Gruppo N 2. Il candidato risolva tutti gli esercizi sotto indicati, illustrando con chiarezza, rigore e sintesi i procedimenti. Esercizio (1) Si ponga

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Gruppo N 2. Il candidato risolva tutti gli esercizi sotto indicati, illustrando con chiarezza, rigore e sintesi i procedimenti. Esercizio (1) Si ponga"

Transcript

1 Gruppo N Il candidato risolva tutti gli esercizi sotto indicati, illustrando con chiarezza, rigore e sintesi i procedimenti utilizzati. Esercizio (1) Si ponga (a) F(x) = ln(3 + sin t )dt. Giustificando le asserzioni, rispondere ai seguenti quesiti. 1) L espressione in (a) è definita su tutto R: perché? Se la funzione F : R R è definita come in (a) ) Determinare l insieme A ove F è derivabile, e calcolare la derivata prima. 3) Determinare l insieme A ove F ammette derivata seconda, e calcolare la derivata seconda. 4) F è una funzione pari (F(x) = F( x)), dispari (F(x) = F( x)), o né pari né dispari? 5) Determinare gli insiemi ove F è crescente ed ove F è decrescente, e gli eventuali massimi e minimi. 6) F è periodica? Sì, no, perché? 7) Stabilire se esistono finiti o infiniti i limiti lim x ± F(x). 8) Si enuncino i teoremi utilizzati per calcolare la derivata seconda di F, discutendo la necessità delle ipotesi. 9) Mostrare che esiste un numero reale q tale che la funzione G(x) = F(x) qx è limitata su R; determinare q. Soluzione: 1) Per ogni t R si ha 1 sin t 1 3+sin t 4. Quindi la funzione f : R R, f (t) = ln(3 + sin t ), è definita come composizione delle funzioni t 3+sin t e ln, ed è continua su R in quanto composizione di funzioni continue; quindi f è localmente integrabile in R e F è definita su tutto R. Un grafico qualitativo di f (t) è riportato nella seguente figura:

2 /8 Un grafico qualitativo di F(x) è riportato nella seguente figura: ) Essendo f continua su R, dal Teorema Fondamentale del Calcolo segue che la funzione integrale F è derivabile in R (quindi A = R) e F (x) = f (x) = ln(3 + sin x ) per ogni x R. 3) In R \ {}, f è derivabile in quanto composizione di funzione derivabili e dal Teorema di derivazione della funzione composta (Regola della catena) segue che, se x, Dato che F (x) = f (x) = cos x 3 + sin x { x cosx x = 3+sinx, se x >,, se x <. cosx 3 sinx lim f (x) = 1 e lim x 3 f (x) = 1 x + 3, concludiamo che f è derivabile a sinistra in con derivata sinistra f () = 1 3 e f è derivabile a destra in con derivata destra f +() = 1 3. Quindi f = F non è derivabile in ; di conseguenza, F non ammette derivata seconda in e A = R \ {}.

3 3/8 4) Osserviamo che f è una funzione pari, cioè f ( t) = f (t) per ogni t R. Quindi, effettuando il cambio di variabile s = t nell integrale x f (t)dt, si ottiene F(x) = x x f (t)dt = f ( s)ds = f (s)ds = F( x), per ogni x R, cioè F è una funzione dispari. 5) Essendo sin x 1 per ogni x R, si ha che F (x) = f (x) = ln(3 + sin x ) ln > per ogni x R. Quindi F è strettamente crescente su R. In particolare F non ha alcun punto di estremo relativo. 6) La funzione F non è periodica; infatti, essendo strettamente crescente, F(x + T ) > F(x) per ogni x R e T >. 7) Dato che, come osservato nel punto 5, f (t) ln > per ogni t R, dal criterio del confronto per gli integrali impropri segue che lim x + F(x) = + f (t) dt = +. Essendo F dispari, si conclude per simmetria che lim F(x) =. x 8) I teoremi utilizzati per calcolare la derivata seconda di F sono il Teorema Fondamentale del Calcolo e il Teorema di derivazione della funzione composta (Regola della catena). Teorema Fondamentale del Calcolo. Siano f una funzione localmente integrabile nell intervallo (a,b) e x (a,b). Sia F la funzione integrale definita da F(x) = x f (t)dt, x (a,b). Se f è continua in x (a,b), allora F è derivabile in x e F ( x) = f ( x). Osserviamo che senza l ipotesi di continuità della funzione integranda in x, la funzione integrale potrebbe non essere derivabile in x, come mostra il seguente esempio: la funzione { 1, se x ( 1,), f : ( 1,1) R, f (x) = 1, se x [,1), non è continua in e la sua funzione integrale F(x) = f (t)dt = x non è derivabile in. D altra parte l ipotesi di continuità della funzione integranda in x non è necessaria per la derivabilità della funzione integrale; infatti, se la funzione f ha in x una discontinuità eliminabile, allora F è derivabile in x e F ( x) = lim x x f (x). Teorema di derivazione della funzione composta (Regola della catena). Siano I,J R due intervalli, x un punto interno ad I, f : I R una funzione derivabile in x tale che f (x ) sia interno a J e g : J R una

