Algebra. Problemi dimostrativi (lavoro singolo)

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Algebra. Problemi dimostrativi (lavoro singolo)"

Transcript

1 Algebra Problemi dimostrativi (lavoro singolo) A1. Siano p(x) e q(x) due polinomi a coefficienti complessi, entrambi di grado 2016 e tali che p(x) + ( 1) x q(x) = 2 x, per x = 1, 2,..., Si chiede di determinare il coefficiente di x 2016 in q(x). A2. Sia f : (0, 1) (0, 1) la funzione definita da { x + 1 se x < f(x) = x 2 se x 1. 2 Fissati due numeri distinti a 0, b 0 (0, 1), si definiscono ricorsivamente le successioni a n e b n per n 0, tramite a n+1 = f(a n ) e b n+1 = f(b n ). Dimostrare che esiste un intero positivo n per cui (a n a n 1 )(b n b n 1 ) < 0. A3. Determinare tutte le funzioni f : R + R + che soddisfano la seguente condizione: per ogni terna di reali positivi distinti a, b, c, si ha che f(a), f(b) e f(c) sono le lunghezze dei lati di un triangolo se e solo se a, b e c sono le lunghezze dei lati di un triangolo. A4. Sia n un intero positivo e sia f : [0, 1] R una qualsiasi funzione crescente. Si determini quanto vale max 0 x 1 x n 1 n ( f x k 2k 1 ) 2n. k=1 PreIMO Pisa 2016 Pag. 1 di 10

2 Problemi dimostrativi (lavoro di gruppo) A5. Sia n un intero positivo e siano x 1, x 2,..., x n+1 reali positivi tali che x 1 x 2... x n+1 = 1. Dimostrare che x 1 n + + x n+1 n n n x n n x n+1 A6. Determinare per quali n esistono a 0, a 1,..., a n reali non nulli tali che per ogni scelta di e 0, e 1,..., e n { 1, 1} il polinomio p(x) = n k=0 e ka k x k ha n radici reali distinte. A7. Determinare tutte le funzioni f : R + R tali che per ogni scelta di x, y > 0. f(x + y) 2 = f(x) 2 + 2f(xy) + f(y) 2 A8. Sia n 2 e siano x 1, x 2,..., x n numeri reali tali che x 1 + x x n = 0, e x x x 2 n = 1. Per ogni sottoinsieme A di {1, 2,..., n}, poniamo s A = i A x i intendendo che s = 0. Si dimostri che per ogni λ > 0, il numero di insiemi A per cui s A λ non supera 2 n 3 λ 2. Per quali scelte di x 1, x 2,..., x n e di λ vale l uguaglianza? PreIMO Pisa 2016 Pag. 2 di 10

3 Combinatoria Problemi dimostrativi (lavoro singolo) C1. Il drago si nasconde in una casella di una tabella Ad ogni mossa possiamo colpire una casella. Se quella scelta contiene il drago questo viene ferito e fugge su una casella adiacente (con un lato in comune), altrimenti rimane fermo. Se il drago viene ferito due volte, muore. Quante mosse sono necessarie, al minimo, per essere certi di uccidere il drago non sapendo né in quale casella si trova, né quando o dove si sposta una volta ferito? C2. Ad una festa ci sono 36 partecipanti e alcuni si stringono la mano. Finita la festa, si ha che se due partecipanti si sono stretti la mano, allora hanno stretto la mano ad un numero diverso di partecipanti. Quante sono state le strette di mano al massimo? C3. Mostrare che, dato un insieme A di persone, ne esiste un sottoinsieme S tale che ogni membro di S abbia al più tre amici in S, mentre ogni persona in A \ S abbia almeno quattro amici all interno di S. C4. A e B sono due sottoinsiemi degli interi non negativi per cui ogni intero non negativo m si scrive come m = a + b per una e una sola scelta di a A e b B. Supponiamo anche che A abbia un numero finito di elementi. Dimostrare che allora esiste un c > 0 per cui b B se e solo se b + c B (cioè B è c-periodico). PreIMO Pisa 2016 Pag. 3 di 10

4 Problemi dimostrativi (lavoro di gruppo) C5. Data una 2016-upla di interi positivi (a 1,..., a 2016 ) possiamo effettuare la seguente mossa: scegliamo degli indici 1 k, l 2016 tali che a k sia pari, quindi sostituiamo ad a k il numero a k /2 e ad a l il numero a k /2+a l. Se all inizio a i = i per ogni i = 1,..., 2016, dimostrare che per ogni permutazione σ di {1,..., 2016} esiste una sequenza finita di mosse che fa ottenere la 2016-upla (a σ(1),..., a σ(2016) ). C6. Una parola formata da lettere H e V è buona se comincia con una sequenza di lettere ripetuta due volte, cattiva altrimenti. Una macchina distingue le parole fra buone e cattive secondo lo schema che segue: per l = 1, 2, 3,..., n/2, la macchina decide se la parola comincia con due copie di una stringa di l lettere confrontando la lettera 1 e la l + 1, la 2 e la l + 2, e in generale la i e la l + i, fino a che la macchina non incontra una coppia di lettere diverse (o constata che la parola è buona). Mostrare che esiste una parola di lunghezza n sulla quale la macchina è costretta a effettuare almeno 100n confronti prima di determinare se sia buona o cattiva. C7. La giuria di una gara di bellezza matematica è composta da 100 giudici, ciascuno dei quali stila una classifica ordinando strettamente tutti i concorrenti. Le classifiche che stilano hanno la proprietà che, comunque si scelgano tre giudici distinti x, y e z e tre concorrenti distinti A, B e C, non si verifica (contemporaneamente) che secondo x sia A il migliore e B il peggiore dei tre, secondo y sia B il migliore e C il peggiore dei tre e secondo z sia C il migliore e A il peggiore dei tre. Dimostrare che esiste una classifica globale che ordina strettamente i concorrenti in modo che per ogni coppia ci siano almeno 50 giudici che condividono l ordine fissato da tale classifica tra i due concorrenti della coppia. C8. In un paese, il parlamento è suddiviso in h camere, con h 1 un intero, ciascuna delle quali ha posto per esattamente m 2 parlamentari. Tra gli hm parlamentari, ci sono N coppie di nemici. Qual è il minimo N per cui esista una configurazione delle coppie di nemici tale che, comunque vengano fatti sedere i parlamentari nelle varie camere, esista almeno una coppia di nemici seduta nella stessa camera? C9. [LUNCH PROBLEM] In un gruppo di n stagisti ogni stagista conosce esattamente d femmine e d maschi. Per quali coppie (n, d) questa situazione è possibile? PreIMO Pisa 2016 Pag. 4 di 10

