu o dimostrare che questa tecnica converge se 0 <!< ; in particolare si distingue tra sottorilassamento (0 <!< ) e sovrarilassamento ( <! < ). Nel caso particolare in cui! sia unitario ritorniamo alla tradizionale tecnica di Gauss Seidel. La tecnica SOR pu o garantire una convergenza pi u veloce con opportuna scelte di!, seguendo criteri empirici. 5 Conclusione Qualunque problema integrale/differenziale, che sia ricondotto a una forma discreta come sistema di equazioni algebriche lineari o non lineari, pu o essere risolto con tecniche di rilassamento. Esempi: ffl Problemi variazionali =) con Eulero Lagrange e ricondotto a un sistema di equazioni differenziali di cui si considera la forma discretizzata =) mappatura su circuiti di resistenze e generatori R ffl Equazioni integrali! partendo dall'equazione e(x) =b K FB (x; x 0 )e(x 0 )dx 0 +s(x) diamo una forma discretizzata dell'integrale e(x) =b X j w j K FB (x; x 0 j )e(x0 j )+s(x) e infine discretizzando il sistema e(x i )=b X j w j K FB (x i ;x 0 j )e(x)0 j )+s(x i) 5

6 In definitiva abbiamo ricavato un sistema di equazioni lineari esprimibile attraverso e i = b X j ~k ij e j + s i ovvero in forma vettoriale A~e = vecs dove A ( b ~ k)ed echiaro che a questo punto possiamo applicare la tecnica di rilassamento. 6

Calcolo Numerico con elementi di programmazione

Calcolo Numerico con elementi di programmazione Calcolo Numerico con elementi di programmazione (A.A. 2014-2015) Appunti delle lezioni sui metodi numerici per la soluzione di sistemi lineari Metodi Iterativi la soluzione si ottiene tramite approssimazioni

Dettagli

Complementi di Matematica e Calcolo Numerico A.A Laboratorio 6 Metodi iterativi per sistemi lineari

Complementi di Matematica e Calcolo Numerico A.A Laboratorio 6 Metodi iterativi per sistemi lineari Complementi di Matematica e Calcolo Numerico A.A. 2017-2018 Laboratorio 6 Metodi iterativi per sistemi lineari Dati una matrice A R N N non singolare e un vettore b R N, un metodo iterativo per la risoluzione

Dettagli

Corso di Calcolo Numerico

Corso di Calcolo Numerico Corso di Laurea in Ingegneria Gestionale Sede di Fermo Corso di 8 - METODI ITERATIVI PER I SISTEMI LINEARI Norme Una norma in R n è una funzione. : R n R tale che x 0 x R n ; x = 0 x = 0; αx = α x ; x

Dettagli

Calcolo Numerico per Ingegneria. Corso estivo di Bressanone. Prof. L. Bergamaschi SOLUZIONE DELLA PROVA SCRITTA del

Calcolo Numerico per Ingegneria. Corso estivo di Bressanone. Prof. L. Bergamaschi SOLUZIONE DELLA PROVA SCRITTA del Calcolo Numerico per Ingegneria. Corso estivo di Bressanone. Prof. L. Bergamaschi SOLUZIONE DELLA PROVA SCRITTA del 9.8.2. Data l equazione x x = (a) Mostrare che essa ammette una e una sola soluzione

Dettagli

Risoluzione di sistemi lineari sparsi e di grandi dimensioni

Risoluzione di sistemi lineari sparsi e di grandi dimensioni Risoluzione di sistemi lineari sparsi e di grandi dimensioni Un sistema lineare Ax = b con A R n n, b R n, è sparso quando il numero di elementi della matrice A diversi da zero è αn, con n α. Una caratteristica

Dettagli

Algebra Lineare Metodi Iterativi

Algebra Lineare Metodi Iterativi Algebra Lineare Metodi Iterativi Stefano Berrone Sandra Pieraccini DIPARTIMENTO DI MATEMATICA POLITECNICO DI TORINO, CORSO DUCA DEGLI ABRUZZI 24, 10129, TORINO, ITALY e-mail: sberrone@calvino.polito.it,

Dettagli

Cenni sui metodi iterativi per sistemi lineari. Analisi Numerica Prof. M. Lucia Sampoli a.a. 2014/2015

Cenni sui metodi iterativi per sistemi lineari. Analisi Numerica Prof. M. Lucia Sampoli a.a. 2014/2015 Cenni sui metodi iterativi per sistemi lineari Analisi Numerica Prof. M. Lucia Sampoli a.a. 2014/2015 Metodi numerici per sistemi lineari Nei metodi diretti la presenza di eventuali elementi nulli nella

Dettagli

ESERCIZI DI CALCOLO NUMERICO

ESERCIZI DI CALCOLO NUMERICO Mawell ESERCZ D CLCOLO NUMERCO Sistemi lineari Esercizio : Date e erminare la fattorizzazione LU applicando il pivoting parziale; usando la fattorizzazione LU, risolvere il sistema lineare. Svolgiamo l

Dettagli

Calcolo Numerico I - a.a Laboratorio 9 - Sistemi lineari

Calcolo Numerico I - a.a Laboratorio 9 - Sistemi lineari Calcolo Numerico I - a.a. 200-20 Laboratorio 9 - Sistemi lineari Fattorizzazione di Cholesky Se A R n n è una matrice simmetrica definita positiva, allora esiste una matrice R R n n triangolare superiore

Dettagli

8 Metodi iterativi per la risoluzione di sistemi lineari

8 Metodi iterativi per la risoluzione di sistemi lineari 8 Metodi iterativi per la risoluzione di sistemi lineari È dato il sistema lineare Ax = b con A R n n e x, b R n, con deta 0 Si vogliono individuare dei metodi per determinarne su calcolatore la soluzione,