4 funzione derivabile in f (x ). Allora la funzione composta g f è ben definita in un intorno di x e derivabile in x e vale la formula (g f ) (x ) = g ( f (x )) f (x ). 4/8 Osserviamo che l ipotesi che f sia derivabile in x e g sia derivabile in f (x ) non è necessaria per la derivabilità in x della funzione composta, come mostra il seguente esempio: la funzione f : R R, f (x) = x, non è derivabile in e la funzione parte negativa { g : R R, g(x) = x x, se x <, =, se x, non è derivabile in f () =, mentre la funzione composta g( f (x)) = è costante e derivabile in. 9) Per ogni x, esiste k N tale che πk x < π(k + 1), cosicché x = kπ +τ con τ = x kπ [,π); quindi, essendo t ln(3+sint) periodica di periodo π, si ha che F(x) = Dato che ln(3 + sint)dt = π πk πk ln(3 + sint)dt + πk ln(3 + sint)dt = k ln(3 + sint)dt + ln(3 + sint)dt ( 1 π ) τ = πk ln(3 + sint)dt + ln(3 + sint)dt π ( 1 π ) ( 1 π = x ln(3 + sint)dt τ ln(3 + sint)dt π π τ τ ln(3 + sint)dt = ln(3 + sint)dt π ) τ + ln(3 + sint)dt. ln(3 + sint)dt, otteniamo che, posto q = π 1 π ln(3 + sint)dt e G(x) = F(x) qx, τ G(x) = F(x) qx = τq + ln(3 + sint)dt τq + πq 4πq per ogni x. Essendo G = F(x) qx una funzione dispari su R e limitata su [, + ), concludiamo che G è limitata su R. Soluzione alternativa: Osserviamo che G(x) = ( f (t) q)dt, con f (t) = ln(3 + sin t ). Inoltre G è somma delle due funzioni dispari F(x) e qx, e quindi è dispari; pertanto G è limitata su R se e soltanto se è limitata su (, + ). Ed è una funzione continua su R.