5 Geometria Problemi dimostrativi (lavoro singolo) G1. Sia ABC un triangolo e sia t una retta passante per A. Siano Y, Z le proiezioni di B, C su t e sia X la proiezione di A su BC. Mostrare che il circocentro di XY Z giace sul cerchio dei nove punti di ABC. G2. Sia ABC un triangolo acutangolo e sia γ la sua circonferenza inscritta che interseca i lati AC, CB e BA rispettivamente in L, Q e P. Sia D AC qualunque e siano γ 1 e γ 2 le circonferenze inscritte in ABD e DBC. Mostrare che se X è preso sul segmento BD in modo tale che BX = BP, allora X appartiene alla tangente comune esterna di γ 1 e γ 2 che non è AC. G3. All interno del quadrilatero ciclico ABCD vi sono due punti P e Q tali che P DC + P CB, P AB + P BC, QCD + QDA e QBA + QAD sono uguali a 90. Mostrare che la retta P Q forma angoli uguali con le rette AB e CD. G4. Sia ABC un triangolo e siano D, E i piedi delle altezze relative ad A, B, le quali si intersecano in H. Sia M il punto medio di AB e supponiamo che le circonferenze circoscritte a ABH e DEM si intersechino nei punti P, Q (con P, A sullo stesso lato di CH). Mostrare che le rette P H, M Q si incontrano sulla circonferenza circoscritta ad ABC. PreIMO Pisa 2016 Pag. 5 di 10

6 Problemi dimostrativi (lavoro di gruppo) G5. Sia ABC un triangolo e siano B 1, C 1 due punti su AC, AB rispettivamente. Sia P il punto di intersezione di BB 1, CC 1 e sia P 1 quel punto tale che BP CP 1 sia un parallelogrammo. Se le circonferenze circoscritte a BP C 1 e CP B 1 si incontrano nuovamente in Q, mostrare che BAQ = CAP 1. G6. Sia ABC un triangolo di circocentro O. Sia t una retta tangente alla circonferenza circoscritta al triangolo BOC, la quale interseca i lati AB, AC nei punti X, Y. Sia A il simmetrico di A rispetto alla retta t. Mostrare che la circonferenza circoscritta al triangolo XA Y è tangente alla circonferenza circoscritta di ABC. G7. Sia ABC un triangolo e sia H la proiezione di A su BC. Sia H il simmetrico di H rispetto al punto medio di BC e sia X il punto di intersezione delle rette che tangono la circonferenza circoscritta di ABC in B, C. La perpendicolare da H a XH incontra AB, AC in Y, Z rispettivamente. Sia r la retta simmetrica di BX rispetto alla bisettrice esterna di ABC, e analogamente s la retta simmetrica di CX rispetto alla bisettrice esterna di ACB. Detto D = r s, mostrare che DH BC. Mostrare che ZXC = Y XB. G8. Sia ABCD un quadrilatero convesso. Siano P, Q, R, S punti sui lati AB, BC, CD, DA rispettivamente in modo tale che P R e QS si intersechino in un punto O e i quattro quadrilateri AP OS, BQOP, CROQ, DSOR siano circoscrivibili. Mostrare che le rette AC, P Q e RS sono concorrenti o parallele. PreIMO Pisa 2016 Pag. 6 di 10

7 Teoria dei numeri Problemi dimostrativi (lavoro singolo) N1. Per ogni numero razionale q sia M q l insieme delle soluzioni razionali dell equazione x x = q. (a) Dimostrare che ci sono dei valori di q per cui M q =. (b) Determinare tutte le possibili cardinalità di M q al variare di q Q. (c) Dimostrare che, per ogni polinomio a coefficienti razionali f(x) di grado almeno 2, esiste un numero razionale q per cui l equazione f(x) = q non ha soluzioni razionali. N2. Sia p un numero primo e siano l, m, n interi positivi tali che p 2l 1 m(mn + 1) 2 + m 2 è un quadrato perfetto. Dimostrare che m è un quadrato perfetto. N3. Determinare tutte le coppie di interi (a, b) che soddisfano l equazione (b (a b)) 2 = a 3 b. N4. Chiamiamo una successione a 1, a 2, a 3,... di numeri interi positivi una successione ascendente se valgono le seguenti due proprietà: (i) a n < a n+1 per ogni n; (ii) a 2n = 2a n per ogni n. (a) Sia {a n } una successione ascendente, e sia p un numero primo maggiore di a 1. Dimostrare che esiste un intero positivo n tale che p a n. (b) Sia p un numero primo dispari. Dimostrare che esiste una successione ascendente {a n } che non contiene nessun multiplo di p. PreIMO Pisa 2016 Pag. 7 di 10

8 Problemi dimostrativi (lavoro di gruppo) N5. Determinare tutti i polinomi f(x) a coefficienti interi tali che il massimo comune divisore (f(n), f(2 n )) è uguale a 1 per ogni numero naturale n. N6. Sia p > 5 un numero primo. Dimostrare che almeno uno dei numeri p + 1, 2p + 1, 3p + 1,..., p(p 3) + 1 si può scrivere nella forma x 2 + y 2 con x, y Z. N7. Sia q un numero primo dispari. Dimostrare che esiste un intero positivo N q tale che, se k > N q e qk + 1 = p è un numero primo, allora p non divide 1 q q k q 1. N8. Sia k > 3 un intero positivo dispari. Dimostrare che esistono infiniti interi positivi n tali che n ha due divisori positivi d 1 e d 2 con d 1 + d 2 = n + k. PreIMO Pisa 2016 Pag. 8 di 10

9 Team(s) Selection Test A1. Sia ABCD un quadrilatero. Supponiamo che esista un punto P interno al quadrilatero tale che AP D = BP C = 90 e P A P D = P B P C. Sia O il circocentro di CP D. Dimostrare che la retta OP passa per il punto medio di AB. A2. In un dato giorno un centro commerciale è stato visitato da 2016 clienti. Ognuno di questi clienti è entrato, è rimasto un po di tempo all interno del centro commerciale, e poi è uscito senza più rientrare. Un gruppo di clienti si definisce contemporaneo se i suoi componenti sono stati tutti contemporaneamente all interno del centro commerciale almeno in un istante. Un gruppo di clienti si definisce sequenziale se, comunque si scelgano due suoi componenti, questi non sono stati contemporaneamente all interno del centro commerciale, nemmeno per un istante. Determinare il più grande intero k con questa proprietà: comunque si siano svolti ingressi ed uscite, di sicuro esiste un gruppo contemporaneo di almeno k clienti oppure esiste un gruppo sequenziale di almeno k clienti. A3. Dimostrare che non esistono funzioni f : (0, + ) (0, + ) tali che f(f(x) + y) = f(x) + 3x + yf(y) per ogni coppia di numeri reali positivi x e y. B1. Siano a e b interi positivi tali che (a! + b!) divide a! b!. Dimostrare che 3a 2b + 2. B2. Sia a n una successione di numeri reali positivi tali che per ogni intero positivo n. a n+1 na n a 2 n + (n 1) Dimostrare che a a n n per ogni n 2. B3. Sia ABC un triangolo con AB AC. Siano D, E ed F i punti medi dei lati BC, CA e AB, rispettivamente. Sia ω la circonferenza passante per A e tangente alla retta BC in D. La circonferenza ω interseca nuovamente la retta AB in X, la retta AC in Y, la retta DE in R, e la retta DF in S. Sia X il simmetrico di X rispetto ad F, e sia Y il simmetrico di Y rispetto ad E. La retta X Y interseca la retta AD in Q e la retta EF in M. Sia infine P l ulteriore intersezione tra ω e la retta AM. (a) Dimostrare che i punti R ed S stanno sulla retta X Y. PreIMO Pisa 2016 Pag. 9 di 10

10 (b) Dimostrare che Q sta sull asse radicale delle circonferenze circoscritte ai triangoli DCR e DBS. (c) Dimostrare che AQ = QP. Modalità di svolgimento della prova: 3 problemi al giorno con 4 ore e 30 minuti di tempo a disposizione. PreIMO Pisa 2016 Pag. 10 di 10

Algebra. Problemi dimostrativi (lavoro singolo) 1. Determinare tutte le funzioni iniettive f : N N tali che. f(f(n)) n + f(n) 2. per ogni n N.

