LEZIONE VENERDI 11/05/2018

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "LEZIONE VENERDI 11/05/2018"

Transcript

1 LEZIONE VENERDI 11/05/2018 Riprendiamo l esercitazione vista la scorsa lezione, nella quale abbiamo studiato, usando Mentat, la meshatura automatica di un quarto di biella, pistone e spinotto. Prima di andare a definire i carichi, i vincoli e le condizioni al contorno, bisogna impostare il problema di contatto, in modo tale da istruire il solutore fornendogli tutte le informazioni possibili. In questo specifico caso ci sono 2 interfacce che devono essere gestite: Interfaccia tra lo spinotto e la biella; Interfaccia tra lo spinotto ed il pistone. Dovremo quindi definire le interfaccia di contatto e settarle opportunamente. Prima di cominciare ad analizzare i parametri ed i dettagli di impostazione di un problema di contatto, bisogna definire cosa comporta inserire all interno di un modello agli elementi finiti tale problema e per quale motivo esso complica decisamente, dal punto di vista numerico, il modello. Una volta definito ed assemblato un problema agli elementi finiti, numericamente parlando, risulta abbastanza semplice; si tratta in pratica di risolvere un banale sistema di equazioni algebriche, dove: Il vettore dei termini noti è rappresentato dalle le condizioni al contorno, cioè i carichi (o forze nodali) ed i vincoli; Le incognite sono i gradi di libertà, cioè gli spostamenti nodali; Il vettore dei termini noti ed il vettore delle incognite sono messi in relazione dalla matrice di rigidezza, ovvero una matrice di coefficienti che lega le forze agli spostamenti in una, due o tre dimensioni (a seconda del tipo di modello che stiamo analizzando). La matrice di rigidezza al suo interno ha due contributi: uno legato alla posizione dei nodi, cioè in maniera intrinseca legato alla geometria del singolo elemento, che poi una volta assemblato costituisce la geometria dell intera struttura; uno riferito al materiale che costituisce il singolo elemento. Quindi per calcolare la matrice di rigidezza di un singolo elemento che va a comporre la struttura in esame, bisogna assolutamente conoscere geometria e materiale. Costruire un modello agli elementi finiti significa pertanto: scegliere il materiare e geometria dei corpi studiati, meshare opportunamente, definire i carichi e i vincoli e infine cercare la soluzione in termini di spostamento. Noi costruiamo il modello e il codice assembla la matrice di rigidezza al vettore dei termini noti e ne trova la soluzione. Come si trova questa soluzione? Dipende se il modello, cioè il sistema di equazioni algebriche che noi andiamo ad assemblare, è lineare oppure no. Il modello caratterizzato da un sistema lineare, è il problema più semplice che possiamo incontrare, poiché in questo caso i coefficienti della matrice di rigidezza sono costanti, cioè non dipendono dalla soluzione (gli

2 spostamenti). Se vogliamo fare un esempio, il modello agli elementi finiti può essere pensato come il problema di una molla in più dimensioni: F=k*x x=f/k La costante elastica della molla k, dipende della geometria della molla (diametro del filo e numero di spire) e dal materiale dalla quale viene ricavata. In questo caso abbiamo un solo grado di libertà lungo lo spostamento x. Come possiamo notare F ed x sono legate in modo lineare dal coefficiente k che è costante per tutta la fase di compressione. Se ora consideriamo una molla a passo variabile le cose si complicano. In questo caso infatti essa è caratterizzate da un coefficiente di rigidezza non lineare. Quando viene schiacciata, gli avvolgimenti caratterizzati da un passo più fine andranno a pacco prima rispetto a quella a passo più rado; ciò significa che quando schiaccio avrò una certa rigidezza. Non appena parte delle spire vanno a pacco la rigidezza della molla varia, quindi abbiamo una caratteristica non lineare.

3 Per il primo tratto il risultato ottenuto è lineare, successivamente non sarà più corretto poiché si è mandato a pacco parte della molla e quindi la caratteristica k non sarà più quella di prima, ma cambierà pendenza. Quindi con un metodo iterativo bisognerebbe aggiornare costantemente il risultato; si parte con un primo valore di k, quindi trovo un delta, e cosi via finché non si arriva a convergenza. Il metodo più usato è il metodo di Newton-Rapson, il quale ci aiuta nell aggiornamento dei coefficienti della matrice di rigidezza k, funzione dell incognita, al fine di raggiungere la convergenza di un modello non lineare. F = k x F = k(x) x k(x) ci costringe ad iterare la soluzione fino a convergenza, perché la matrice k non è costante. I codici Mark così come Abacus ed Ansys, nella risoluzione del problema agli elementi finiti, qualora quest ultimo risultasse non lineare, usano il metodo di Newton-Rapson. Da un punto di vista strutturale è facile che il problema che noi andiamo a studiare risulti non lineare nella quasi totalità dei casi. Abbiamo unicamente 3 motivi per cui un problema strutturale deve essere definito da un modello agli elementi finiti non lineare: tutte le volte che dobbiamo risolvere un problema di contatto; tutte le volte che il comportamento del materiale con cui è fatto il nostro componente supera il limite di elasticità e comincia a lavorare in campo plastico (non ho più linearità tra le tensioni e le deformazioni); tutte le volte che voglio considerare le non linearità geometriche, cioè in caso di grandi spostamenti o grandi deformazioni. Se ho un solutore lineare ma il modello agli elementi finiti è non lineare, ma voglio calcolarmi un risultato di primo tentativo, devo inserire delle semplificazioni al modello in modo tale da eliminare le cause di non linearità. Ovviamente il risultato sarà affetto da errore, ma a volte è un compromesso accettabile per semplificare enormemente i calcoli. Questo perché i problemi lineari hanno 2 proprietà fondamentali: Proporzione diretta tra termine noto ed incognite. La soluzione non è dipendente dal valore assoluto dei carichi esterni, ma dipende solo dalla tipologia di carico e di vincolo. Quindi se ho un modello in cui vengono applicate delle forze di 178N, e poi altri di 48N, 1478N. mi basta fare un modello con una forza di 1N e moltiplicare la soluzione per 178, 48, 1478 non dovendo fare così infiniti modelli. Con un unico modello posso studiare infiniti casi. Principio di sovrapposizione degli effetti, valido tutte le volte che si studia un modello lineare. Quindi se ho un modello con 6 forze, non devo applicare contemporaneamente tutte e 6 le forze, ma mi basterà applicare una alla volta le forze, trovare ogni singola soluzione ed infine sommare le soluzioni ottenute.