5 5/8 Ora, se G è limitata su (, ), allora necessariamente la successione G(kπ), con k N, è limitata. Ma G(kπ) = kπ ( f (t) q)dt = k 1 ( j+1)π j= jπ che è limitata se e soltanto se π ( f (t) q)dt = q = 1 π ( f (t) q)dt = k π π f (t)dt = F(π) π ( f (t) q)dt, Non rimane che da verificare che per q = F(π) π la funzione G sia davvero limitata in (, ). Per t > vale l uguaglianza f (t) = ln(3 + sint), quindi se definiamo f (t) = ln(3 + sint) e G(x) = ( f (t) q)dt, si ha che per x > vale l uguaglianza G(x) = G(x), e f (t) è una funzione periodica di periodo π. Ora, per ogni x R G(x + π) G(x) = = = +π +π x π ( f (t) q)dt ( f (t) q)dt ( f (t) q)dt =, ( f (t) q)dt cioè anche G(x) è una funzione periodica di periodo π. Ma una funzione continua e periodica non può che essere limitata. Ne segue che anche G(x) è una funzione limitata.. γ C γ A C B A C A B γ B γ A A B C C A B γ C γ B FIGURA 1. FIGURA. Esercizio () 1) Si considerino i tre vertici A, B, C del triangolo in figura 1, in cui l angolo in A è retto e i lati AB e AC hanno la medesima lunghezza l. Siano γ A, γ B e γ C le tre circonferenze con centri in A, B, C rispettivamente, con la proprietà che le circonferenze siano a due a due tangenti, con gli interni disgiunti. Si calcoli l area della regione del triangolo ABC che non è interna a nessuna delle tre circonferenze γ A, γ B e γ C, indicata in grigio nella figura 1. ) Si dimostri che dati tre punti qualsiasi A, B, C non allineati nel piano euclideo, esistono uniche tre circonferenze γ A, γ B e γ C con centri in A, B, e C rispettivamente, con la proprietà che le circonferenze siano a due a due tangenti, e abbiano gli interni disgiunti, come in figura.

6 6/8 Soluzione: 1) Osserviamo che se A e B sono due punti distinti nel piano, e γ A e γ B sono due circonferenze con centri in A e B, allora se le circonferenze γ A e γ B sono tra loro tangenti in un punto che chiamiamo P, la retta tangente comune alle due circonferenze in P è ortogonale ad entrambi i raggi AP e BP, da cui segue che P è allineato ai due centri A e B. Se le circonferenze hanno interni disgiunti, il punto P è un punto del segmento AB. Chiamiamo ora A il punto in cui le circonferenze γ B e γ C sono tra loro tangenti: per quanto visto poco sopra esso è un punto interno al segmento BC. Allo stesso modo si definiscano i punto B e C, come indicato in figura 1. Dato che il triangolo BAC è retto in A e isoscele, le lunghezze dei suoi lati sono AB = l AC = l BC = l Se indichiamo con r A, r B e r C i raggi delle tre circonferenze γ A, γ B, e γ C rispettivamente, si ha r A = AC = AB r B = BC = BA r C = CA = CB. Dato che il triangolo è simmetrico rispetto alla bisettrice dell angolo in A, risulta r B = r C, da cui r B = r B + r C = BC = l = r B = r C = l. Dato che r A + r B = AB = l, si ha anche che ( ) r A = l r B = l l = 1 l. Possiamo ora calcolare l area della regione indicata in grigio nella figura 1, semplicemente sottraendo all area del triangolo le aree dei tre settori circolari AC B, BA C e CA B. L area del triangolo ABC è uguale a l, mentre le aree dei settori circolari si calcolano facilmente considerando che gli angoli in A, B e C sono rispettivamente 9, 45 e 45, e l area è una funzione lineare dell angolo: Area(AC B ) = 9 36 πr A Area(BA C ) = πr B Area(CA B ) = πr C.

7 7/8 Di conseguenza Area della regione A B C = l πr A 4 πr B 8 (( ) ) ( π 1 l π = l l 4 8 = l π (( 3 4 ) + 1 ) l ( 1 = π 4 ( ) ) l. ) Siano dati i tre centri A, B e C non allineati. Siano a, b e c le lunghezze dei lati BC, CA e AB del triangolo. Allora valgono le disuguaglianze triangolari, cioè (*) a + b c >, a b + c >, a + b + c >. Si considerino ora due circonferenze con centro in A e B, con raggi r A > e r B > : esse sono tra di loro tangenti con interni disgiunti se e soltanto se r A + r B = AB. Infatti, se r A + r B > AB, gli interni non sono disgiunti. Se r A + r B < AB, le circonferenze non sono tangenti. Infine, se r A + r B = AB, allora sono tangenti. Quindi il problema è equivalente a determinare tre raggi r A, r B e r C (positivi) tali che le circonferenze di raggio r A, r B, e r C siano tangenti a due a due, cioè tali che soddisfino il sistema di equazioni r A + r B = c (**) r B + r C = a r C + r A = b. Il sistema (**) si risolve in modo semplice, e si ottiene il sistema r A = 1 ( a + b + c) r B = 1 (a b + c) r C = 1 (a + b c). Ciò significa che se esiste una soluzione, questa è unica. Perché alla soluzione del sistema di equazioni corrisponda una soluzione del problema, è sufficiente che r A, r B e r C siano tutti positivi. Per le disuguaglianze triangolari (*), per ogni scelta dei tre punti A, B e C non allineati la corrispondente soluzione (r A,r B,r C ) ha componenti tutte positive, e quindi esistono uniche le tre circonferenze γ A, γ B e γ C cercate. )