Algebra. Problemi dimostrativi (lavoro singolo) 1. Determinare tutte le funzioni iniettive f : N N tali che. f(f(n)) n + f(n) 2. per ogni n N. Algebra Problemi dimostrativi (lavoro singolo) 1. Determinare tutte le funzioni iniettive f : N N tali che per ogni n N. f(f(n)) n + f(n) 2 2. Trovare tutti i polinomi p(x) a coefficienti reali tali che

Dettagli

Algebra Problemi di ammissione

Algebra Problemi di ammissione Algebra Problemi di ammissione 1. Siano x, y, z numeri reali positivi tali che x + y + z = 3. Dimostrare che x 3 y 3 + 8 + y3 z 3 + 8 + 2. Siano a 1, a 2,..., a n numeri reali positivi tali che Dimostrare

Dettagli

Algebra. Problemi dimostrativi (lavoro singolo) f(x + f(y)) = f(x) y. Problemi dimostrativi (lavoro di gruppo) a i a j 1 i + j

Algebra. Problemi dimostrativi (lavoro singolo) f(x + f(y)) = f(x) y. Problemi dimostrativi (lavoro di gruppo) a i a j 1 i + j Algebra 1. Consideriamo il polinomio p(x) = x 6 + x 5 + x 4 + x 3 + x 2 + x + 1. Determinare quale resto si ottiene dividendo p(x 7 ) per p(x). 2. Siano x e y numeri reali tali che x 2 + y 2 1, e siano

Dettagli

Algebra. Problemi dimostrativi (lavoro singolo) P (x) 3 + Q(x) 3 = x a n ( 1) n

Algebra. Problemi dimostrativi (lavoro singolo) P (x) 3 + Q(x) 3 = x a n ( 1) n Algebra Problemi dimostrativi (lavoro singolo) A1. Sia a 1, a 2, a 3,... una successione di numeri interi che soddisfano (n 1)a n+1 = (n + 1)a n 2(n 1), n 1. Sapendo che 2000 divide a 1999, determinare

Dettagli

Test A Teoria dei numeri e Combinatoria

Test A Teoria dei numeri e Combinatoria Test A Teoria dei numeri e Combinatoria Problemi a risposta secca 1. Determinare con quanti zeri termina la scrittura in base 12 del fattoriale di 2002. 2. Determinare quante sono le coppie (x, y) di interi

Dettagli

Algebra. Problemi dimostrativi (lavoro singolo)

Algebra. Problemi dimostrativi (lavoro singolo) Algebra Problemi dimostrativi (lavoro singolo) A1. Determinare per quali n interi positivi la seguente equazione ha esattamente 2013 soluzioni reali positive 1 1 x + n = 2 x n 2. Ovviamente y denota la

Dettagli

Algebra Problemi di ammissione

Algebra Problemi di ammissione Algebra Problemi di ammissione 1. Per ogni intero positivo n, poniamo f(n) = n + max { m N : 2 2m n2 n}. Determinare l immagine della funzione f. 2. Siano a, b, c numeri reali positivi tali che a + b +

Dettagli

Algebra. Problemi dimostrativi (lavoro singolo) x + y + z =0, x. 3 + y 3 + z 3 =18, x 7 + y 7 + z 7 =2058. b c +2d + a +

Algebra. Problemi dimostrativi (lavoro singolo) x + y + z =0, x. 3 + y 3 + z 3 =18, x 7 + y 7 + z 7 =2058. b c +2d + a + Algebra Problemi dimostrativi (lavoro singolo) A1. Determinare tutte le soluzioni reali (x, y, z) delsistema x + y + z =0, x 3 + y 3 + z 3 =18, x 7 + y 7 + z 7 =2058. A2. Determinare il più grande numero

Dettagli

Algebra. Problemi dimostrativi (lavoro singolo)

Algebra. Problemi dimostrativi (lavoro singolo) Algebra Problemi dimostrativi (lavoro singolo) A1. Siano a, b, c, d numeri reali positivi tali che a + b + c + d = 1. Dimostrare che 1 4a + 3b + c + 1 4b + 3c + d + 1 4c + 3d + a + 1 4d + 3a + b 2. A2.

Dettagli

Algebra. Problemi dimostrativi (lavoro singolo)

Algebra. Problemi dimostrativi (lavoro singolo) Algebra Problemi dimostrativi (lavoro singolo) A1. Determinare tutti i polinomi p(x), q(x) a coefficienti reali, monici e con lo stesso grado tale che [p(x)] 2 p(x 2 ) = q(x) A2. Sia n 4 un intero positivo.

Dettagli

Algebra Problemi di ammissione

Algebra Problemi di ammissione Algebra Problemi di ammissione A1. Consideriamo il polinomio g(x) = x 2 x + 1 e sia f : R R una funzione con la proprietà che f(f(x)) = g(g(x)) per ogni x R. Si determinino tutti i valori possibili per

Dettagli

Algebra Problemi di ammissione

Algebra Problemi di ammissione Algebra Problemi di ammissione A1. Determinare tutte le funzioni f : R R tali che per ogni coppia di numeri reali x e y. A2. Dimostrare che f(f(x y)) = f(x)f(y) f(x) + f(y) xy 1 + a 2 1 + b + c 2 + 1 +

Dettagli

Algebra. Problemi dimostrativi (lavoro singolo) x + y + z =0, x. 3 + y 3 + z 3 =18, x 7 + y 7 + z 7 =2058. b c +2d + a +

Algebra. Problemi dimostrativi (lavoro singolo) x + y + z =0, x. 3 + y 3 + z 3 =18, x 7 + y 7 + z 7 =2058. b c +2d + a + Algebra Problemi dimostrativi (lavoro singolo) A1. Determinare tutte le soluzioni reali (x, y, z) delsistema x + y + z =0, x 3 + y 3 + z 3 =18, x 7 + y 7 + z 7 =2058. A2. Determinare il più grande numero

Dettagli

Algebra. Problemi dimostrativi (lavoro singolo) (c + 1)(a + 1) + (3c) n. (a + 1)(b + 1) per i = 1, 2,...n, a a n n 2.