4 In base alle combinazioni dei possibili carichi agenti ed alla variazione in modulo delle loro intensità (proporzione diretta tra termine noto ed incognite) possiamo andare a definire un numero infinito di casi di studio. Giunti a questo punto, possiamo eliminare le semplificazioni, inserendo uno alla volta le condizioni di non linearità, così da ottenere un modello il più possibile attendibile alla realtà Facciamo ora un esempio pratico di problema di contatto. Si supponga che nello stato di quiete la trave non tocchi il carrello posizionato in A. Trattasi pertanto del caso di una isostatica dunque un problema lineare. Una volta determinato lo spostamento sotto il carico P andiamo a calcolare anche quello in A. Verifichiamo che δ_a g. Qualora risultasse δ_a g, il problema risulterebbe non lineare, poiché si dovrebbe necessariamente prendere in considerazione il carrello in A, rendendo così la trave iperstatica. La rigidezza della struttura k diventa ora funzione di g, o meglio funzione dello spostamento del punto A. Se si utilizzano metodi agli elementi finiti, essi danno una ricostruzione artificiale degli spostamenti globali conoscendo gli spostamenti locali dei singoli nodi. Partendo dalla conoscenza degli spostamenti in due generici nodi, possiamo tramite interpolazione lineare delle funzioni di forza trovare le soluzioni nei punti di mezzeria e in qualsiasi altro punto compreso fra i due nodi considerati. Sarà commesso però un errore non trascurabile che dipende dalla funzione di forma usata. Il grado della funzione di forma utilizzata dipende dal numero di nodi. Infatti, il grado viene determinato come n.di nodi*gdl di ogni singolo nodo; questo è il limite principale dei metodi agli elementi finiti. Più il grado della funzione di forma è alto, meglio verrà rappresentata la realtà fisica del modello. Il caso peggiore infatti si verifica qualora la meshatura degli elementi risulta triangolare piana in quanto in questo caso il grado della funzione di forma sarà pari a 3 nodi per due gdl. Alla fine, noti gli spostamenti, si procede al calcolo delle loro derivate per ricavare le rispettive deformazioni, dalle quali dipendono le tensioni (moltiplicate in seguito per i corrispettivi coefficienti di sicurezza). Essendo le deformazioni le derivate degli spostamenti, non è possibile accontentarsi di una soluzione discreta in quanto, affinchè le derivate da effettuare siano univocamente definite, le funzioni degli spostamenti devono necessariamente essere continue e non definite per punti; questo e il limite dei metodi agli elementi finiti. La relazione generale fra spostamenti e deformazioni è la seguente:

5 ε = [B] δ La matrice B contiene informazioni sulle posizioni nodali legate agli spostamenti (in poche parole definisce la geometria del modello analizzato, conglobando anche eventuali non linearità). Nel caso piano le uniche deformazioni utili per i nostri scopi sono le seguenti: ε x = δu δx ε y = δv δx γ xy = δu δy + δv δx Una volta note le deformazioni, si procede al calcolo delle tensioni usando la relazione: σ = [D] ε = [D] [B] δ Per il calcolo della matrice di rigidezza k si utilizza il principio dei lavori virtuali, ovvero ponendo in eguaglianza il lavoro delle forze esterne con quello delle interne; ciò significa mettere in relazione carichi esterni e rispettivi spostamenti con tensioni e deformazioni, ovvero: F x = σ ε da = ( [B] T [D] [B] da) δ Qualora ci fossero dei casi di non linearità di materiale e non linearità geometrica: B è funzione di δ ; D è funzione di δ ; B e D sono entrambe Funzione di δ. Un esempio è il calcolo delle deformazioni della seguente trave:

6 ε = δ 1 1 = δ x 1 x 2 x 1 x 1 = [B] δ 1 2 Si verificano non linearità geometriche anche nei seguenti casi: Grandi deformazioni, ovvero la forma del componente è sensibilmente diversa in configurazione deformata rispetto a quella iniziale (non deformata); Grandi spostamenti. Nella maggior parte dei casi studiati finora si sono supposte delle rotazioni infinitesime. Questa ipotesi permetteva di approssimare In questi casi i calcoli sulla struttura verranno effettuati nella sua configurazione deformata. I contributi della geometria vengono espressi dalla matrice B. Ad esempio si analizzi il caso non lineare della seguente trave a sbalzo caricata in mezzeria: La tensione massima nel punto B vale: σ MAXB = P l 2 W = M fl J y MAX Dove: M fl è il momento flettente, J è il momento di inerzia, y MAX è la distanza massima di una fibra dall asse neutro. L applicazione del carico P sulla trave determina una deformazione della trave stessa; tale deformazione comporta pertanto una variazione in funzione di δ del braccio l. 2

7 σ MAXB = P l 2 (δ) W = M fl J y MAX Nei software agli elementi finiti il più grande problema nel caso del contatto fra due corpi sta nel fatto che, dovendo svolgere i calcoli basandosi su una matrice di rigidezza globale ricavabile a partire dalle singole matrici di rigidezze locali riferite ai vari nodi, potrebbe capitare che all interfaccia di contatto fra due corpi, le matrici k corrispondenti a due nodi che poi saranno uniti nel contatto siano diverse. Un esempio di calcolo di rigidezza globale in caso di contatto fra una sfera ed una superficie piana, è il seguente: Data la meshatura in figura, il nodo B sente il contributo dei soli 3 elementi che hanno in comune il nodo stesso. Una volta messi a contatto i due corpi, il nodo B dovrà coincidere col nodo A. In questo caso gli elementi che contribuiranno al calcolo della matrice di rigidezza diventano 6. Stesso discorso per le altre combinazioni di nodi sulle due superfici di contatto.

Problemi piani: L elemento triangolare a 3 nodi. Dalle dispense del prof. Dario Amodio e dalle lezioni del prof. Giovanni Santucci

Problemi piani: L elemento triangolare a 3 nodi. Dalle dispense del prof. Dario Amodio e dalle lezioni del prof. Giovanni Santucci Problemi piani: L elemento triangolare a 3 nodi Dalle dispense del prof. Dario Amodio e dalle lezioni del prof. Giovanni Santucci Elementi bidimensionali: stato di tensione piana In molti casi, pur essendo

Dettagli

Assemblaggio degli Elementi: Soluzione del Problema Strutturale Discreto

Assemblaggio degli Elementi: Soluzione del Problema Strutturale Discreto Il Metodo degli Elementi Finiti Assemblaggio degli Elementi: Soluzione del Problema Strutturale Discreto Dalle dispense del prof. Dario Amodio e dalle lezioni del prof. Giovanni Santucci Per ottenere la