8 Soluzione alternativa: Osserviamo che si ottiene direttamente l esistenza di una soluzione se si considera l incentro I del triangolo ABC, e i piedi A, B e C delle tre altezze passanti per I. Le tre circonferenze cercate sono quelle con centri in A, B e C e passanti rispettivamente per B e C, A e C, A e B (si veda la figura 3). 8/8 C γ C B I A γ A A C B γ B FIGURA 3. Con i medesimi centri A, B e C possono esistere altre soluzioni? Si può procedere di fatto come nel punto precedente, osservando che il sistema lineare nelle r A, r B e r C è non degenere e non può avere più di una soluzione.

MINISTERO DELL'ISTRUZIONE, DELL'UNIVERSITÀ, DELLA RICERCA SCUOLE ITALIANE ALL ESTERO

MINISTERO DELL'ISTRUZIONE, DELL'UNIVERSITÀ, DELLA RICERCA SCUOLE ITALIANE ALL ESTERO Sessione Ordinaria in America 4 MINISTERO DELL'ISTRUZIONE, DELL'UNIVERSITÀ, DELLA RICERCA SCUOLE ITALIANE ALL ESTERO (Americhe) ESAMI DI STATO DI LICEO SCIENTIFICO Sessione Ordinaria 4 SECONDA PROVA SCRITTA

Dettagli

3. Sia g(x) = 4. Si calcoli l area del triangolo mistilineo ROS, ove l arco RS appartiene al grafico di f(x) o, indifferentemente, di g(x).

3. Sia g(x) = 4. Si calcoli l area del triangolo mistilineo ROS, ove l arco RS appartiene al grafico di f(x) o, indifferentemente, di g(x). Esame liceo Scientifico : ordinamento Il candidato risolva uno dei due problemi e risponda a 5 quesiti del questionario. PROBLEMI Problema. Sia ABCD un quadrato di lato, P un punto di AB e γ la circonferenza

Dettagli

5 DERIVATA. 5.1 Continuità

5 DERIVATA. 5.1 Continuità 5 DERIVATA 5. Continuità Definizione 5. Sia < a < b < +, f : (a, b) R e c (a, b). Diciamo che f è continua in c se sono verificate le ue conizioni: (i) c esiste (ii) = f(c) c Si osservi che nella efinizione

Dettagli

SESSIONE ORDINARIA 2007 CORSO DI ORDINAMENTO SCUOLE ITALIANE ALL ESTERO - AMERICHE

SESSIONE ORDINARIA 2007 CORSO DI ORDINAMENTO SCUOLE ITALIANE ALL ESTERO - AMERICHE SESSIONE ORDINARIA 007 CORSO DI ORDINAMENTO SCUOLE ITALIANE ALL ESTERO - AMERICHE PROBLEMA Si consideri la funzione f definita da f ( x) x, il cui grafico è la parabola.. Si trovi il luogo geometrico dei

Dettagli

CONTINUITÀ E DERIVABILITÀ Esercizi proposti. 1. Determinare lim M(sinx) (M(t) denota la mantissa di t)

CONTINUITÀ E DERIVABILITÀ Esercizi proposti. 1. Determinare lim M(sinx) (M(t) denota la mantissa di t) CONTINUITÀ E DERIVABILITÀ Esercizi proposti 1. Determinare lim M(sin) (M(t) denota la mantissa di t) kπ/ al variare di k in Z. Ove tale limite non esista, discutere l esistenza dei limiti laterali. Identificare