Algebra. Problemi dimostrativi (lavoro singolo) (c + 1)(a + 1) + (3c) n. (a + 1)(b + 1) per i = 1, 2,...n, a a n n 2. Algebra Problemi dimostrativi (lavoro singolo) A1. Siano a, b, c numeri reali positivi tali che a + b + c = 1 e sia n un intero positivo. Dimostrare che (3a) n (b + 1)(c + 1) + (3b) n (c + 1)(a + 1) +

Dettagli

Algebra Problemi di ammissione

Algebra Problemi di ammissione Algebra Problemi di ammissione A1. Siano a, b e c reali positivi tali che a 3 + b 3 + c 3 = a 4 + b 4 + c 4. Dimostrare che vale: a a 2 + b 4 + c 4 + b a 4 + b 2 + c 4 + c a 4 + b 4 + c 2 1 A2. Determinare

Dettagli

Algebra Problemi di ammissione

Algebra Problemi di ammissione Algebra Problemi di ammissione 1. Per ogni polinomio p(x) = a n x n +a n 1 x n 1 + +a 1 x+a 0 a coefficienti interi definiamo p(x) = max 0 i n a i. (a) Determinare se esistono due polinomi p(x) e q(x)

Dettagli

Algebra Problemidiammissione

Algebra Problemidiammissione Algebra Problemidiammissione A1. Siano a, b e c reali positivi tali che a + b + c = ab + bc + ca. Dimostrare che vale la seguente disuguaglianza e dire quando si ha l uguaglianza. 1 a 2 + b +1 + 1 b 2

Dettagli

Algebra Problemi di ammissione

Algebra Problemi di ammissione Algebra Problemi di ammissione A1. Dimostrare che per qualunque terna di reali positivi x, y, z tali che xy + yz + zx = 3, si ha x 2 (y + z) + y 2 (x + z) + z 2 (x + y) + 2 xyz( x 3 + 3x + y 3 + 3y + z

Dettagli

f(xy) = f(x + y) ( f(x) + f(y) ) Problema 6 (WC15-5). Siano a, b, c reali positivi tali che ab + bc + ca = 1. Dimostrare che c + 6 3a 1

f(xy) = f(x + y) ( f(x) + f(y) ) Problema 6 (WC15-5). Siano a, b, c reali positivi tali che ab + bc + ca = 1. Dimostrare che c + 6 3a 1 Problema (WC5-). Siano a, b e c reali positivi tali che a 3 + b 3 + c 3 = a 4 + b 4 + c 4. vale: a a 2 + b 4 + c 4 + b a 4 + b 2 + c 4 + c a 4 + b 4 + c 2 Problema 2 (WC5-2old). Determinare tutte le funzioni

Dettagli

Algebra. Problemi dimostrativi (lavoro singolo)

Algebra. Problemi dimostrativi (lavoro singolo) Algebra Problemi dimostrativi (lavoro singolo) A1. Determinare tutte le funzioni f :[0, ) [0, ) taliche f(x + y z)+f(2 xz)+f(2 yz) =f(x + y + z) per ogni scelta di x, y, z 0talichex + y z. A2. Sia n un

Dettagli

Algebra Problemi di ammissione

Algebra Problemi di ammissione Algebra Problemi di ammissione A1. Determinare tutti i polinomi p(x) per i quali esiste una costante reale a tale che valga l identità seguente p(x + x 2 + x 4 ) = (1 + x + x 2 + x 3 + x 4 + x 5 + x 6

Dettagli

Kangourou Italia Gara del 17 marzo 2016 Categoria Student Per studenti di quarta e quinta della scuola secondaria di secondo grado

Kangourou Italia Gara del 17 marzo 2016 Categoria Student Per studenti di quarta e quinta della scuola secondaria di secondo grado Kangourou Italia Gara del 17 marzo 2016 Categoria Student Per studenti di quarta e quinta della scuola secondaria di secondo grado I quesiti dal N. 1 al N. 10 valgono 3 punti ciascuno 1. La somma degli

Dettagli

Problemi di geometria

Problemi di geometria criteri di similitudine sui triangoli 1 Dimostra che le altezze di un triangolo sono inversamente proporzionali ai relativi lati. 2 Dimostra che due triangoli rettangoli sono simili se hanno ordinatamente

Dettagli

C6. Quadrilateri - Esercizi

C6. Quadrilateri - Esercizi C6. Quadrilateri - Esercizi DEFINIZIONI E COSTRUZIONI 1) Dato il seguente quadrilatero completa al posto dei puntini. I lati AB e BC sono I lati AB e CD sono I lati AD e sono consecutivi I lati AD e sono

Dettagli

Università del Salento Facoltà di Scienze Matematiche Fisiche e Naturali. Matematica e Fisica

Università del Salento Facoltà di Scienze Matematiche Fisiche e Naturali. Matematica e Fisica Università del Salento Facoltà di Scienze Matematiche Fisiche e Naturali Test d INGRESSO Matematica e Fisica 2017-2018 A 1. In un parallelogramma due lati consecutivi sono lunghi a e b e l angolo tra essi

Dettagli

Esercizi di Matematica per la prova di ammissione alla Scuola Galileiana /16

Esercizi di Matematica per la prova di ammissione alla Scuola Galileiana /16 Esercizi di Matematica per la prova di ammissione alla Scuola Galileiana - 015/16 Esercizio 1 Per quali valori n Z \ {0} l espressione è un numero intero positivo? (n + 5)(n + 6) 6n Soluzione. Il problema

Dettagli

VI a GARA MATEMATICA CITTÀ DI PADOVA 23 MARZO 1991 SOLUZIONI. < 2 0 < 3a + 1 < 4 1 < 3a < < 3a+1. 1 < 1 b < 2 2 < b < 1 1 < b < 2.

VI a GARA MATEMATICA CITTÀ DI PADOVA 23 MARZO 1991 SOLUZIONI. < 2 0 < 3a + 1 < 4 1 < 3a < < 3a+1. 1 < 1 b < 2 2 < b < 1 1 < b < 2. VI a GARA MATEMATICA CITTÀ DI PADOVA 23 MARZO 1991 SOLUZIONI 1.- 0 < 3a+1 < 2 0 < 3a + 1 < 4 1 < 3a < 3 1 2 3 1 < 1 b < 2 2 < b < 1 1 < b < 2. 1 < a < 1 3 1 < b < 2 4 < a + b < 3 e, a fortiori, 4 < a +

Dettagli

1. Esercizi sui numeri reali

1. Esercizi sui numeri reali 1. Esercizi sui numeri reali 1.1. Ricavare la formula risolutiva per le equazioni di secondo grado. 1.. Scrivere in altro modo a, a R. 1.3. Dato a R, scrivere le soluzioni dell equazione x = a. 1.4. Se

Dettagli

Problemi di geometria

Problemi di geometria 1 3 4 5 6 7 8 9 Un triangolo rettangolo ha un angolo acuto di 30, il cateto minore misura 6 m. Calcola il perimetro e l area del triangolo. [8,39 m; 31,18 m ] Un triangolo rettangolo ha un angolo acuto

Dettagli

Testi verifiche 3 C 3 I a. s. 2008/2009

Testi verifiche 3 C 3 I a. s. 2008/2009 Testi verifiche 3 C 3 I a. s. 2008/2009 1) Sono assegnati i punti A(- 1; 3) C(3; 0) M ;1 a) Ricavare le coordinate del simmetrico di A rispetto a M e indicarlo con B. Verificare che il segmento congiungente

Dettagli

2 di quello dela circonferenza data. Scrivere le

2 di quello dela circonferenza data. Scrivere le PROBLEMA. Raccolta di problemi sulla circonferenza Scritta l equazione della circonferenza con centro in ( ) C e passante per l origine O, si conducano per O la retta a di equazione + y indicando con A

Dettagli

C7. Circonferenza e cerchio - Esercizi

C7. Circonferenza e cerchio - Esercizi C7. Circonferenza e cerchio - Esercizi DEFINIZIONI E COSTRUZIONI 1) Dare la definizione di luogo geometrico. 2) Indicare almeno due luoghi geometrici. 3) Dare la definizione di asse di un segmento come