Dettagli

Progetto di un solaio laterocementizio

Progetto di un solaio laterocementizio 1 Prima esercitazione progettuale Progetto di un solaio laterocementizio Lezione del 20/10/2015: Analisi delle sollecitazioni con il Metodo delle Forze 1 Definizione dei coefficienti di deformabilità 2

Dettagli

Modellazione e calcolo assistito di strutture meccaniche

Modellazione e calcolo assistito di strutture meccaniche Modellazione e calcolo assistito di strutture meccaniche Lezione 1 Introduzione al metodo FEM Il metodo degli elementi finiti FEM: Finite Element Method E un metodo numerico Inizialmente è stato sviluppato

Dettagli

1. Impostazione di un semplice modello FEM

1. Impostazione di un semplice modello FEM Progettazione Assistita di Strutture Meccaniche 15/09/2011, pagina 1/6 Cognome: Anno accademico in cui si è seguito il corso Nome: [2010/2011] [2009/2010] [2008/2009] [........ ] Matricola: Tipo di corso:

Dettagli

Scuola di Architettura Corso di Laurea Magistrale quinquennale c.u.

Scuola di Architettura Corso di Laurea Magistrale quinquennale c.u. Scuola di rchitettura orso di aurea agistrale quinquennale c.u. Sommario In precedenza, abbiamo descritto un metodo di risoluzione di sistemi strutturali iperstatici basato sulla definizione di un sistema

Dettagli

Il Metodo degli Elementi Finiti. Dalle dispense del prof. Dario Amodio e dalle lezioni del prof. Giovanni Santucci

Il Metodo degli Elementi Finiti. Dalle dispense del prof. Dario Amodio e dalle lezioni del prof. Giovanni Santucci Dalle dispense del prof. Dario Amodio e dalle lezioni del prof. Giovanni Santucci Introduzione In alcune strutture la divisione in porzioni elementari, facilmente schematizzabili, discende immediatamente

Dettagli

CAP. 2 METODO DELLA RIGIDEZZA E STRUTTURE RETICOLARI PIANE

CAP. 2 METODO DELLA RIGIDEZZA E STRUTTURE RETICOLARI PIANE CAP. METODO DELLA RIGIDEZZA E STRUTTURE RETICOLARI PIANE. Introduzione Nel primo capitolo abbiamo introdotto il concetto di matrice di rigidezza. Adesso dobbiamo spiegare come assemblare gli elementi per

Dettagli

METODO DEGLI ELEMENTI FINITI

METODO DEGLI ELEMENTI FINITI L'equazione di equilibrio di una struttura discretizzata in elementi finiti è: {F}=[K]{d} nella quale {F} è il vettore delle forze nodali, [K] è la matrice di rigidezza della struttura e {d} è il vettore

Dettagli

ESERCITAZIONE 2.1_Predimensionamento travi, pilastri e mensole

ESERCITAZIONE 2.1_Predimensionamento travi, pilastri e mensole ESERCITAZIONE 2.1_Predimensionamento travi, pilastri e mensole In questa seconda esercitazione si è effettuato il predimensionamento degli elementi di una struttura a telai piani. Essendo un dimensionamento

Dettagli

ELEMENTI DI PROGETTAZIONE INGEGNERIA INDUSTRIALE

ELEMENTI DI PROGETTAZIONE INGEGNERIA INDUSTRIALE ELEMENTI DI PROGETTAZIONE INGEGNERIA INDUSTRIALE SOLUZIONI STANDARD PER PROBLEMI SEMPLICI La modellazione è parte della progettazione Nelle fasi iniziali di un progetto si usano modelli approssimati Con

Dettagli

Per via della deformazione dell' elemento l'angolo tra ξ ed η non è di 90, in questo caso

Per via della deformazione dell' elemento l'angolo tra ξ ed η non è di 90, in questo caso Considero un elemento a 4 nodi e denisco un sisema di riferimento globale OXYZ OXYZ=spazio di modello non correlato allo specico elemento In questo sistema di riferimento denisco le coordinate dei miei

Dettagli

REGISTRO DELLE LEZIONI di Metodo agli Elementi Finiti

REGISTRO DELLE LEZIONI di Metodo agli Elementi Finiti UNIVERSITÀ DEGLI STUDI CAGLIARI FACOLTÀ DI INGEGNERIA E ARCHITETTURA REGISTRO DELLE LEZIONI di Metodo agli Elementi Finiti dettate dal prof. Filippo Bertolino nell Anno Accademico 2012-13 ARGOMENTO DELLA

Dettagli

Tutti i diritti riservati

Tutti i diritti riservati Statica - Fondamenti di meccanica strutturale /ed Copright 00 The Companies srl e Corbusier - Progetto per il palazzo dei Soviet a osca 9 Problema. Impostiamo ora il problema deformativo per la trave di

Dettagli

3) DIMENSIONAMENTO DI UNA SEZIONE INFLESSA

3) DIMENSIONAMENTO DI UNA SEZIONE INFLESSA 3) DIMENSIONAMENTO DI UNA SEZIONE INFLESSA Quanto segue ci consente di dimensionare l altezza di una trave inflessa con un criterio di imporre che la tensione massima agente sulla sezione della trave sia

Dettagli

I dati vengono introdotti attraverso un file di input. Esso richiede di inserire alcuni dati secondo lo schema che segue.

I dati vengono introdotti attraverso un file di input. Esso richiede di inserire alcuni dati secondo lo schema che segue. INTRODUZIONE Il programma consente l analisi di telai piani con l utilizzo del metodo degli spostamenti. Le ipotesi sono: - materiale elastico lineare isotropo - piccoli spostamenti L analisi consente

Dettagli

METODO DEGLI ELEMENTI FINITI

METODO DEGLI ELEMENTI FINITI Introduzione al METODO DEGLI ELEMENTI FINITI Osservazioni sui metodi variazionali approssimati classici Le funzioni approssimanti devono: Soddisfare i requisiti di continuità Essere linearmente indipendenti

Dettagli

Introduzione elementare al metodo degli Elementi Finiti.