Dettagli

b) Il luogo degli estremanti in forma cartesiana è:

b) Il luogo degli estremanti in forma cartesiana è: Soluzione della simulazione di prova del 9/5/ PROBLEMA È data la funzione di equazione: k f( ). a) Determinare i valori di k per cui la funzione ammette punti di massimo e minimo relativi. b) Scrivere

Dettagli

x log(x) + 3. f(x) =

x log(x) + 3. f(x) = Università di Bari, Corso di Laurea in Economia e Commercio Esame di Matematica per l Economia L/Z Dr. G. Taglialatela 03 giugno 05 Traccia dispari Esercizio. Calcolare Esercizio. Calcolare e cos log d

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2004

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2004 ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 004 Il candidato risolva uno dei due problemi e 5 dei 10 quesiti in cui si articola il questionario. PROBLEMA 1 Sia f la funzione definita da: f

Dettagli

ESAME DI STATO 2002 SECONDA PROVA SCRITTA PER IL LICEO SCIENTIFICO DI ORDINAMENTO

ESAME DI STATO 2002 SECONDA PROVA SCRITTA PER IL LICEO SCIENTIFICO DI ORDINAMENTO ARCHIMEDE 4/ 97 ESAME DI STATO SECONDA PROVA SCRITTA PER IL LICEO SCIENTIFICO DI ORDINAMENTO Il candidato risolva uno dei due problemi e 5 dei quesiti in cui si articola il questionario. PROBLEMA In un

Dettagli

Calcolo differenziale Test di autovalutazione

Calcolo differenziale Test di autovalutazione Test di autovalutazione 1. Sia f : R R iniettiva, derivabile e tale che f(1) = 3, f (1) = 2, f (3) = 5. Allora (a) (f 1 ) (3) = 1 5 (b) (f 1 ) (3) = 1 2 (c) (f 1 ) (1) = 1 2 (d) (f 1 ) (1) = 1 3 2. Sia

Dettagli

SIMULAZIONE TEST ESAME - 1

SIMULAZIONE TEST ESAME - 1 SIMULAZIONE TEST ESAME - 1 1. Il dominio della funzione f(x) = log (x2 + 1)(4 x 2 ) (x 2 2x + 1) è: (a) ( 2, 2) (b) ( 2, 1) (1, 2) (c) (, 2) (2, + ) (d) [ 2, 1) (1, 2] (e) R \{1} 2. La funzione f : R R

Dettagli

FUNZIONI CONTINUE - ESERCIZI SVOLTI

FUNZIONI CONTINUE - ESERCIZI SVOLTI FUNZIONI CONTINUE - ESERCIZI SVOLTI 1) Verificare che x è continua in x 0 per ogni x 0 0 ) Verificare che 1 x 1 x 0 è continua in x 0 per ogni x 0 0 3) Disegnare il grafico e studiare i punti di discontinuità

Dettagli

PROBLEMI TRADIZIONALI SIMULAZIONE DELLA PROVA DI MATEMATICA

PROBLEMI TRADIZIONALI SIMULAZIONE DELLA PROVA DI MATEMATICA Simulazione 01/15 ANNO SCOLASTICO 01/15 PROBLEMI TRADIZIONALI SIMULAZIONE DELLA PROVA DI MATEMATICA DELL ESAME DI STATO PER IL LICEO SCIENTIFICO Il candidato risolva uno dei due problemi Problema 1 Nella

Dettagli

Analisi Matematica 2 per Matematica Esempi di compiti, primo semestre 2011/2012

Analisi Matematica 2 per Matematica Esempi di compiti, primo semestre 2011/2012 Analisi Matematica 2 per Matematica Esempi di compiti, primo semestre 211/212 Ricordare: una funzione lipschitziana tra spazi metrici manda insiemi limitati in insiemi limitati; se il dominio di una funzione

Dettagli

Syllabus: argomenti di Matematica delle prove di valutazione

Syllabus: argomenti di Matematica delle prove di valutazione Syllabus: argomenti di Matematica delle prove di valutazione abcdef... ABC (senza calcolatrici, senza palmari, senza telefonini... ) Gli Argomenti A. Numeri frazioni e numeri decimali massimo comun divisore,