Dettagli

Don Bosco, A.S. 2013/14 Compiti per le vacanze - 2A

Don Bosco, A.S. 2013/14 Compiti per le vacanze - 2A Don Bosco, A.S. 0/ Compiti per le vacanze - A. Risolvi le seguenti espressioni: [( ) ( ) ] [( ) 5 ] + : ( ) ( ) ( ( ) 5 ) 9 ( 5 ) ( 5 ) ( 7 5 ). Scomponi i seguenti polinomi: a b ax+bx+ay+6by c) x +x d)

Dettagli

Rappresenta nel piano cartesiano l insieme dei punti P(x; y) le cui coordinate soddisfano le seguenti condizioni:

Rappresenta nel piano cartesiano l insieme dei punti P(x; y) le cui coordinate soddisfano le seguenti condizioni: ultima modifica /0/0 ESERCIZI PROPOSTI IL PIANO CARTESIANO LE COORDINATE DI UN PUNTO NEL PIANO CARTESIANO A Quali sono le coordinate dei punti indicati in figura? B Quali sono le coordinate dei punti indicati

Dettagli

LA CIRCONFERENZA, I POLIGONI INSCRITTI E CIRCOSCRITTI

LA CIRCONFERENZA, I POLIGONI INSCRITTI E CIRCOSCRITTI LA CIRCONFERENZA, I POLIGONI INSCRITTI E CIRCOSCRITTI 1. La circonferenza e il cerchio ESERCIZI 1 A Disegna un triangolo ABC di altezza CH relativa ad AB. Fissa un segmento ED minore di CH. Determina il

Dettagli

PIANO DI RECUPERO DI MATEMATICA ANNO SCOLASTICO 2015/2016 CLASSI 3

PIANO DI RECUPERO DI MATEMATICA ANNO SCOLASTICO 2015/2016 CLASSI 3 PIANO DI RECUPERO DI MATEMATICA ANNO SCOLASTICO 0/0 CLASSI DISEQUAZIONI Risolvi le seguenti disequazioni numeriche intere. ) ) 9 ) ) 9 ( ) ) ) non esiste R non esiste R Risolvi le seguenti disequazioni

Dettagli

Anno accademico

Anno accademico Anno accademico 1998 1999 1. Dato un quadrato Q di lato unitario siano P 1, P 2, P 3, P 4, P 5 dei punti interni a Q. Sia d i j la distanza fra P i e P j. (a) Si dimostri che almeno una delle distanze

Dettagli

esercizi 107 Problemi sulla retta

esercizi 107 Problemi sulla retta esercizi 107 Problemi sulla retta Es. 1 Detto C il punto in cui l asse del segmento di estremi A( 3, 3) e B(1, 5) incontra l asse x, calcolare le coordinate del punto D equidistante da A, B e C. Determinare

Dettagli

Problemi sui teoremi di Euclide e Pitagora

Problemi sui teoremi di Euclide e Pitagora Appunti di Matematica GEOMETRIA EUCLIDEA Problemi sui teoremi di Euclide e Pitagora Utilizzando le misure di segmenti e superfici si possono riscrivere i teoremi di Pitagora ed Euclide per il triangolo

Dettagli

I quadrilateri Punti notevoli di un triangolo

I quadrilateri Punti notevoli di un triangolo I quadrilateri Capitolo Quadrilateri 1 erifica per la classe prima COGME............................... ME............................. Quesiti 1.a ero o falso? 1. La somma degli angoli interni di un ottagono

Dettagli

Verifiche anno scolastico 2009/2010 Classi 3 C 3 H

Verifiche anno scolastico 2009/2010 Classi 3 C 3 H Verifiche anno scolastico 2009/2010 Classi 3 C 3 H 1) Scrivi l equazione della circonferenza γ che ha centro C(- 2; 0) e raggio r = 2 2. Ricava le coordinate dei punti A, B in cui γ interseca l asse delle

Dettagli

2. La somma degli angoli interni di un triangolo è 180.

2. La somma degli angoli interni di un triangolo è 180. 1 BREVI NOTE DI GEOMETRIA EUCLIDEA I fondamentali Riportiamo di seguito alcuni risultati che non si può non sapere. La presentazione sintetica è una scelta obbligata per questioni di sintesi, tuttavia

Dettagli

Soluzioni 28 a Gara Città di Padova (6 Aprile 2013)

Soluzioni 28 a Gara Città di Padova (6 Aprile 2013) Soluzioni 28 a Gara Città di Padova (6 Aprile 2013) 1.- Sia K il valore comune delle somme degli elementi della prima riga, di quelli della seconda e di quelli della colonna. Sia X il numero messo nella

Dettagli

Test su geometria. 1. una circonferenza. 2. un iperbole. 3. una coppia di iperboli. 4. una coppia di rette. 5. una coppia di circonferenze

Test su geometria. 1. una circonferenza. 2. un iperbole. 3. una coppia di iperboli. 4. una coppia di rette. 5. una coppia di circonferenze Test su geometria Domanda 1 Fissato nel piano un sistema di assi cartesiani ortogonali Oxy, il luogo dei punti le cui coordinate (x; y) soddisfano l equazione x y = 1 è costituita da una circonferenza.

Dettagli

8 a GARA MATEMATICA CITTÀ DI PADOVA 27 MARZO 1993 SOLUZIONI

8 a GARA MATEMATICA CITTÀ DI PADOVA 27 MARZO 1993 SOLUZIONI 8 a GARA MATEMATICA CITTÀ DI PADOVA 7 MARZO 1993 SOLUZIONI 1.- Consideriamo gli ultimi elementi u n di ciascuna riga : se n > 5, u n = u n-1 + n u 5 = 5, u 6 = 5 + 6, u 7 = 11 + 7,, u n = 5 + 6 + 7 + +

Dettagli

Stage Senior Pisa 2005 Test Iniziale

Stage Senior Pisa 2005 Test Iniziale Stage Senior Pisa 2005 Test Iniziale Tempo concesso: 100 minuti Valutazione: risposta errata 0, mancante 2, esatta 5 1. Sia k il numero dei valori interi (relativi) di x per cui è a sua volta intero. Allora

Dettagli

Scuola Galileiana di Studi Superiori Classe di Scienze Naturali - A. A Prova scritta di matematica

Scuola Galileiana di Studi Superiori Classe di Scienze Naturali - A. A Prova scritta di matematica Scuola Galileiana di Studi Superiori Classe di Scienze Naturali - A. A. 016-017 Prova scritta di matematica Il candidato svolga quanti più possibile dei seguenti sei esercizi. Esercizio 1. Consideriamo

Dettagli

TEST SULLE COMPETENZE Classe Seconda

TEST SULLE COMPETENZE Classe Seconda TEST SULLE COMPETENZE Classe Seconda 1 Una sola tra le seguenti proposizioni è FALSA Quale? A Se due punti A e B hanno la stessa ascissa, il coefficiente angolare della retta che li contiene non è definito

Dettagli

1) Ricava il dominio di ciascuna delle due funzioni e scrivilo attraverso intervalli

1) Ricava il dominio di ciascuna delle due funzioni e scrivilo attraverso intervalli 1) Ricava il dominio di ciascuna delle due funzioni e scrivilo attraverso intervalli A) 1 2 B) [ A) 2 x 1; B) (-, - 3) ( - 3, 0) ( 0, + ) ] 2) Riferendoti al grafico rappresentato completa a) Il dominio