Dettagli

Metodi iterativi SISTEMI LINEARI. Metodi Iterativi. Metodo di rilassamento successivo e metodi del gradiente

Metodi iterativi SISTEMI LINEARI. Metodi Iterativi. Metodo di rilassamento successivo e metodi del gradiente Metodi iterativi Metodo di rilassamento successivo e metodi del gradiente Metodi iterativi Metodi iterativi 1 Il metodo di rilassamento successivo Condizioni per la convergenza 2 Metodi del Metodo della

Dettagli

1. Lunedì 26/09/2016, ore: 2(2) Introduzione al corso: problemi ben posti, condizionamento, stabilità, complessità

1. Lunedì 26/09/2016, ore: 2(2) Introduzione al corso: problemi ben posti, condizionamento, stabilità, complessità Registro delle lezioni di MATEMATICA APPLICATA Corsi di Laurea in Biomedica 6 CFU - A.A. 2016/2017 docente: Dott.ssa Luisa Fermo ultimo aggiornamento: 13 dicembre 2016 1. Lunedì 26/09/2016, 11 13. ore:

Dettagli

Osservazione. Convergenza dei metodi di Gauss-Seidel e di Jacobi. Condizioni sufficienti per la convergenza. Definizione

Osservazione. Convergenza dei metodi di Gauss-Seidel e di Jacobi. Condizioni sufficienti per la convergenza. Definizione Osservazione Convergenza dei metodi di Gauss-Seidel e di Jacobi Fallimento dei metodi. (Es. Gauss- Seidel Condizioni sufficienti; teoremi di localizzazione degli autovalori; dimostrazione di convergenza

Dettagli

Compito numero 2 - Compito intero

Compito numero 2 - Compito intero Esercitazione 6 - Correzione esame dell 8//3 Lucia Pilleri 9//3 Compito numero - Compito intero Esercizio del parziale - del compito intero Risolvere, mediante la fattorizzazione P A = LU, il sistema lineare

Dettagli

1. Mercoledì 1/10/2014, ore: 2(2) Introduzione al corso: problemi ben posti, condizionamento, stabilità, complessità

1. Mercoledì 1/10/2014, ore: 2(2) Introduzione al corso: problemi ben posti, condizionamento, stabilità, complessità Registro delle lezioni di MATEMATICA APPLICATA Corsi di Laurea in Biomedica 6 CFU - A.A. 2014/2015 docente: Dott.ssa Luisa Fermo ultimo aggiornamento: 16 dicembre 2014 1. Mercoledì 1/10/2014, 15 17. ore:

Dettagli

Fondamenti di Fisica Matematica: Secondo parziale Cognome e nome:...matricola:... es.1 es.2 es.3 es.4 es.5 somma

Fondamenti di Fisica Matematica: Secondo parziale Cognome e nome:...matricola:... es.1 es.2 es.3 es.4 es.5 somma Fondamenti di Fisica Matematica: Secondo parziale 6..03 Cognome e nome:....................................matricola:......... es. es. es.3 es.4 es.5 somma 7 7 0 6 6 30 Voto: es.+es.+es.3+max(es.4,es.5).

Dettagli

1. Martedì 29/09/2015, ore: 2(2) Introduzione al corso: problemi ben posti, condizionamento, stabilità, complessità

1. Martedì 29/09/2015, ore: 2(2) Introduzione al corso: problemi ben posti, condizionamento, stabilità, complessità Registro delle lezioni di MATEMATICA APPLICATA Corsi di Laurea in Biomedica 6 CFU - A.A. 2015/2016 docente: Dott.ssa Luisa Fermo ultimo aggiornamento: 18 dicembre 2015 1. Martedì 29/09/2015, 12 14. ore:

Dettagli

APPUNTI DI MODELLI NUMERICI PER I CAMPI

APPUNTI DI MODELLI NUMERICI PER I CAMPI APPUNTI DI MODELLI NUMERICI PER I CAMPI Giovanni Miano UNIVERSITÀ DEGLI STUDI DI NAPOLI FEDERICO II POLO DELLE SCIENZE E DELLE TECNOLOGIE FACOLTÀ DI INGEGNERIA Indice 1. Richiami sui problemi di campo

Dettagli

1. Martedì 27/09/2016, ore: 2(2) Introduzione al corso: problemi ben posti, condizionamento, stabilità, complessità

1. Martedì 27/09/2016, ore: 2(2) Introduzione al corso: problemi ben posti, condizionamento, stabilità, complessità Registro delle lezioni di MATEMATICA APPLICATA Corsi di Laurea in Chimica e Meccanica 6 CFU - A.A. 2016/2017 docente: Dott.ssa Luisa Fermo ultimo aggiornamento: 15 dicembre 2016 1. Martedì 27/09/2016,

Dettagli

Registro di Matematica Applicata /18 - Dott.ssa L. Fermo 2

Registro di Matematica Applicata /18 - Dott.ssa L. Fermo 2 Registro delle lezioni di MATEMATICA APPLICATA Corsi di Laurea in Biomedica 6 CFU - A.A. 2017/2018 docente: Dott.ssa Luisa Fermo ultimo aggiornamento: 15 dicembre 2017 1. Lunedì 25/09/2017, 11 13. ore:

Dettagli

Esercizio 1. Esercizio 2

Esercizio 1. Esercizio 2 Sia data la matrice A A(α) = Esercizio α 2 2α 2 2, α R.) determinare per quali valori del parametro reale α é verificata la condizione necessaria e sufficiente di convergenza per il metodo di Jacobi;.2)