Dettagli

Corso di Laurea in Ingegneria Edile Anno Accademico 2013/2014 Analisi Matematica

Corso di Laurea in Ingegneria Edile Anno Accademico 2013/2014 Analisi Matematica Corso di Laurea in Ingegneria Edile Anno Accademico 2013/2014 Analisi Matematica Nome... N. Matricola... Ancona, 29 marzo 2014 1. (7 punti) Studiare la funzione determinandone: f(x) = e x x il dominio;

Dettagli

Soluzione Punto 1 Si calcoli in funzione di x la differenza d(x) fra il volume del cono avente altezza AP e base il

Soluzione Punto 1 Si calcoli in funzione di x la differenza d(x) fra il volume del cono avente altezza AP e base il Matematica per la nuova maturità scientifica A. Bernardo M. Pedone 74 PROBLEMA Considerata una sfera di diametro AB, lungo, per un punto P di tale diametro si conduca il piano α perpendicolare ad esso

Dettagli

Maturità Scientifica PNI, sessione ordinaria 2000-2001

Maturità Scientifica PNI, sessione ordinaria 2000-2001 Matematica per la nuova maturità scientifica A. Bernardo M. Pedone Maturità Scientifica PNI, sessione ordinaria 000-00 Problema Sia AB un segmento di lunghezza a e il suo punto medio. Fissato un conveniente

Dettagli

Definisci il Campo di Esistenza ( Dominio) di una funzione reale di variabile reale e, quindi, determinalo per la funzione:

Definisci il Campo di Esistenza ( Dominio) di una funzione reale di variabile reale e, quindi, determinalo per la funzione: Verso l'esame di Stato Definisci il Campo di Esistenza ( Dominio) di una funzione reale di variabile reale e, quindi, determinalo per la funzione: y ln 5 6 7 8 9 0 Rappresenta il campo di esistenza determinato

Dettagli

RETTE, PIANI, SFERE, CIRCONFERENZE

RETTE, PIANI, SFERE, CIRCONFERENZE RETTE, PIANI, SFERE, CIRCONFERENZE 1. Esercizi Esercizio 1. Dati i punti A(1, 0, 1) e B(, 1, 1) trovare (1) la loro distanza; () il punto medio del segmento AB; (3) la retta AB sia in forma parametrica,

Dettagli

Nicola De Rosa, Liceo scientifico di ordinamento sessione suppletiva 2011, matematicamente.it

Nicola De Rosa, Liceo scientifico di ordinamento sessione suppletiva 2011, matematicamente.it Nicola De Rosa, Liceo scientifico di ordinamento sessione suppletiva, matematicamente.it PROBLEMA Data una semicirconferenza di diametro AB =, si prenda su di essa un punto P e sia M la proiezione di P

Dettagli

FUNZIONI ELEMENTARI - ESERCIZI SVOLTI

FUNZIONI ELEMENTARI - ESERCIZI SVOLTI FUNZIONI ELEMENTARI - ESERCIZI SVOLTI 1) Determinare il dominio delle seguenti funzioni di variabile reale: (a) f(x) = x 4 (c) f(x) = 4 x x + (b) f(x) = log( x + x) (d) f(x) = 1 4 x 5 x + 6 ) Data la funzione

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. 2004

ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. 2004 ESAME DI STAT DI LICE SCIENTIFIC CRS SPERIMENTALE P.N.I. 004 Il candidato risolva uno dei due problemi e 5 dei 0 quesiti in cui si articola il questionario. PRBLEMA Sia la curva d equazione: ke ove k e

Dettagli

CONTINUITÀ E DERIVABILITÀ Esercizi risolti

CONTINUITÀ E DERIVABILITÀ Esercizi risolti CONTINUITÀ E DERIVABILITÀ Esercizi risolti. Determinare kπ/ [cos] al variare di k in Z. Ove tale ite non esista, discutere l esistenza dei iti laterali. Identificare i punti di discontinuità della funzione

Dettagli

Corso di ordinamento Sessione straordinaria - a.s. 2009-2010 ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO SESSIONE STRAORDINARIA