Introduzione elementare al metodo degli Elementi Finiti. Introduzione elementare al metodo degli Elementi Finiti carmelo.demaria@centropiaggio.unipi.it Obiettivi Introduzione elementare al metodo degli elementi finiti Analisi Termica Analisi Strutturale Analisi

Dettagli

Sistemi lineari di due equazioni in due incognite

Sistemi lineari di due equazioni in due incognite Sistemi lineari di due equazioni in due incognite Incognite Lettere (di solito X e Y) alle quali è possibile sostituire dei valori numerici Coppia ordinata Coppia (X;Y) di valori numerici, per la quale

Dettagli

POLITECNICO DI BARI I FACOLTÀ DI INGEGNERIA CORSO DI LAUREA IN INGEGNERIA MECCANICA DIPARTIMENTO DI INGEGNERIA MECCANICA E GESTIONALE

POLITECNICO DI BARI I FACOLTÀ DI INGEGNERIA CORSO DI LAUREA IN INGEGNERIA MECCANICA DIPARTIMENTO DI INGEGNERIA MECCANICA E GESTIONALE POLITECNICO DI BARI I FACOLTÀ DI INGEGNERIA CORSO DI LAUREA IN INGEGNERIA MECCANICA DIPARTIMENTO DI INGEGNERIA MECCANICA E GESTIONALE TESI DI LAUREA IN MECCANICA DEI MATERIALI DESIGN OTTIMO DI UN ANTENNA

Dettagli

La modellazione delle strutture

La modellazione delle strutture La modellazione delle strutture 1 Programma 31-1-2012 Introduzione e brevi richiami al metodo degli elementi finiti 7-2-2012 La modellazione della geometria 14-2-2012 21-2-2012 28-2-2012 6-3-2012 13-32012

Dettagli

1 Schemi alle differenze finite per funzioni di una variabile

1 Schemi alle differenze finite per funzioni di una variabile Introduzione In questa dispensa vengono forniti alcuni elementi di base per la soluzione di equazioni alle derivate parziali che governano problemi al contorno. A questo scopo si introducono, in forma

Dettagli

REGISTRO DELLE LEZIONI di Metodi agli Elementi Finiti

REGISTRO DELLE LEZIONI di Metodi agli Elementi Finiti UNIVERSITÀ DEGLI STUDI CAGLIARI FACOLTÀ DI INGEGNERIA E ARCHITETTURA REGISTRO DELLE LEZIONI di Metodi agli Elementi Finiti dettate dal prof. Filippo Bertolino nell Anno Accademico 2013-14 ARGOMENTO DELLA

Dettagli

Figura 2.5. Arco a tre cerniere allineate sotto carico.

Figura 2.5. Arco a tre cerniere allineate sotto carico. 10 Effetti geometrici in strutture elastiche 37 quelle di compatibilità cinematica ammettono sempre soluzione unica, per cui si possono sempre determinare gli sforzi normali dovuti ad un carico esterno

Dettagli

Elementi finiti solidi

Elementi finiti solidi Esercitazioni del corso di Costruzione di Macchine 2 e Progettazione FEM a cura dell ing. Francesco Villa Elementi finiti solidi Costruzione di Macchine 2 e Progettazione FEM Prof. Sergio Baragetti Dalmine

Dettagli

REGISTRO DELLE LEZIONI 2006/2007. Tipologia. Addì Tipologia. Addì Tipologia

REGISTRO DELLE LEZIONI 2006/2007. Tipologia. Addì Tipologia. Addì Tipologia Introduzione ai contenuti del corso. Descrizione dell'organizzazione del corso e delle modalità di svolgimento delle lezioni e degli esami. Teoria lineare della trave. Ipotesi di base. Problema assiale:

Dettagli

Introduzione elementare al metodo degli Elementi Finiti.

Introduzione elementare al metodo degli Elementi Finiti. Introduzione elementare al metodo degli Elementi Finiti carmelo.demaria@centropiaggio.unipi.it Obiettivi Introduzione elementare al metodo degli elementi finiti Analisi Termica Analisi Strutturale Analisi

Dettagli

Nome: Cognome: Data: 01/04/2017

Nome: Cognome: Data: 01/04/2017 Esercizio N. 1 Valutazione 5 Un ala, lunga L = 25m, è modellata come una trave in alluminio (E = 72GPa, Iy=2e-4m 4 ) incastrata alla fusoliera in x=0m, come in figura. La sollecitazione che si vuole studiare

Dettagli

ESERCIZIO 1.1 (punti 18) - Data la struttura di figura, si chiede di:

ESERCIZIO 1.1 (punti 18) - Data la struttura di figura, si chiede di: SCIENZA DELLE COSTRUZIONI: GES L - Z APPELLO 6/9/2007 - TEMA A ALLIEVO PUNTEGGI VALIDI: APPELLO: ESERCIZIO 1.1 (punti 18) - Data la struttura di figura, si chiede di: 1.1a - effettuare l analisi cinematica

Dettagli

Modelli agli elementi finiti Analisi strutturale.

Modelli agli elementi finiti Analisi strutturale. Modelli agli elementi finiti Analisi strutturale carmelo.demaria@centropiaggio.unipi.it Analisi agli elemen, fini, Il FEM è un metodo numerico (pertanto approssimato) che perme;e la risoluzione di equazioni

Dettagli

ver. 1 Progettazione del Telaio, A.A lez. 3, p. 1/9

ver. 1 Progettazione del Telaio, A.A lez. 3, p. 1/9 ver. 1 Progettazione del Telaio, A.A. 2016-2017 lez. 3, p. 1/9 Introduzione a Maxima Maxima è un Computer Algebra System (CAS) in grado di eseguire calcoli numerici e simbolici, grafici ed altre operazioni.

Dettagli

Costruzioni in zona sismica

Costruzioni in zona sismica Costruzioni in zona sismica Lezione 7 Sistemi a più gradi di libertà Il problema dinamico viene formulato con riferimento a strutture con un numero finito di gradi di libertà. Consideriamo le masse concentrate

Dettagli

UNITÀ DIDATTICA 5 LA RETTA

UNITÀ DIDATTICA 5 LA RETTA UNITÀ DIDATTICA 5 LA RETTA 5.1 - La retta Equazione generica della retta Dalle considerazioni emerse nel precedente capitolo abbiamo compreso come una funzione possa essere rappresentata da un insieme

Dettagli

Università degli Studi di Cagliari - Facoltà di Ingegneria e Architettura. Fondamenti di Costruzioni Meccaniche Tensione e deformazione Carico assiale

Università degli Studi di Cagliari - Facoltà di Ingegneria e Architettura. Fondamenti di Costruzioni Meccaniche Tensione e deformazione Carico assiale Esercizio N.1 Un asta di acciaio è lunga 2.2 m e non può allungarsi più di 1.2 mm quando le si applica un carico di 8.5 kn. Sapendo che E = 200 GPa, determinare: (a) il più piccolo diametro dell asta che

Dettagli

IL SAP 2000 E IL CALCOLO DELLE SOLLECITAZIONI PER LA TRAVE CONTINUA

IL SAP 2000 E IL CALCOLO DELLE SOLLECITAZIONI PER LA TRAVE CONTINUA prof. Renato Giannini IL SAP 2000 E IL CALCOLO DELLE SOLLECITAZIONI PER LA TRAVE CONTINUA (arch. Lorena Sguerri) Combinazioni di carico Solaio a due campate con mensola (balcone): combinazioni di carico