Dettagli

Metodi iterativi per sistemi lineari

Metodi iterativi per sistemi lineari Generare una successione di vettori Metodi iterativi per sistemi lineari convergente alla soluzione del sistema Convergenza in norma Costruzione di un metodo iterativo Per una qualche norma vettoriale

Dettagli

Registro di Matematica Applicata /18 - Dott.ssa L. Fermo 2

Registro di Matematica Applicata /18 - Dott.ssa L. Fermo 2 Registro delle lezioni di MATEMATICA APPLICATA Corsi di Laurea in Biomedica 6 CFU - A.A. 2018/2019 docente: Dott.ssa Luisa Fermo ultimo aggiornamento: 19 dicembre 2018 1. Mercoledì 26/09/2018, 15 17. ore:

Dettagli

Raccolta di esercizi di Calcolo Numerico Prof. Michela Redivo Zaglia

Raccolta di esercizi di Calcolo Numerico Prof. Michela Redivo Zaglia Raccolta di esercizi di Calcolo Numerico Prof. Michela Redivo Zaglia Nota Bene: Gli esercizi di questa raccolta sono solo degli esempi. Non sono stati svolti né verificati e servono unicamente da spunto

Dettagli

1. Mercoledì 27/09/2017, ore: 2(2) Introduzione al corso: problemi ben posti, condizionamento, stabilità, complessità

1. Mercoledì 27/09/2017, ore: 2(2) Introduzione al corso: problemi ben posti, condizionamento, stabilità, complessità Registro delle lezioni di MATEMATICA APPLICATA Corsi di Laurea in Chimica e Meccanica 6 CFU - A.A. 2017/2018 docente: Dott.ssa Luisa Fermo ultimo aggiornamento: 15 dicembre 2017 1. Mercoledì 27/09/2017,

Dettagli

SISSA Area Matematica Esame di ammissione per il corso di Analisi Matematica, Modelli e Applicazioni 2 maggio 2017

SISSA Area Matematica Esame di ammissione per il corso di Analisi Matematica, Modelli e Applicazioni 2 maggio 2017 SISSA Area Matematica Esame di ammissione per il corso di Analisi Matematica, Modelli e Applicazioni 2 maggio 217 Il candidato risolva CINQUE dei seguenti problemi, e indichi chiaramente sulla prima pagina

Dettagli

Un sistema lineare si rappresenta in generale come

Un sistema lineare si rappresenta in generale come SISTEMI LINEARI Un sistema lineare si rappresenta in generale come n j=1 a ij x j = b i i = 1, 2,..., m o anche AX = B. La soluzione esiste se e solo se B appartiene allo spazio lineare generato dalle

Dettagli

Successioni e serie di funzioni

Successioni e serie di funzioni Capitolo 2 Successioni e serie di funzioni In questo capitolo studiamo le successioni e le serie di funzioni. quindi particolari metodi per approssimare una data funzione Studiamo CAPITOLO 2. SUCCESSIONI

Dettagli

Calcolo Numerico Corso di Laurea in Informatica Preappello del 28/05/2014 (durata due ore) Tema 1

Calcolo Numerico Corso di Laurea in Informatica Preappello del 28/05/2014 (durata due ore) Tema 1 Calcolo Numerico Corso di Laurea in Informatica Preappello del 28/05/204 (durata due ore) Tema MAT. COGNOME NOME quesiti a risposta chiusa Per ogni quesito, indicare la casella che ha la miglior risposta.

Dettagli

1. Martedì 1/10/2013, ore: 2(2) Introduzione al corso: problemi ben posti, condizionamento, stabilità, complessità

1. Martedì 1/10/2013, ore: 2(2) Introduzione al corso: problemi ben posti, condizionamento, stabilità, complessità Registro delle lezioni di MATEMATICA APPLICATA Corsi di Laurea in Biomedica 6 CFU - A.A. 2013/2014 docente: Dott.ssa Luisa Fermo ultimo aggiornamento: 18 dicembre 2013 1. Martedì 1/10/2013, 12 14. ore:

Dettagli

Corso di Analisi Numerica - AN1. Parte 3: metodi iterativi per sistemi lineari ed. equazioni nonlineari. Roberto Ferretti

Corso di Analisi Numerica - AN1. Parte 3: metodi iterativi per sistemi lineari ed. equazioni nonlineari. Roberto Ferretti Corso di Analisi Numerica - AN1 Parte 3: metodi iterativi per sistemi lineari ed equazioni nonlineari Roberto Ferretti Filosofia generale dei metodi iterativi Metodi iterativi per Sistemi Lineari Convergenza

Dettagli

Mauro Saita, Esercizio 1.1 Determinare tutti i sottospazi vettoriali degli spazi vettoriali R, IR 2, IR 3 motivando

Mauro Saita,   Esercizio 1.1 Determinare tutti i sottospazi vettoriali degli spazi vettoriali R, IR 2, IR 3 motivando CORSO DI ALGEBRA LINEARE: Esercitazione n.1 del 20/12/2004. Mauro Saita, e-mail: maurosaita@tiscalinet.it 1 Spazi vettoriali. Sottospazi. Esercizio 1.1 Determinare tutti i sottospazi vettoriali degli spazi

Dettagli

Federica Gregorio e Cristian Tacelli

Federica Gregorio e Cristian Tacelli 1 Sistemi lineari Federica Gregorio e Cristian Tacelli Un sistema lineare m n (m equazioni in n incognite) è un insieme di equazioni lineari che devono essere soddisfatte contemporaneamente a 11 x 1 +

Dettagli

Quale delle seguenti rappresentazioni del numero reale è in virgola mobile normalizzata?