Dettagli

ABCDEFGHIJKLMNOPQRSTUVW XY Zabcde f ghi jklmnopqrtstuvwxyz

ABCDEFGHIJKLMNOPQRSTUVW XY Zabcde f ghi jklmnopqrtstuvwxyz ABCDEFGHIJKLMNOPQRSTUVW XY Zabcde f ghi jklmnopqrtstuvwxyz Γ ΛΩΦΨΞΣΘΠϒ αβγδεεηζ ιλ µνωφϕψξ χσςκθϑρρπϖτυ A BC DE FG H I J K L MN OPQRS T U V W X Y Z ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz

Dettagli

f(x) = sin cos α = k2 2 k

f(x) = sin cos α = k2 2 k 28 Maggio 2015 Il punteggio viene attribuito in base alla correttezza e completezza nella risoluzione dei quesiti, nonché alle caratteristiche dell esposizione: chiarezza, ordine ed organicità. La sufficienza

Dettagli

C5. Triangoli - Esercizi

C5. Triangoli - Esercizi C5. Triangoli - Esercizi DEFINIZIONI 1) Dato il triangolo in figura completare al posto dei puntini. I lati sono i segmenti,, Gli angoli sono,, Il lato AB e l angolo sono opposti Il lato AB e l angolo

Dettagli

D2. Problemi sulla retta - Esercizi

D2. Problemi sulla retta - Esercizi D. Problemi sulla retta - Esercizi Per tutti gli esercizi è OBBLIGATORIO tracciare il grafico. 1) Trovare il perimetro del triangolo ABC, con A(1;0), B(-1;1), C(0;-). [ 5 + 10 ) Trovare il perimetro del

Dettagli

Problemi di geometria

Problemi di geometria corde e archi 1 Sia γγ una circonferenza di diametro AB. Siano AB e CD due corde parallele. Dimostra che la retta CB passa per il centro O della circonferenza. 2 3 4 5 6 7 Dimostra che due punti presi

Dettagli

Unione Matematica Italiana Scuola Normale Superiore Progetto Olimpiadi della Matematica. GARA di FEBBRAIO. Da riempirsi da parte dello studente:

Unione Matematica Italiana Scuola Normale Superiore Progetto Olimpiadi della Matematica. GARA di FEBBRAIO. Da riempirsi da parte dello studente: Unione Matematica Italiana Scuola Normale Superiore Progetto Olimpiadi della Matematica GARA di FEBBRAIO Da riempirsi da parte dello studente: 22 febbraio 2018 Nome: Cognome: Genere: F M Indirizzo: Città:

Dettagli

I quadrati sono 5. Esercizio pagina 198 numero 119 Calcola la misura del perimetro dell'area del trapezio in figura

I quadrati sono 5. Esercizio pagina 198 numero 119 Calcola la misura del perimetro dell'area del trapezio in figura Considera il piano cartesiano. Quanti sono i quadrati aventi un vertice in (-1;-1) e tali che uno degli assi coordinati sia asse di simmetria del quadrato stesso? I quadrati sono 5 Esercizio pagina 198

Dettagli

cos(2 n θ) < 0. a 2 + b 2 + c 2 = 8R 2. r a.

cos(2 n θ) < 0. a 2 + b 2 + c 2 = 8R 2. r a. 1 G1 - Esercizi 1. Si determinino tutti i possibili θ per cui, n N, si ha cos( n θ) < 0.. I lati di un triangolo ABC realizzano a + b + c = 8R. Si provi che in tale ipotesi ABC è rettangolo. 3. Due angoli

Dettagli

In un triangolo altezza mediana bisettrice asse Proprietà di angoli e lati di un triangolo

In un triangolo altezza mediana bisettrice asse Proprietà di angoli e lati di un triangolo In un triangolo si dice altezza relativa a un lato il segmento di perpendicolare al lato condotta dal vertice opposto. Si dice mediana relativa a un lato il segmento che unisce il punto medio del lato

Dettagli

la funzione assume valore per qualsiasi valore di x, quindi il suo dominio è R.

la funzione assume valore per qualsiasi valore di x, quindi il suo dominio è R. Data la funzione f (x)=a x 3 +b, trova per quali valori di a e di b il grafico di f (x) passa per i punti (; 1) e ( ; 4). Rappresenta f (x), indicandone il dominio e il codominio. Troca i punti di intersezione

Dettagli

D4. Circonferenza - Esercizi

D4. Circonferenza - Esercizi D4. Circonferenza - Esercizi Trasformare l equazione della circonferenza nell altra forma e rappresentare graficamente la circonferenza trovandone prima centro e raggio. 1) + --=0 [(-1) +(-1) =, C(1;1),

Dettagli

Esempio 1 In una circonferenza sono date due corde AB e CD, che si incontrano in P.

Esempio 1 In una circonferenza sono date due corde AB e CD, che si incontrano in P. TEOREMI DELLE CORDE, DELLE SECANTI E DELLA TANGENTE Esempio 1 In una circonferenza sono date due corde AB e CD, che si incontrano in P. Sapendo che PA 6 cm, PB cm, PC cm, determina la lunghezza di PD.

Dettagli

Geometria analitica pagina 1 di 5

Geometria analitica pagina 1 di 5 Geometria analitica pagina 1 di 5 GEOMETRIA LINEARE NEL PIANO È fissato nel piano un sistema di coordinate cartesiane ortogonali monometriche Oxy. 01. Scrivere due diverse rappresentazioni parametriche

Dettagli

IL PIANO CARTESIANO E LA RETTA

IL PIANO CARTESIANO E LA RETTA IL PIANO CARTESIANO E LA RETTA ESERCIZI 1. Le coordinate di un punto su un piano 1 A Scrivi le coordinate dei punti indicati in figura. 1 B Scrivi le coordinate dei punti indicati in figura. Rappresenta

Dettagli

Problemi di geometria

Problemi di geometria 1 2 3 applicazioni al triangolo rettangolo Calcola il perimetro e l area di un triangolo rettangolo sapendo che l ipotenusa e l altezza ad essa relativa sono lunghe rispettivamente 3 cm e 16,8 cm. [8 cm;

Dettagli

Corso di Geometria BIAR, BSIR Esercizi 10: soluzioni

Corso di Geometria BIAR, BSIR Esercizi 10: soluzioni Corso di Geometria 2010-11 BIAR, BSIR Esercizi 10: soluzioni 1 Geometria dello spazio Esercizio 1. Dato il punto P 0 = ( 1, 0, 1) e il piano π : x + y + z 2 = 0, determinare: a) Le equazioni parametriche

Dettagli

Incontri Olimpici 2011

Incontri Olimpici 2011 Incontri Olimpici 2011 Problemi di geometria Cetraro, 11 ottobre 2011 ppunti redatti da Ercole Suppa Sommario In questo documento sono riportate le soluzioni dei problemi di geometria proposti e risolti

Dettagli

Due rette si dicono INCIDENTI se hanno esattamente un punto in comune, altrimenti si dicono PARALLELE.