Dettagli

ESERCIZI SVOLTI O CON TRACCIA DI SOLUZIONE SU STRUTTURE IPERSTATICHE

ESERCIZI SVOLTI O CON TRACCIA DI SOLUZIONE SU STRUTTURE IPERSTATICHE ESERCIZI SVOLTI O CON TRACCIA DI SOLUZIONE SU STRUTTURE IPERSTATICHE 1 PROVA SCRITTA 11 gennaio 2013 - Esercizio 2 Data la struttura di figura, ricavare le equazioni delle azioni interne (M, N, T) e tracciarne

Dettagli

ESTRAZIONE DI DATI 3D DA IMMAGINI DIGITALI. (Visione 3D)

ESTRAZIONE DI DATI 3D DA IMMAGINI DIGITALI. (Visione 3D) ESTRAZIONE DI DATI 3D DA IMMAGINI DIGITALI () Calibrazione intrinseca Spesso risulta utile calibrare la sola componente intrinseca di un sistema di visione (matrice K), e non si dispone di oggetti di forma

Dettagli

Esercizio 1. Travatura reticolare iperstatica. Carpentieri Gerardo 20/06/2009

Esercizio 1. Travatura reticolare iperstatica. Carpentieri Gerardo 20/06/2009 Scienza delle Costruzioni Travatura reticolare iperstatica Carpentieri Gerardo //. Descrizione preliminare della struttura. Studio della struttura S. Studio della struttura S. Calcolo dell incognita iperstatica

Dettagli

σ x = -3 N/mm 2 σ y = 13 N/mm 2 τ xy = -6 N/mm 2

σ x = -3 N/mm 2 σ y = 13 N/mm 2 τ xy = -6 N/mm 2 SCIENZ DEE COSTRUZIONI - Compito 1 o studente è tenuto a dedicare 30 minuti alla soluzione di ogni esercizio Si consideri una trave a mensola, di lunghezza =1 m e di sezione retta uadrata di lato 10 cm,

Dettagli

FORMULAZIONE DELL ELEMENTO DI TIMOSHENKO

FORMULAZIONE DELL ELEMENTO DI TIMOSHENKO FORMUAZIONE DE EEMENTO DI TIMOSHENKO Nell analisi strutturale e nel progetto dei telai si utilizza quasi sempre la teoria delle travi sviluppata da Eulero-Bernoulli. Molti manuali usano esclusivamente

Dettagli

Lezione 7 Equazioni Differenziali Ordinarie.

Lezione 7 Equazioni Differenziali Ordinarie. Lezione 7 Equazioni Differenziali Ordinarie http://idefix.mi.infn.it/~palombo/didattica/lab-tnds/corsolab/lezionifrontali Fernando Palombo Equazioni Differenziali Ordinarie Descrizione dell evolversi spazio-temporale

Dettagli

1. Impostazione di un modello FEM

1. Impostazione di un modello FEM Progettazione Assistita di Strutture Meccaniche 21/02/2013, pagina 1/5 Cognome: Anno accademico in cui si è seguito il corso Nome: [2011/2012] [2010/2011] [2009/2010] [........ ] Matricola: 1. Impostazione

Dettagli

Lezione del 16 Maggio 2017

Lezione del 16 Maggio 2017 ver. 0 Progettazione del Telaio, A.A. 2016-2017 lez. Mar 16 Mag, p. 1/8 Lezione del 16 Maggio 2017 Matrice di rigidezza monoelemento Dalla lezione precedente abbiamo definito la densità di energia potenziale

Dettagli

3. Metodo degli elementi finiti 3.1 GENERALITÀ

3. Metodo degli elementi finiti 3.1 GENERALITÀ 3. Metodo degli elementi finiti 3.1 GENERALITÀ Si è visto che col metodo degli spostamenti si riesce a risolvere in maniera esatta il problema della determinazione degli spostamenti e degli sforzi in una

Dettagli

Scienza delle Costruzioni: Tracce d esami. Claudio Franciosi

Scienza delle Costruzioni: Tracce d esami. Claudio Franciosi Scienza delle Costruzioni: Tracce d esami Claudio Franciosi 19 aprile 2018 2 Claudio Franciosi unedì 12 gennaio 2009 - ore 9.30-11.30 Assegnata la trave di Figura 1, vincolata con due incastri alle estremitá,

Dettagli

Elementi Finiti: Analisi Strutturale.

Elementi Finiti: Analisi Strutturale. Elementi Finiti: Analisi Strutturale carmelo.demaria@centropiaggio.unipi.it Obie4vi Introduzione elementare al metodo degli elemen8 fini8 Analisi Termica Analisi Stru>urale Analisi Fluidodinamica U8lizzo

Dettagli

METODI NUMERICI. Metodo delle differenze finite

METODI NUMERICI. Metodo delle differenze finite METOI NUMERICI Lo sviluppo dei moderni calcolatori ha consentito di mettere a disposizione della scienza e della tecnica formidabili strumenti che hanno permesso di risolvere numerosi problemi la cui soluzione

Dettagli

Edifici in muratura. L edificio soggetto a carichi verticali. Catania, 21 aprile 2004 Bruno Calderoni. DAPS, Università di Napoli Federico II

Edifici in muratura. L edificio soggetto a carichi verticali. Catania, 21 aprile 2004 Bruno Calderoni. DAPS, Università di Napoli Federico II Edifici in muratura L edificio soggetto a carichi verticali Catania, 21 aprile 2004 Bruno Calderoni DAPS, Università di Napoli Federico II L edificio del D.M. 20/11/87 L edificio della 3 a classe. La normativa

Dettagli

Tesina UNIVERSITÀ DEGLI STUDI G. D ANNUNZIO DI CHIETI-PESCARA FACOLTÀ DI ARCHITETTURA F 1. π/4

Tesina UNIVERSITÀ DEGLI STUDI G. D ANNUNZIO DI CHIETI-PESCARA FACOLTÀ DI ARCHITETTURA F 1. π/4 UNIVERSITÀ DEGLI STUDI G. D ANNUNZIO DI CHIETI-ESCARA FACOLTÀ DI ARCHITETTURA CORSO DI LAUREA SECIALISTICA, CORSI DI LAUREA TRIENNALI SCIENZA DELLE COSTRUZIONI E TEORIA DELLE STRUTTURE (Canali B,C) a.a.