Quale delle seguenti rappresentazioni del numero reale è in virgola mobile normalizzata? Quale delle seguenti istruzioni MATLAB esegue il calcolo del raggio spettrale di una matrice quadrata A? a. max(eig(abs(a))) b. max(abs(eig(a))) c. abs(max(eig(a))) d. max(abs(eig(a *A))) Il raggio spettrale

Dettagli

Corso di Geometria BIAR, BSIR Esercizi 3: soluzioni

Corso di Geometria BIAR, BSIR Esercizi 3: soluzioni Corso di Geometria - BIAR, BSIR Esercizi : soluzioni Rango e teorema di Rouché-Capelli Esercizio. Calcolare il rango di ciascuna delle seguenti matrici: ( ) ( ) ( ) A =, A =, A =, A 4 = ( ). a a a Soluzione.

Dettagli

Compito di Analisi Matematica II del 28 giugno 2006 ore 11

Compito di Analisi Matematica II del 28 giugno 2006 ore 11 Compito di Analisi Matematica II del 28 giugno 26 ore Esercizio. ( punti) Calcolare il flusso del campo vettoriale F (,, z) = (z, z 2, z 2 ) } uscente dalla frontiera di D = (,, z) R 3 : 2 + z 2, z,. Svolgimento

Dettagli

Esercitazione di Calcolo Numerico 1 27 Maggio Calcolare la fattorizzazione P A = LU della matrice A =

Esercitazione di Calcolo Numerico 1 27 Maggio Calcolare la fattorizzazione P A = LU della matrice A = Esercitazione di Calcolo Numerico 1 27 Maggio 29 1. Calcolare la fattorizzazione P A = LU della matrice 1 2 3 A = 2 3 3, ed utilizzarla per risolvere il sistema lineare Ax = b, con b = (1, 2,, 16) T. 2.

Dettagli

Metodi iterativi per la soluzione di sistemi lineari: Jacobi e Gauss-Seidel

Metodi iterativi per la soluzione di sistemi lineari: Jacobi e Gauss-Seidel Metodi iterativi per la soluzione di sistemi lineari: Jacobi e Gauss-Seidel Alvise Sommariva Università degli Studi di Padova Dipartimento di Matematica Pura e Applicata 15 aprile 2013 Alvise Sommariva

Dettagli

Dispense del corso di Metodi Numerici per le Equazioni Differenziali

Dispense del corso di Metodi Numerici per le Equazioni Differenziali Dispense del corso di Metodi Numerici per le Equazioni Differenziali Progetto numerico al calcolatore - Parte III Soluzione agli elementi finiti di un problema parabolico Mario Putti Dipartimento di Matematica

Dettagli

Metodi Numerici con elementi di Programmazione (A.A )

Metodi Numerici con elementi di Programmazione (A.A ) Metodi Numerici con elementi di Programmazione (A.A. 2018-2019) Metodi Numerici Appunti delle lezioni: Sistemi non lineari Docente Vittoria Bruni Email: vittoria.bruni@sbai.uniroma1.it Ufficio: Via A.

Dettagli

Teoremi di localizzazione degli autovalori

Teoremi di localizzazione degli autovalori Teoremi di localizzazione degli autovalori I Teorema di Gerschgorin. Sia A R n n. Gli autovalori di A stanno nell unione dei cerchi di Gerschgorin K i, i = 1,..., n, ove K i = z C, z a ii j=1,n,j i a ij

Dettagli

Preparazione orale analisi numerica:

Preparazione orale analisi numerica: Preparazione orale analisi numerica: CAPITOLO Errori (1): Ricavare il coefficiente di amplificazione: Sviluppare la serie di Taylor su di centro CAPITOLO Gerschgorin (4): Primo teorema di Gershgorin (Massimizzare

Dettagli

CALCOLO NUMERICO Prof. L. Gori Prova d esame

CALCOLO NUMERICO Prof. L. Gori Prova d esame CALCOLO NUMERICO Prof. L. Gori Prova d esame 2-7-998 ESERCIZIO. Data la seguente formula di quadratura: f(x)dx = ( ) 3 3 2 f + Af( x) + R 6 0 (.) Determinare A e x in modo che il grado di precisione sia.

Dettagli

Problemi parabolici. u(0, t) = u(l, t) = 0 t (1)

Problemi parabolici. u(0, t) = u(l, t) = 0 t (1) Problemi parabolici L esempio più semplice di equazione differenziale di tipo parabolico è costituito dall equazione del calore, che in una dimensione spaziale è data da u t (x, t) ku xx (x, t) = x [,

Dettagli

Corso di Calcolo Numerico

Corso di Calcolo Numerico Corso di Laurea in Ingegneria Gestionale Sede di Fermo Corso di 9 - EQUAZIONI DIFFERENZIALI ORDINARIE valori iniziali Valori iniziali Ci occuperemo della soluzione numerica di equazioni del prim ordine

Dettagli

Equazioni differenziali

Equazioni differenziali 1 Equazioni differenziali Definizioni introduttive Una equazione differenziale è una uguaglianza che contiene come incognita una funzione f x, insieme con le sue derivate rispetto alla variabile indipendente

Dettagli

Teoria Es. 1 Es. 2 Es.3 Es. 4 Totale. Cognome: Nome: Matricola: Prima Parte. x a dx

Teoria Es. 1 Es. 2 Es.3 Es. 4 Totale. Cognome: Nome: Matricola: Prima Parte. x a dx Teoria Es. Es. 2 Es. Es. 4 Totale Analisi e Geometria Appello 5/07/209 Docente: Numero di iscrizione all appello: Cognome: Nome: Matricola: Prima Parte (a) Prima domanda di teoria. ( punti) Enunciare e