Due rette si dicono INCIDENTI se hanno esattamente un punto in comune, altrimenti si dicono PARALLELE. Riepilogo di Geometria: Assioma A1 Per tutte le coppie di punti P,Q dell insieme S è assegnato un numero reale (=)> 0, che si dice distanza di P da Q e si indica don d(p,q) 1- Se i punti P,Q sono distinti

Dettagli

Verifiche di matematica classe 3 C 2012/2013

Verifiche di matematica classe 3 C 2012/2013 Verifiche di matematica classe 3 C 2012/2013 1) È assegnato il punto P 1 (3; 1), calcolare le coordinate dei punti: P 2 simmetrico di P 1 rispetto alla bisettrice del primo e terzo quadrante P 3 simmetrico

Dettagli

Osserva la figura corrispondente al teorema, il cui enunciato è nel riquadro.

Osserva la figura corrispondente al teorema, il cui enunciato è nel riquadro. Laboratorio Politecnico Piano Nazionale Effediesse di Milano Lauree Scientifiche 0 Osserva la figura corrispondente al teorema, il cui enunciato è nel riquadro. TEOREMA ABCD è un parallelogrammo. I è il

Dettagli

ESERCIZI. 1.2 Dire quali dei seguenti insiemi sono vuoti e descriverne il complementare nell insieme dei numeri reali: C:= {x R x 1 3 e x 1 2 };

ESERCIZI. 1.2 Dire quali dei seguenti insiemi sono vuoti e descriverne il complementare nell insieme dei numeri reali: C:= {x R x 1 3 e x 1 2 }; ESERCIZI. INSIEMISTICA. Sia l insieme dei punti dello spazio, Γ una sfera e N il suo polo nord. Quali delle seguenti relazioni sono corrette? N Γ; N ; Γ ; Γ ; N ; Γ N.. Dire quali dei seguenti insiemi

Dettagli

Esercizi sulle rette nello spazio

Esercizi sulle rette nello spazio 1 Esercizi sulle rette nello spazio 1) Sono dati quattro punti non complanari, tre di essi possono essere allineati? 2) Sono dati quattro punti non complanari, quanti piani generano? 3) Quante coppie di

Dettagli

Costruzioni geometriche. (Teoria pag , esercizi )

Costruzioni geometriche. (Teoria pag , esercizi ) Costruzioni geometriche. (Teoria pag. 81-96, esercizi 141-153 ) 1) Costruzione con squadra e riga. a) Rette parallele. Ricorda: due rette sono parallele quando.... oppure quando hanno la stessa. Matematicamente

Dettagli

c) Determina per quali valori di k il segmento BC ha misura 2. 3) Ricava l equazione della spezzata rappresentata in figura

c) Determina per quali valori di k il segmento BC ha misura 2. 3) Ricava l equazione della spezzata rappresentata in figura VERIFICHE TERZA C a.s. 2010 2011 1) Sono assegnati i punti A(0; 10) B(8; - 6) C(0; 0). Rappresentali. a) Verifica che il triangolo ABC è isoscele e calcola la sua area b) Tra i punti P che hanno ordinata

Dettagli

I PARALLELOGRAMMI E I TRAPEZI

I PARALLELOGRAMMI E I TRAPEZI I PARALLELOGRAMMI E I TRAPEZI 1. Il parallelogramma ESERCIZI 1 A Disegna un parallelogramma ABCD, la diagonale BD e i segmenti AK e CH, perpendicolari a BD. Dimostra che il quadrilatero AHCK è un parallelogramma.

Dettagli

30 a GARA MATEMATICA CITTÀ DI PADOVA

30 a GARA MATEMATICA CITTÀ DI PADOVA 30 a GARA MATEMATICA CITTÀ DI PADOVA 7 Marzo 2015 1.- Dato un segmento AB ed un suo punto interno C si determini e si costruisca il luogo dei punti P del piano tali che una bisettrice del triangolo ABP

Dettagli

Liceo Scientifico G. Salvemini Corso di preparazione per la gara provinciale delle OLIMPIADI DELLA MATEMATICA INTRO GEOMETRIA

Liceo Scientifico G. Salvemini Corso di preparazione per la gara provinciale delle OLIMPIADI DELLA MATEMATICA INTRO GEOMETRIA Liceo Scientifico G. Salvemini Corso di preparazione per la gara provinciale delle OLIMPIADI DELLA MATEMATICA INTRO GEOMETRIA TRIANGOLI Criteri di congruenza Due triangoli sono congruenti se hanno congruenti:

Dettagli

Progetto Olimpiadi di Matematica 2009

Progetto Olimpiadi di Matematica 2009 UNIONE MATEMATICA ITALIANA SCUOLA NORMALE SUPERIORE DI PISA Progetto Olimpiadi di Matematica 2009 GARA di SECONDO LIVELLO 12 febbraio 2009 1) Non sfogliare questo fascicoletto finché l insegnante non ti

Dettagli

e) A10, ( 1;B6,2 ) ( ) f) A3,42;B12,2

e) A10, ( 1;B6,2 ) ( ) f) A3,42;B12,2 7. ESERCIZI SULLA DISTANZA FRA DUE PUNTI ) Calcola le distanze fra le seguenti coppie di punti: a) A;B6 ( ) ( ) A( 8 ); B( 7 5) c) A ( ;B ) ( 7) d) A( ); B e) A ( ;B6 ) ( ) f) A4;B ( ) ( ) g) A ; B 6 h)

Dettagli

Problemi di geometria

Problemi di geometria equivalenza fra parallelogrammi 1 2 3 4 Dimostra che, fra tutti i rettangoli equivalenti, il quadrato è quello che ha perimetro minimo. Dimostra che ogni quadrato è equivalente alla metà del quadrato costruito

Dettagli

Matematica classe 5 C a.s. 2012/2013

Matematica classe 5 C a.s. 2012/2013 Matematica classe 5 C a.s. 2012/2013 Asintoti e grafici 1) Una funzione y = f(x) gode delle seguenti caratteristiche: D / 4, y 0 se x 0 x 2, lim, 3. Rappresentare un grafico qualitativo della funzione.

Dettagli

Macerata 6 febbraio 2015 classe 3M COMPITO DI MATEMATICA RECUPERO ASSENTI. 3 3 < x.

Macerata 6 febbraio 2015 classe 3M COMPITO DI MATEMATICA RECUPERO ASSENTI. 3 3 < x. Macerata 6 febbraio 05 classe 3M COMPITO DI MATEMATICA RECUPERO ASSENTI SOLUZIONE QUESITO a) Rappresenta graficamente la curva descritta dalla seguente equazione: x y x y + + + 4 = 0 Per la presenza del

Dettagli

Test di autovalutazione RiESci Tempo richiesto: 90 minuti

Test di autovalutazione RiESci Tempo richiesto: 90 minuti UNIVERSITÀ DEL SALENTO, FACOLTÀ DI INGEGNERIA Test di autovalutazione RiESci 2014. Tempo richiesto: 90 minuti Analisi Matematica 1. Nello sviluppo del binomio (a b) 4 il coefficiente del termine a 3 b

Dettagli

Ripassare 'CIRCONFERENZA E CERCHIO ' e poligono inscritti e circoscritti. Svolgi le dimostrazioni a pag.8 (allegata)

Ripassare 'CIRCONFERENZA E CERCHIO ' e poligono inscritti e circoscritti. Svolgi le dimostrazioni a pag.8 (allegata) P a g i n a 1 MATEMATICA COMPITI PER LE VACANZE IIAsa - IIBsa Gli esercizi sono presi dal vostro libri di testo: Lineamenti.MATH BLU volume 2. N.B.: Molti esercizi che vi ho indicato erano già stati assegnati