Dettagli

Esercitazione 3 - Calcolo delle azioni interne

Esercitazione 3 - Calcolo delle azioni interne Università degli Studi di ergamo orso di Laurea in Ingegneria Tessile orso di Elementi di Meccanica Esercitazione - alcolo delle azioni interne Esercizio n. La struttura di figura.a è composta da due aste

Dettagli

Esame 12/02/2004 Soluzione

Esame 12/02/2004 Soluzione Teoria dei Sistemi Dinamici 1GTG/2GTG Esame 12/2/24 Prego segnalare errori o inesattezze a basilio.bona@polito.it 1 Sistemi di riferimento, rototraslazioni (6 punti) Esercizio 1.1 Costruire la matrice

Dettagli

MECCANICA COMPUTAZIONALE

MECCANICA COMPUTAZIONALE MECCANICA COMPUTAZIONALE Capitolo Metodo diretto della rigidezza Rev. maggio 006 (rev. /05/006) Capitolo : /4 Argomenti trattati nel capitolo Idealizzazione e discretizzazione Rigidezza dell elemento biella

Dettagli

Università degli Studi di Cagliari - Facoltà di Ingegneria e Architettura

Università degli Studi di Cagliari - Facoltà di Ingegneria e Architettura Esercizio N.1 a trave a mensola ha sezione trasversale costante e porta un carico F nella sua estremità libera. Determinare lo spostamento verticale del punto. Soluzione Iniziamo calcolando le reazioni

Dettagli

Esercitazione Comsol Multiphysics Analisi Strutturale

Esercitazione Comsol Multiphysics Analisi Strutturale Micro e nano sistemi Esercitazione Comsol Multiphysics Analisi Strutturale carmelo.demaria@centropiaggio.unipi.it Elemento trave l l l l l Trave nel piano 2 nodi 3 gdl/nodo Carichi concentrati e distribuiti

Dettagli

MECCANICA COMPUTAZIONALE

MECCANICA COMPUTAZIONALE MECCANICA COMPUTAZIONALE Capitolo 6 Introduzione all analisi non-lineare Rev. 1/06/006 (rev. 1/06/006) Capitolo 6: 1/5 Argomenti trattati nel capitolo 6 Non-linearità fisica e geometrica Metodi di analisi

Dettagli

1) METODO DELLE SEZIONI DI RITTER

1) METODO DELLE SEZIONI DI RITTER 1) METODO DELLE SEZIONI DI RITTER Un altro metodo per il calcolo di una travatura reticolare isostatica è quello delle sezioni di Ritter. Prendiamo in esame la stessa struttura dell esercizio precedente

Dettagli

Prova scritta di SCIENZA DELLE COSTRUZIONI

Prova scritta di SCIENZA DELLE COSTRUZIONI Prova scritta di SIENZ DEE OSTRUZIONI Ingegneria Edile rchitettura - Prof. Erasmo Viola -.. 016/17 11 uglio 017 - OMPITO 1 Nome ognome Matricola: Note: o studente è tenuto a dedicare 40 minuti alla soluzione

Dettagli

Metodo degli Elementi finiti: Formulazione secondo P.L.V. L est = P δf + ½. δf δp

Metodo degli Elementi finiti: Formulazione secondo P.L.V. L est = P δf + ½. δf δp Metodo degli Elementi finiti: Formulazione secondo P.L.V. P Per sistemi linearmente elastici δp L est L est = ½.P.f L est δf f L est = P δf + ½. δf δp Per strutture tridimensionali sottoposte a forze distribuite

Dettagli

Esercizi di Programmazione Lineare

Esercizi di Programmazione Lineare Esercizi di Programmazione Lineare 1 grafica Si consideri il seguente problema di programmazione lineare: max 3x 1 + 2x 2 s.t. + 2x 1 + x 2 4 2x 1 + x 2 2 + x 1 x 2 1 x 1, x 2 0 a) Risolvere il problema

Dettagli

Compito numero 2 - Compito intero

Compito numero 2 - Compito intero Esercitazione 6 - Correzione esame dell 8//3 Lucia Pilleri 9//3 Compito numero - Compito intero Esercizio del parziale - del compito intero Risolvere, mediante la fattorizzazione P A = LU, il sistema lineare

Dettagli

Metodi Numerici con elementi di Programmazione (A.A )

Metodi Numerici con elementi di Programmazione (A.A ) Metodi Numerici con elementi di Programmazione (A.A. 2013-2014) Metodi Numerici Appunti delle lezioni: Approssimazione di dati e funzioni Approssimazione ai minimi quadrati Docente Vittoria Bruni Email:

Dettagli

Modelli agli elementi finiti Analisi strutturale.

Modelli agli elementi finiti Analisi strutturale. Modelli agli elementi finiti Analisi strutturale carmelo.demaria@centropiaggio.unipi.it + Analisi agli elemen, fini, Il FEM è un metodo numerico (pertanto approssimato) che perme;e la risoluzione di equazioni

Dettagli

Regione Campania - Genio Civile

Regione Campania - Genio Civile Regione Campania - Genio Civile Controllo di progetti relativi ad edifici in muratura Le prescrizioni generali dell Ordinanza 3274 e succ. modif. La verifica degli edifici in muratura ordinaria per i carichi

Dettagli

Lezione del 21/03/2019

Lezione del 21/03/2019 Lezione del 21/03/2019 a cura di Edoardo Casciotta, Alessandro Pica e Tommaso Proietti Il terzo caso analizzato in Maxima prevede lo studio di una lastra forata, nel cui foro è inserita una spina di materiale

Dettagli

1. Impostazione di un semplice modello FEM

1. Impostazione di un semplice modello FEM Progettazione Assistita di Strutture Meccaniche 24/06/2011, pagina 1/5 Cognome: Anno accademico in cui si è seguito il corso Nome: [2010/2011] [2009/2010] [2008/2009] [........ ] Matricola: Componenti

Dettagli

Metodo dei Minimi Quadrati. Dott. Claudio Verona

Metodo dei Minimi Quadrati. Dott. Claudio Verona Metodo dei Minimi Quadrati Dott. Claudio Verona E in generale interessante studiare l andamento di una variabile in funzione di un altra e capire se c è una funzione matematica che le lega. Viceversa è

Dettagli

FORZE ESTERNE SULL ELEMENTO PIASTRA 4 NODI

FORZE ESTERNE SULL ELEMENTO PIASTRA 4 NODI ver. 0 Progettazione del Telaio, A.A. 2016-2017 lez. 02/05/2017, p. 1/6 FORZE ESTERNE SULL ELEMENTO PIASTRA 4 NODI Fig. 1 [Elemento piastra 4 nodi e piano naturale] Si suppone di caricare i nodi dell elemento

Dettagli

Il modello di trave adottato dal Saint-Venant si basa sulle seguenti ipotesi:

Il modello di trave adottato dal Saint-Venant si basa sulle seguenti ipotesi: IL PROBLEM DEL DE SINT-VENNT Il problema del De Saint-Venant è un particolare problema di equilibrio elastico di notevole interesse applicativo, potendosi considerare alla base della teoria tecnica delle

Dettagli

Esercitazioni. Costruzione di Macchine A.A

Esercitazioni. Costruzione di Macchine A.A Esercitazioni di Costruzione di Macchine A.A. 2002-200 Manovellismo ordinario centrato Esercitazione n 1 2 Una macchina per prove di fatica su molle a balestra aziona, attraverso un giunto che trasmette

Dettagli

Massimi e minimi vincolati

Massimi e minimi vincolati Massimi e minimi vincolati Data una funzione G C 1 (D), dove D è un aperto di R 2, sappiamo bene dove andare a cercare gli eventuali punti di massimo e minimo relativi. Una condizione necessaria affinché

Dettagli

8(+#.%09:;

Dettagli

2. Si Discretizzano i carichi in CARICHI CONCENTRATI in modo da riprodurre gli andamenti delle azioni interne. Si opera in pi passi: 2a.

2. Si Discretizzano i carichi in CARICHI CONCENTRATI in modo da riprodurre gli andamenti delle azioni interne. Si opera in pi passi: 2a. 1 Prove Statiche Permettono la verifica del comportamento elastico struttura allo scopo di validare il modello numerico Le prove prevedono: 1. Struttura completa (full-scale) Sottostruttura (Es. solo centina,

Dettagli

Ripartizione di una forza orizzontale Metodo delle rigidezze

Ripartizione di una forza orizzontale Metodo delle rigidezze ESERCITAZIONE 2 Flavia Masella Ripartizione di una forza orizzontale Metodo delle rigidezze L obiettivo di questa esercitazione è quello di calcolare come viene ripartita una forza orizzontale (ad esempio

Dettagli

R. BARBONI COSTRUZIONI AEROSPAZIALI L elemento finito

R. BARBONI COSTRUZIONI AEROSPAZIALI L elemento finito R. BARBONI COSRUZIONI AEROSPAZIALI 17 4. L elemento finito Nella realtà, aste, travi, piastre, gusci,... non sono sollecitati solo con carichi applicati ai loro estremi ed il loro comportamento non può

Dettagli

Marc/Mentat. Cos è Marc/Mentat? Come lavora Marc/Mentat? Lezione di telaio del 04/03/2015

Marc/Mentat. Cos è Marc/Mentat? Come lavora Marc/Mentat? Lezione di telaio del 04/03/2015 Lezione di telaio del 04/03/2015 Marc/Mentat Cos è Marc/Mentat? Marc/Mentat è un software che si avvale degli Elementi Finiti per la progettazione, l analisi analitica e numerica di sistemi lineari e non

Dettagli

Sistemi lineari. a 11 x 1 + a 12 x a 1n x n = b 1 a 21 x 1 + a 22 x a 2n x n = b 2 : : : a m1 x 1 + a m2 x 2 +..

Sistemi lineari. a 11 x 1 + a 12 x a 1n x n = b 1 a 21 x 1 + a 22 x a 2n x n = b 2 : : : a m1 x 1 + a m2 x 2 +.. Sistemi lineari: definizioni Sistemi lineari Un equazione nelle n incognite x,, x n della forma c x + + c n x n = b ove c,, c n sono numeri reali (detti coefficienti) e b è un numero reale (detto termine

Dettagli

High-Performance Elements - Caratteristiche e Nuove Funzioni dell'elemento Beam (HPBEAM)

High-Performance Elements - Caratteristiche e Nuove Funzioni dell'elemento Beam (HPBEAM) 28-10-06 Ing. Dessì High-Performance Elements - Caratteristiche e Nuove Funzioni dell'elemento Beam (HPBEAM) Diamo un occhiata a cosa c'è alla base di EdiLus-MU: si tratta di un solutore molto potente

Dettagli

RIPARTIZIONE DELLE FORZE ORIZZONTALI_

RIPARTIZIONE DELLE FORZE ORIZZONTALI_ RIPARTIZIONE DELLE FORZE ORIZZONTALI_11-05-2013 Analizzando il telaio shear-type abbiamo assimilato il concetto di rigidezza: essa può essere espressa come la forza necessaria ad imprimere uno spostamento

Dettagli

SISTEMI DI DUE EQUAZIONI IN DUE INCOGNITE

SISTEMI DI DUE EQUAZIONI IN DUE INCOGNITE SISTEMI DI DUE EQUAZIONI IN DUE INCOGNITE Un equazione di primo grado in una incognita del tipo, con ha: una sola soluzione (equazione determinata) se nessuna soluzione (equazione impossibile) se tutte

Dettagli

ESERCIZIO 1.2 (punti 15) - Siano note le misurazioni estensimetriche seguenti come in figura: ALLIEVO

ESERCIZIO 1.2 (punti 15) - Siano note le misurazioni estensimetriche seguenti come in figura: ALLIEVO SCIENZA DELLE COSTRUZIONI: GES L - Z APPELLO 23/07/2007 TEMA A ALLIEVO PROVA 1: + = PROVA 2: + + = APPELLO: ESERCIZIO 1.1 (punti 18) - Data la struttura di figura, si chiede di: 1.1a - effettuare l analisi

Dettagli

Università degli Studi di Trieste Facoltà di Ingegneria Corso di Laurea in Ingegneria Meccanica. Anno Accademico 2015/2016

Università degli Studi di Trieste Facoltà di Ingegneria Corso di Laurea in Ingegneria Meccanica. Anno Accademico 2015/2016 Università degli Studi di Trieste Facoltà di Ingegneria Corso di Laurea in Ingegneria Meccanica Docente: Prof.ssa Cosmi Franesca Studente: Bertazzolo Mattia Anno Accademico 2015/2016 Obiettivi dell esercitazione!