Dettagli

Esercitazioni di Analisi e Simulazione dei Processi Chimici

Esercitazioni di Analisi e Simulazione dei Processi Chimici Esercitazioni di Analisi e Simulazione dei Processi Chimici Metodi numerici per la risoluzione di sistemi di equazioni differenziali ordinarie Antonio Brasiello Email: abrasiel@unina.it Tel. 081 76 82537

Dettagli

ESERCIZI SULLE MATRICI

ESERCIZI SULLE MATRICI ESERCIZI SULLE MATRICI Consideriamo il sistema lineare a, x + a, x + + a,n x n = b a, x + a, x + + a,n x n = b a m, x + a m, x + + a m,n x n = b m di m equazioni in n incognite che ha a, a,n A = a m, a

Dettagli

Calcolo Numerico (CdS in Matematica) A.A. 2012/13

Calcolo Numerico (CdS in Matematica) A.A. 2012/13 Calcolo Numerico (CdS in Matematica) A.A. 2012/13 Esercitazione di Laboratorio sulla risoluzione di sistemi di equazioni lineari Parte 1. Fattorizzazione di matrici Scrivere una funzione Matlab che implementi

Dettagli

Progetto Matlab N 2. Calcolo Numerico 6 CFU. Corso di Laurea in Ingegneria delle Comunicazioni 31/05/2014

Progetto Matlab N 2. Calcolo Numerico 6 CFU. Corso di Laurea in Ingegneria delle Comunicazioni 31/05/2014 Progetto Matlab N 2 Calcolo Numerico 6 CFU Corso di Laurea in Ingegneria delle Comunicazioni 31/05/2014 Procedimento 1. Scrivere una function che implementi il prodotto matrice-vettore AX con A matrice

Dettagli

Corso di Analisi Numerica - AN410. Parte 3: metodi iterativi per sistemi lineari ed. equazioni nonlineari. Roberto Ferretti

Corso di Analisi Numerica - AN410. Parte 3: metodi iterativi per sistemi lineari ed. equazioni nonlineari. Roberto Ferretti Corso di Analisi Numerica - AN410 Parte 3: metodi iterativi per sistemi lineari ed equazioni nonlineari Roberto Ferretti UNIVERSITÀ DEGLI STUDI ROMA TRE Filosofia generale dei metodi iterativi Metodi iterativi

Dettagli

Laboratorio di Analisi Numerica Lezione 6

Laboratorio di Analisi Numerica Lezione 6 Laboratorio di Analisi Numerica Lezione 6 Federico Poloni 22 dicembre 2010 Quantità di esercizi: in questa dispensa ci sono più esercizi di quanti uno studente medio riesce a farne durante

Dettagli

Laboratorio di Analisi Numerica Lezione 6

Laboratorio di Analisi Numerica Lezione 6 Laboratorio di Analisi Numerica Lezione 6 Gianna Del Corso Federico Poloni 6 Novembre 2012 Quantità di esercizi: in questa dispensa ci sono più esercizi di

Dettagli

Esercitazione 4 - Matematica Applicata

Esercitazione 4 - Matematica Applicata Esercitazione - Matematica Applicata Lucia Pilleri // Esercizio dal compito del //). Considerato il seguente metodo alle differenze finite, dipendente dai parametri reali e β )] η i+ = η i + h 5fx i, η

Dettagli

Facoltá di Scienze MM.FF.NN. Corso di Studi in Informatica- A.A

Facoltá di Scienze MM.FF.NN. Corso di Studi in Informatica- A.A Facoltá di Scienze MM.FF.NN. Corso di Studi in Informatica- A.A. 4-5 Corso di CALCOLO NUMERICO / ANALISI NUMERICA : Esempi di esercizi svolti in aula 9//4 ) Determinare la rappresentazione in base di.

Dettagli

Equazioni non lineari: esempi. Risoluzione f (x) = 0 con x [a,b] R, f C([a,b]).

Equazioni non lineari: esempi. Risoluzione f (x) = 0 con x [a,b] R, f C([a,b]). Equazioni non lineari: esempi. Risoluzione f (x) = 0 con x [a,b] R, f C([a,b]). Equazioni non lineari: esempi. Risoluzione f (x) = 0 con x [a,b] R, f C([a,b]). Esempio 1: equazioni polinomiali p N (x)

Dettagli

Anno Accademico Metodi iterativi per la risoluzione di sistemi lineari e non-lineari Numerical linear algebra: tools and methods

Anno Accademico Metodi iterativi per la risoluzione di sistemi lineari e non-lineari Numerical linear algebra: tools and methods Anno Accademico 26-27 Metodi iterativi per la risoluzione di sistemi lineari e non-lineari Numerical linear algebra: tools and methods S. D ALESIO, A. MEDDA, C. PANI Docenti: Prof. C. Brezisnki, Prof.

Dettagli

Matrici triangolari [Abate, 3.2] Lezioni 05 e 06. Determinante di una matrice triangolare [Abate, es. 9.3] Matrici ridotte per righe.