Dettagli

Applicazioni dei teoremi di Pitagora ed Euclide

Applicazioni dei teoremi di Pitagora ed Euclide Utilizzando le misure di segmenti e superfici si possono riscrivere i teoremi di Pitagora ed Euclide per il triangolo rettangolo: Teorema di Pitagora: 1 + c i c = 1 Teorema di Euclide: c p i 1 = 1 c =

Dettagli

Gruppo N 2. Il candidato risolva tutti gli esercizi sotto indicati, illustrando con chiarezza, rigore e sintesi i procedimenti. Esercizio (1) Si ponga

Gruppo N 2. Il candidato risolva tutti gli esercizi sotto indicati, illustrando con chiarezza, rigore e sintesi i procedimenti. Esercizio (1) Si ponga Gruppo N Il candidato risolva tutti gli esercizi sotto indicati, illustrando con chiarezza, rigore e sintesi i procedimenti utilizzati. Esercizio (1) Si ponga (a) F(x) = ln(3 + sin t )dt. Giustificando

Dettagli

Liceo Scientifico G. Galilei Trebisacce Anno Scolastico Prova di Matematica : La retta + Pitagora e Euclide Alunno: Classe: 2 C

Liceo Scientifico G. Galilei Trebisacce Anno Scolastico Prova di Matematica : La retta + Pitagora e Euclide Alunno: Classe: 2 C Liceo Scientifico G. Galilei Trebisacce Anno Scolastico 011-01 Prova di Matematica : La retta + Pitagora e Euclide Alunno: Classe: C 8.0.01 prof. Mimmo Corrado A. Dato il triangolo di vertici: 7, 1, 65

Dettagli

Una versione aggiornata di queste dispense può essere rinvenuta presso l indirizzo:

Una versione aggiornata di queste dispense può essere rinvenuta presso l indirizzo: Capitolo 1 La Circonferenza Una versione aggiornata di queste dispense può essere rinvenuta presso l indirizzo: http://poisson.phc.unipi.it/~daurizio/dispensa3d.pdf - Jacopo (Jack) D Aurizio, elianto84@gmail.com

Dettagli

D. 1 Il prodotto di a = 12,37 e b = 25,45

D. 1 Il prodotto di a = 12,37 e b = 25,45 Settembre 005 Aritmetica D. Il prodotto di a =,7 e b = 5,45 A 4, 867 B 4, 65 C 45, 650 D 4, 865 E 4, 8655 D. L inverso del numero numero: A 5 B 5 + 5 C + 5 D E D. I numeri 5 è il,4,5,0,00, si ordinano

Dettagli

Geometria euclidea. Alessio del Vigna

Geometria euclidea. Alessio del Vigna Geometria euclidea Alessio del Vigna La geometria euclidea è una teoria fondata su quattro enti primitivi e sulle relazioni che tra essi intercorrono. I quattro enti primitivi in questione sono il punto,

Dettagli

Università degli Studi di Perugia - Facoltà di Ingegneria Secondo test d ingresso A.A. 2011/ Settembre 2011

Università degli Studi di Perugia - Facoltà di Ingegneria Secondo test d ingresso A.A. 2011/ Settembre 2011 Università degli Studi di Perugia - Facoltà di Ingegneria Secondo test d ingresso A.A. 2011/2012-16 Settembre 2011 1. Quale tra i seguenti numeri è razionale? A. 2 3. B. 2 + 3. C. π. D. 2 8. E. 8. 2. Quali

Dettagli

Chi ha avuto la sospensione di giudizio, deve aggiungere:

Chi ha avuto la sospensione di giudizio, deve aggiungere: CLASSE 1A Gli esercizi sono sul quaderno di recupero allegato al libro di testo: Esercizi da 80 a 94 pagina 49 Esercizi da 101 a 105 pagina 52-53 Esercizi da 108 a 118 pagina 52-53 Esercizi da 37 a 61

Dettagli

Dato un triangolo ABC, è il segmento che partendo dal vertice opposto al lato, incontra il lato stesso formando due angoli retti.

Dato un triangolo ABC, è il segmento che partendo dal vertice opposto al lato, incontra il lato stesso formando due angoli retti. Anno 2014 1 Sommario Altezze, mediane, bisettrici dei triangoli... 2 Altezze relativa a un vertice... 2 Mediane relative a un lato... 2 Bisettrici relativi a un lato... 2 Rette perpendicolari... 3 Teorema

Dettagli

I TRIANGOLI ESERCIZI. compreso tra.. e...

I TRIANGOLI ESERCIZI. compreso tra.. e... I TRIANGOLI ESERCIZI 1. Considerazioni generali sui triangoli Osserva la figura e poi completa le frasi a lato. 1 A Il punto. è il vertice opposto al lato AC, mentre il punto C è il vertice. al lato AB.

Dettagli

Soluzioni dello scritto di Geometria del 28 Maggio 2009

Soluzioni dello scritto di Geometria del 28 Maggio 2009 Soluzioni dello scritto di Geometria del 8 Maggio 9 1) Trovare le equazioni del sottospazio V(w, x, y, z) R 4 generato dalle quaterne c 1 = (,,, 1) e c = (, 1, 1, ). ) Trovare una base per OGNI autospazio

Dettagli

Problemi di geometria

Problemi di geometria 1 2 3 4 5 6 7 8 9 10 11 12 13 14 In un triangolo rettangolo l altezza relativa all ipotenusa è lunga 16 cm e la proiezione sull ipotenusa di un cateto è lunga 4 cm. Calcola l area del triangolo. [544 cm

Dettagli

C9. Teorema di Talete e similitudine - Esercizi

C9. Teorema di Talete e similitudine - Esercizi C9. Teorema di Talete e similitudine - Esercizi ESERCIZI SU TEOREMA DI TALETE, TEOREMA DELLA BISETTRICE Si consideri la seguente figura e si risponda alle domande che seguono. 1) Se AB=2, BC=4 e EF=3 trovare

Dettagli

Negli esercizi che seguono ci sono alcune cose da specificare:

Negli esercizi che seguono ci sono alcune cose da specificare: DISCLAIMER Negli esercizi che seguono ci sono alcune cose da specificare: ) voi dovete interpretare i simboli V e A (R) sempre come R. Questo oggetto sarà chiamato alle volte piano affine e alle volte

Dettagli

15 luglio Soluzione esame di geometria - Ing. gestionale - a.a COGNOME... NOME... N. MATRICOLA... ISTRUZIONI

15 luglio Soluzione esame di geometria - Ing. gestionale - a.a COGNOME... NOME... N. MATRICOLA... ISTRUZIONI 15 luglio 01 - Soluzione esame di geometria - Ing. gestionale - a.a. 01-01 COGNOME.......................... NOME.......................... N. MATRICOLA............. La prova dura ore. ISTRUZIONI Ti sono

Dettagli

ax 1 + bx 2 + c = 0, r : 2x 1 3x = 0.

ax 1 + bx 2 + c = 0, r : 2x 1 3x = 0. . Rette in R ; circonferenze. In questo paragrafo studiamo le rette e le circonferenze in R. Ci sono due modi per descrivere una retta in R : mediante una equazione cartesiana oppure mediante una equazione

Dettagli