Dettagli

Argomento 13 Sistemi lineari

Argomento 13 Sistemi lineari Sistemi lineari: definizioni Argomento Sistemi lineari Un equazione nelle n incognite x,, x n della forma c x + + c n x n = b ove c,, c n sono numeri reali (detti coefficienti) e b è un numero reale (detto

Dettagli

Giuseppe Stagnitto INDICE

Giuseppe Stagnitto INDICE Giuseppe Stagnitto FONDAMENTI DI TECNICA DELLE COSTRUZIONI Appunti del corso a cura degli studenti INDICE INTRODUZIONE AL CORSO I - INTRODUZIONE ALL ANALISI STRUTTURALE... pag.1 1. PRIMI ESEMPI DI ANALISI

Dettagli

Scienza delle costruzioni - Luigi Gambarotta, Luciano Nunziante, Antonio Tralli ESERCIZI PROPOSTI

Scienza delle costruzioni - Luigi Gambarotta, Luciano Nunziante, Antonio Tralli ESERCIZI PROPOSTI . Travi isostatiche ad asse rettilineo ESERCIZI PROPOSTI Con riferimento alle tre strutture isostatiche di figura, costituite da tre tratti, determinare: ) Reazioni vincolari; ) Diagrammi del momento flettente

Dettagli

FONDAMENTI DI INGEGNERIA STRUTTURALE PER L INGEGNERIA CHIMICA

FONDAMENTI DI INGEGNERIA STRUTTURALE PER L INGEGNERIA CHIMICA FONDAMENTI DI INGEGNERIA STRUTTURALE PER L INGEGNERIA CHIMICA Riferimenti anno accademico 2011/2012 (Argomenti) Dall a.a. 2012/2013 non sono stati affrontati gli argomenti evidenziati Lez_1 - Panoramica

Dettagli

Corso di Calcolo Numerico

Corso di Calcolo Numerico Corso di Calcolo Numerico Dott.ssa M.C. De Bonis Università degli Studi della Basilicata, Potenza Facoltà di Ingegneria Corso di Laurea in Ingegneria Meccanica Risoluzione di Equazioni non lineari Sia

Dettagli

Uno di questi casi è rappresentato dal cedimento in elementi di strutture soggetti a carichi di compressione che danno luogo ad instabilità elastica

Uno di questi casi è rappresentato dal cedimento in elementi di strutture soggetti a carichi di compressione che danno luogo ad instabilità elastica In alcuni casi una struttura soggetta a carichi statici può collassare con un meccanismo diverso da quello del superamento dei limiti di resistenza del materiale. Uno di questi casi è rappresentato dal

Dettagli

SISTEMI AEROSPAZIALI I

SISTEMI AEROSPAZIALI I SISTEMI AEROSPAZIALI I SBOBINATURE ANNO ACCADEMICO 2016/2017 Professore Giancarlo Rufino d Sbobinature realizzate da Ignazio Esposito e Cardellino Giada con la collaborazione di : Gagliardi Giuseppe, Fiorentino

Dettagli

Teorema di Thevenin generalizzato

Teorema di Thevenin generalizzato Teorema di Thevenin generalizzato Si considerino due reti elettriche lineari, A e B, aventi rispettivamente N A e N B nodi interni. Esse si interfacciano attraverso n (n 3) fili di collegamento, in cui

Dettagli

Struttura 1-volta iperstatica soggetta a cedimento vincolare risolta con il metodo LINEA ELASTICA. M>0

Struttura 1-volta iperstatica soggetta a cedimento vincolare risolta con il metodo LINEA ELASTICA. M>0 Struttura 1-volta iperstatica soggetta a cedimento vincolare risolta con il metodo LINEA ELASTIA La struttura di figura è soggetta al solo cedimento vincolare η del carrello in ; la trave AB ha rigidezza

Dettagli

Nei seguenti schemi, determina il valore di calcolo dei carichi da usare per ottenere il massimo momento flettente negativo all incastro.

Nei seguenti schemi, determina il valore di calcolo dei carichi da usare per ottenere il massimo momento flettente negativo all incastro. Domande su: metodi di analisi e carichi Per ciascuna delle seguenti affermazioni, indica se si riferisce 1 al metodo delle tensioni ammissibili 4 a nessuno di questi 2 al calcolo a rottura a più di uno

Dettagli

Esempio. alla sua. un altro. estremità. giunto 2

Esempio. alla sua. un altro. estremità. giunto 2 Esempio 0 Si consideri il sistema illustrato in Figura ; esso è composto da una slitta che si muove lungo una rotaia orizzontale con attrito, vincolata ad un muro tramite una molla; sulla slitta è presente

Dettagli

Sono riportate nel seguito tipiche strutture che si analizzeranno durante il corso: Figura 1.1

Sono riportate nel seguito tipiche strutture che si analizzeranno durante il corso: Figura 1.1 Capitolo 1 1 Risoluzione delle strutture iperstatiche 1 (A cura di Rosario Palomba) 1.1 Studio del comportamento degli elementi strutturali Sono riportate nel seguito tipiche strutture che si analizzeranno

Dettagli

Problema di de Saint Venant

Problema di de Saint Venant Napoli, 21 maggio 212 Problema di de Saint Venant Cristoforo Demartino Università degli Studi di Napoli Federico II 21 maggio 212 Napoli, 21 maggio 212 Outline della lezione Introduzione Ipotesi Lo stato

Dettagli

10.1 Sollecitazione di sforzo normale e momento flettente

10.1 Sollecitazione di sforzo normale e momento flettente Capitolo 1 SFORO NORMALE E MOMENTO FLETTENTE (prof. Elio Sacco) 1.1 Sollecitazione di sforzo normale e momento flettente Si esamina il caso in cui la risultante ed il momento risultante agenti sulla base

Dettagli

Ricordiamo ora che a è legata ad x (derivata seconda) ed otteniamo

Ricordiamo ora che a è legata ad x (derivata seconda) ed otteniamo Moto armonico semplice Consideriamo il sistema presentato in figura in cui un corpo di massa m si muove lungo l asse delle x sotto l azione della molla ideale di costante elastica k ed in assenza di forze

Dettagli

Università degli Studi di Bergamo Modulo di Geometria e Algebra Lineare (nuovo programma) 28 aprile 2014 Tema A

Università degli Studi di Bergamo Modulo di Geometria e Algebra Lineare (nuovo programma) 28 aprile 2014 Tema A Università degli Studi di Bergamo Modulo di Geometria e Algebra Lineare (nuovo programma 8 aprile 04 Tema A Tempo a disposizione: ore e mezza. Calcolatrici, libri e appunti non sono ammessi. Ogni esercizio

Dettagli

5. Stati limite ultimi 5.1. Principi

5. Stati limite ultimi 5.1. Principi 5. Stati limite ultimi 5.1. Principi 5.1.1. Generalità (1) Le strutture di acciaio ed i componenti devono essere dimensionati in modo tale che siano soddisfatti i requisiti per il rispetto dei principi

Dettagli

Rette e piani in R 3

Rette e piani in R 3 Rette e piani in R 3 In questa dispensa vogliamo introdurre in modo elementare rette e piani nello spazio R 3 (si faccia riferimento anche al testo Algebra Lineare di S. Lang). 1 Rette in R 3 Vogliamo

Dettagli