Matrici triangolari [Abate, 3.2] Lezioni 05 e 06. Determinante di una matrice triangolare [Abate, es. 9.3] Matrici ridotte per righe. Matrici triangolari [Abate, 32] Definizione Una matrice A = a ij ) R m,n si dice triangolare superiore se a ij = 0 per ogni i > j; triangolare inferiore se a ij = 0 per ogni i < j Lezioni 05 e 06 Una matrice

Dettagli

Il modello circuitale. Università di Napoli Federico II, CdL Ing. Meccanica, A.A , Elettrotecnica. Lezione 6 Pagina 1

Il modello circuitale. Università di Napoli Federico II, CdL Ing. Meccanica, A.A , Elettrotecnica. Lezione 6 Pagina 1 Lez.6 Il modello circuitale Università di Napoli Federico II, CdL Ing. Meccanica, A.A. 2017-2018, Elettrotecnica. Lezione 6 Pagina 1 Legge di Kirchhoff Legge di Kirchhoff delle correnti per gli insiemi

Dettagli

Corso di Analisi Numerica

Corso di Analisi Numerica Corso di Laurea in Ingegneria Informatica Corso di Analisi Numerica 9 - EQUAZIONI DIFFERENZIALI ORDINARIE Lucio Demeio Dipartimento di Scienze Matematiche 1 Problemi ai Valori Iniziali: metodo di Eulero

Dettagli

Corso di Analisi Numerica

Corso di Analisi Numerica Corso di Laurea in Ingegneria Informatica Corso di Analisi Numerica 9 - EQUAZIONI DIFFERENZIALI ORDINARIE Lucio Demeio Dipartimento di Scienze Matematiche 1 2 3 Problemi ai valori iniziali Problemi ai

Dettagli

Progetto di Geometria Computazionale: simulazione del movimento ondoso di un fluido utilizzando Kass e Miller

Progetto di Geometria Computazionale: simulazione del movimento ondoso di un fluido utilizzando Kass e Miller Progetto di Geometria Computazionale: simulazione del movimento ondoso di un fluido utilizzando Kass e Miller Stefano Ceroni, Sara Toia Luglio 2011 1 Introduzione Il metodo di Kass e Miller [1] per la

Dettagli

Esercizi di autovalutazione - Matlab Metodi Numerici con Elementi di Programmazione A.A

Esercizi di autovalutazione - Matlab Metodi Numerici con Elementi di Programmazione A.A Esercizi di autovalutazione - Matlab Metodi Numerici con Elementi di Programmazione A.A. 2018-19 1. Scrivere la function Matlab myfun.m che valuti la funzione e la sua derivata in corrispondenza delle

Dettagli

Lezione 3 Interpolazione Polinomiale.

Lezione 3 Interpolazione Polinomiale. Lezione 3 Interpolazione Polinomiale http://idefix.mi.infn.it/~palombo/didattica/lab-tnds/corsolab/lezionifrontali Fernando Palombo Scopi dell interpolazione Dati i valori y i di una grandezza Y in corrispondenza

Dettagli

Il metodo del gradiente coniugato

Il metodo del gradiente coniugato Il metodo del gradiente coniugato Il metodo del gradiente puó avere un comportamento di tipo zig-zag. Nel metodo del gradiente r (k)t r (k+1) = 0 Il metodo del gradiente coniugato sceglie le direzioni

Dettagli

il determinante che si ottiene da A, sopprimendo la i - esima riga e la j - esima colonna. Si definisce complemento algebrico dell'elemento a ij

il determinante che si ottiene da A, sopprimendo la i - esima riga e la j - esima colonna. Si definisce complemento algebrico dell'elemento a ij Determinanti Sia data la matrice quadrata a... a n a a n =...... a... a n nn Chiamiamo determinante di il numero det o che ad essa viene associato. det = a a... a... a... a n n n... a nn Un generico elemento

Dettagli

Note sull algoritmo di Gauss

Note sull algoritmo di Gauss Note sull algoritmo di Gauss 29 settembre 2009 Generalità Un sistema lineare di m equazioni in n incognite x,..., x n è un espressione del tipo: a x + a 2 x 2 + + a n x n = b a 2 x + a 22 x 2 + + a 2n

Dettagli

Appunti di Elettronica I Lezione 3 Risoluzione dei circuiti elettrici; serie e parallelo di bipoli

Appunti di Elettronica I Lezione 3 Risoluzione dei circuiti elettrici; serie e parallelo di bipoli Appunti di Elettronica I Lezione 3 Risoluzione dei circuiti elettrici; serie e parallelo di bipoli Valentino Liberali Dipartimento di Tecnologie dell Informazione Università di Milano, 2603 Crema email:

Dettagli

Raccolta di Esercizi d esame ( di Calcolo Numerico) Prof. Laura Pezza. Equazioni non lineari

Raccolta di Esercizi d esame ( di Calcolo Numerico) Prof. Laura Pezza. Equazioni non lineari Raccolta di Esercizi d esame ( di Calcolo Numerico) Prof. Laura Pezza Equazioni non lineari ESERCIZIO 1 Data l equazione ln(e + x) = 1 (1 + 4x) + 1 2 1.1 verificare analiticamente se sono soddisfatte le

Dettagli

Corso di Analisi Numerica

Corso di Analisi Numerica con pivoting Corso di Laurea in Ingegneria Informatica Corso di Analisi Numerica 6 - METODI DIRETTI PER I SISTEMI LINEARI Lucio Demeio Dipartimento di Scienze Matematiche con pivoting 1 Introduzione algebrica

Dettagli

Università degli Studi di Bergamo Facoltà di Ingegneria Corso di Elettrotecnica DUM A.A. 2000/2001 Esame del 12 gennaio 2001

Università degli Studi di Bergamo Facoltà di Ingegneria Corso di Elettrotecnica DUM A.A. 2000/2001 Esame del 12 gennaio 2001 Università degli Studi di Bergamo Facoltà di Ingegneria Corso di Elettrotecnica DUM A.A. / Esame del gennaio Soluzione a cura di: Bellini Matteo Es. n Data la rete in figura determinare tutte le correnti

Dettagli

Corso di Matematica per la Chimica. Dott.ssa Maria Carmela De Bonis a.a

Corso di Matematica per la Chimica. Dott.ssa Maria Carmela De Bonis a.a Dottssa Maria Carmela De Bonis aa 2013-14 Metodi diretti Si chiamano metodi diretti quei metodi numerici che risolvono sistemi lineari in un numero finito di passi In altri termini, supponendo di effettuare

Dettagli

y = cos x y = (y ) 2 + c : giustifichino le due affermazioni. y = y y = y 2 y = y(1 y) y = xy Applicazioni Equazioni delle cinetica chimica:

y = cos x y = (y ) 2 + c : giustifichino le due affermazioni. y = y y = y 2 y = y(1 y) y = xy Applicazioni Equazioni delle cinetica chimica: Corso di laurea in Chimica Industriale Matematica II A.A. 2015/2016 Argomenti delle lezioni Giovedí 3 marzo - 2 ore. Richiami sulle equazioni e sui metodi utilizzati nel risolverle. Equazioni differenziali.

Dettagli

Francesca Mazzia Dipartimento di Matematica Università di Bari. Equazioni Differenziali

Francesca Mazzia Dipartimento di Matematica Università di Bari. Equazioni Differenziali 1 Francesca Mazzia Dipartimento di Matematica Università di Bari Equazioni Differenziali 2 Consideriamo il sistema di equazioni differenziali: con condizione iniziale: y = f(t, y) (6.1) y(t 0 ) = y 0,

Dettagli

CORSI DI LAUREA IN MATEMATICA E FISICA. Esercizio 1.1. Risolvere graficamente e algebricamente i seguenti sistemi di due equazioni in due incognite:

CORSI DI LAUREA IN MATEMATICA E FISICA. Esercizio 1.1. Risolvere graficamente e algebricamente i seguenti sistemi di due equazioni in due incognite: CORS D LAUREA N MATEMATCA E FSCA FOGLO D ESERCZ # 1 GEOMETRA 1 Esercizio 1.1. Risolvere graficamente e algebricamente i seguenti sistemi di due equazioni in due incognite: 2x + y = 4 x 2y = 6 x + 3y =

Dettagli

6.3 Equazioni lineari del secondo ordine

6.3 Equazioni lineari del secondo ordine si supponga di conoscerne una soluzione ψ(x). Si verifichi che con la sostituzione y(x) = ψ(x) + 1, l equazione diventa lineare nell incognita v(x) v(x). Utilizzando questo metodo, si risolva l equazione

Dettagli

Sistemi II. Sistemi II. Elisabetta Colombo

Sistemi II. Sistemi II. Elisabetta Colombo Corso di Approfondimenti di Matematica per Biotecnologie, Anno Accademico 2011-2012, http://users.mat.unimi.it/users/colombo/programmabio.html 1 2 3 con R.C.+ o 1.10 Rango massimo e determinante con R.C.+

Dettagli

Laboratorio di Calcolo Numerico Laboratorio 12: Metodi iterativi per la soluzione di sistemi lineari

Laboratorio di Calcolo Numerico Laboratorio 12: Metodi iterativi per la soluzione di sistemi lineari Laboratorio di Calcolo Numerico Laboratorio 12: Metodi iterativi per la soluzione di sistemi lineari Claudia Zoccarato E-mail: claudia.zoccarato@unipd.it Dispense: Moodle Dipartimento ICEA 24 Maggio 2017

Dettagli

MODELLI e METODI MATEMATICI della FISICA. Esercizi - A.A

MODELLI e METODI MATEMATICI della FISICA. Esercizi - A.A MODELLI e METODI MATEMATICI della FISICA Esercizi - A.A. 08-9 settimana Esercizi:. Risolvere il problema di Cauchy y (x) = αy (x) + y (x) y (x) = αy (x) + y 3 (x) y 3(x) = αy 3 (x) con condizioni iniziali

Dettagli

La riduzione a gradini e i sistemi lineari (senza il concetto di rango)

La riduzione a gradini e i sistemi lineari (senza il concetto di rango) CAPITOLO 4 La riduzione a gradini e i sistemi lineari (senza il concetto di rango) Esercizio 4.1. Risolvere il seguente sistema non omogeneo: 2x+4y +4z = 4 x z = 1 x+3y +4z = 3 Esercizio 4.2. Risolvere

Dettagli

Risoluzione del compito n. 2 (Febbraio 2014/1)

Risoluzione del compito n. 2 (Febbraio 2014/1) Risoluzione del compito n. Febbraio 04/ PROBLEMA Determinate le soluzioni z C del sistema { z + zz z = 4i z =5 3Iz. Dato che nella seconda equazione compare esplicitamente Iz, sembra inevitabile porre

Dettagli

a + 2b + c 3d = 0, a + c d = 0 c d

a + 2b + c 3d = 0, a + c d = 0 c d SPAZI VETTORIALI 1. Esercizi Esercizio 1. Stabilire quali dei seguenti sottoinsiemi sono sottospazi: V 1 = {(x, y, z) R 3 /x = y = z} V = {(x, y, z) R 3 /x = 4} V 3 = {(x, y, z) R 3 /z = x } V 4 = {(x,

Dettagli

Rango di una matrice e teorema di Rouché-Capelli

Rango di una matrice e teorema di Rouché-Capelli Rango di una matrice e teorema di Rouché-Capelli Sappiamo che a una matrice m n, A, è associata l applicazione lineare L A : R n R m, L A (X) = AX, X R n. Definizione 1. Lo spazio nullo di A, N (A), è

Dettagli

Sistemi differenziali 2 2: esercizi svolti. 1 Sistemi lineari Stabilità nei sistemi lineari

Sistemi differenziali 2 2: esercizi svolti. 1 Sistemi lineari Stabilità nei sistemi lineari Sistemi differenziali : esercizi svolti 1 Sistemi lineari Stabilità nei sistemi lineari 14 1 Sistemi differenziali : esercizi svolti 1 Sistemi lineari Gli esercizi contrassegnati con il simbolo * presentano

Dettagli

Corso di Analisi Matematica. Polinomi e serie di Taylor

Corso di Analisi Matematica. Polinomi e serie di Taylor a.a. 2011/12 Laurea triennale in Informatica Corso di Analisi Matematica Polinomi e serie di Taylor Avvertenza Questi sono appunti informali delle lezioni, che vengono resi disponibili per comodità degli

Dettagli

Richiami di Algebra Lineare

Richiami di Algebra Lineare Richiami di Algebra Lineare Fabrizio Silvestri December 14, 010 Matrice Sia R il campo dei numeri reali. Si indica con R m n l insieme delle matrici ad elementi reali con m righe ed n colonne. Se A R n

Dettagli

Matrice esponenziale e sistemi differenziali lineari a coefficienti costanti

Matrice esponenziale e sistemi differenziali lineari a coefficienti costanti Matrice esponenziale e sistemi differenziali lineari a coefficienti costanti Matrice esponenziale Sia A R n,n una matrice quadrata n n Per definire l esponenziale di A, prendiamo spunto dall identità e

Dettagli

Corso di Laurea in Matematica Analisi Numerica (1 mod., 6 crediti, 48 ore, a.a , lez.3)

Corso di Laurea in Matematica Analisi Numerica (1 mod., 6 crediti, 48 ore, a.a , lez.3) Docente: Marco Gaviano (e-mail:gaviano@unica.it) Corso di Laurea in Matematica Analisi Numerica (1 mod., 6 crediti, 48 ore, a.a. 2014-2015, lez.3) 1 Analisi Numerica 1 mod. a.a. 2014-2015, Lezione n.3

Dettagli

DOTTORATO DI RICERCA in MODELLI E METODI MATEMATICI PER LA TECNOLOGIA E LA SOCIETA Prova scritta di ammissione - XVI ciclo. Analisi Matematica

DOTTORATO DI RICERCA in MODELLI E METODI MATEMATICI PER LA TECNOLOGIA E LA SOCIETA Prova scritta di ammissione - XVI ciclo. Analisi Matematica DOTTORATO DI RICERCA in MODELLI E METODI MATEMATICI PER LA TECNOLOGIA E LA SOCIETA Prova scritta di ammissione - XVI ciclo Analisi Matematica Tema: Illustrare le linee generali della teoria delle equazioni

Dettagli

CORSO DI LAUREA IN INFORMATICA CALCOLO NUMERICO Secondo esonero - 07 Giugno x y =2.

CORSO DI LAUREA IN INFORMATICA CALCOLO NUMERICO Secondo esonero - 07 Giugno x y =2. ORSO DI LAUREA IN INFORMATIA ALOLO NUMERIO Secondo esonero - 7 Giugno - Traccia. [Punti:.a: ;.b: ;.c:] Sia dato il sistema x + y + z =, x y =. (.a) Determinarne l insieme delle soluzioni. (.b) Indicare

Dettagli

a = 37679, b = 37654, c = ,

a = 37679, b = 37654, c = , Esercizi di Calcolo Scientico e Metodi Numerici 1. Dati i tre numeri si calcolino le quantità a = 37679, b = 37654, c = 5.874, (a + b) + c e a + (b + c) in un sistema in virgola mobile in base 1 con mantissa

Dettagli

Capitolo 8 Forme quadratiche e loro applicazioni Esercizi svolti Tutorato di geometria e algebra lineare. Marco Robutti

Capitolo 8 Forme quadratiche e loro applicazioni Esercizi svolti Tutorato di geometria e algebra lineare. Marco Robutti Capitolo 8 Forme quadratiche e loro applicazioni Esercizi svolti Tutorato di geometria e algebra lineare Marco Robutti 5 Ottobre 2017 1 Introduzione Gli esercizi di questo capitolo riguardano i seguenti

Dettagli

Daniela Lera A.A

Daniela Lera A.A Daniela Lera Università degli Studi di Cagliari Dipartimento di Matematica e Informatica A.A. 2014-2015 Metodi per similitudine Matrici simili hanno gli stessi autovalori. Consideriamo trasformazioni per

Dettagli

Analisi Numerica. Debora Botturi ALTAIR. Debora Botturi. Laboratorio di Sistemi e Segnali

Analisi Numerica. Debora Botturi ALTAIR.   Debora Botturi. Laboratorio di Sistemi e Segnali Analisi Numerica ALTAIR http://metropolis.sci.univr.it Argomenti Rappresentazione di sistemi con variabili di stato; Tecniche di integrazione numerica Obiettivo: risolvere sistemi di equazioni differenziali

Dettagli

Soluzione sistemi lineari

Soluzione sistemi lineari Soluzione sistemi lineari Laboratorio di programmazione e calcolo Chimica e Tecnologie chimiche Pierluigi Amodio Dipartimento di Matematica Università di Bari Soluzione sistemi lineari p. / matrice diagonale

Dettagli

SPAZI METRICI COMPLETI

SPAZI METRICI COMPLETI Capitolo 1 SPAZI METRICI COMPLETI Sia dato uno spazio metrico (X, d). Definizione 1.1 Una successione {x n } si dice successione di Cauchy se ε > 0 n 0 n, m n 0 = d(x n x m ) < ε (1.1) Esercizio 1.1 Dimostrare

Dettagli