Corso di ordinamento Sessione straordinaria - a.s. 2009-2010 ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO SESSIONE STRAORDINARIA Sessione straordinaria - a.s. 9- ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO SESSIONE STRAORDINARIA Tema di: MATEMATICA a.s. 9- Svolgimento a cura di Nicola De Rosa Il candidato risolva uno

Dettagli

Studio di funzione. Tutti i diritti sono riservati. E vietata la riproduzione, anche parziale, senza il consenso dell autore. Funzioni elementari 2

Studio di funzione. Tutti i diritti sono riservati. E vietata la riproduzione, anche parziale, senza il consenso dell autore. Funzioni elementari 2 Studio di funzione Copyright c 2009 Pasquale Terrecuso Tutti i diritti sono riservati. E vietata la riproduzione, anche parziale, senza il consenso dell autore. Funzioni elementari 2 Studio di funzione

Dettagli

Le funzioni elementari. Corsi di Laurea in Tecniche di Radiologia... A.A. 2010-2011 - Analisi Matematica - Le funzioni elementari - p.

Le funzioni elementari. Corsi di Laurea in Tecniche di Radiologia... A.A. 2010-2011 - Analisi Matematica - Le funzioni elementari - p. Le funzioni elementari Corsi di Laurea in Tecniche di Radiologia... A.A. 200-20 - Analisi Matematica - Le funzioni elementari - p. /43 Funzioni lineari e affini Potenze ad esponente naturale Confronto

Dettagli

Classificazione Singolarità isolate, Serie di Laurent, Residui, Teorema dei residui e applicazioni

Classificazione Singolarità isolate, Serie di Laurent, Residui, Teorema dei residui e applicazioni Classificazione Singolarità isolate, Serie di Laurent, Residui, Teorema dei residui e applicazioni Docente:Alessandra Cutrì Richiamo:Zeri di Funzioni olomorfe (o analitiche) Sia f : A C C A aperto connesso,

Dettagli

a) Si descriva, internamente al triangolo, con centro in B e raggio x, l arco di circonferenza di π π

a) Si descriva, internamente al triangolo, con centro in B e raggio x, l arco di circonferenza di π π PROBLEMA Il triangolo rettangolo ABC ha l ipotenusa AB = a e l angolo CAB =. a) Si descriva, internamente al triangolo, con centro in B e raggio, l arco di circonferenza di estremi P e Q rispettivamente

Dettagli

Integrali doppi - Esercizi svolti

Integrali doppi - Esercizi svolti Integrali doppi - Esercizi svolti Integrali doppi senza cambiamento di variabili Si disegni il dominio e quindi si calcolino gli integrali multipli seguenti:... xy dx dy, con (x, y R x, y x x }; x + y

Dettagli

Dispensa sulle funzioni trigonometriche

Dispensa sulle funzioni trigonometriche Sapienza Universita di Roma Dipartimento di Scienze di Base e Applicate per l Ingegneria Sezione di Matematica Dispensa sulle funzioni trigonometriche Paola Loreti e Cristina Pocci A. A. 00-0 Dispensa

Dettagli

POLITECNICO di BARI - A.A. 2012/2013 Corso di Laurea in INGEGNERIA Informatica e dell Automazione

POLITECNICO di BARI - A.A. 2012/2013 Corso di Laurea in INGEGNERIA Informatica e dell Automazione POLITECNICO di BARI - A.A. 0/03 Corso di Laurea in INGEGNERIA Informatica e dell Automazione Problema Sia f :[0, +[! R una funzione continua. La funzione composta g() =f(kk) è c o n t i n u a? Problema

Dettagli

IGiochidiArchimede--Soluzionibiennio

IGiochidiArchimede--Soluzionibiennio PROGETTO OLIMPIDI DI MTEMTI U.M.I. UNIONE MTEMTI ITLIN MINISTERO DELL PULI ISTRUZIONE SUOL NORMLE SUPERIORE IGiochidirchimede--Soluzionibiennio 18 novembre 2009 Griglia delle risposte corrette Problema

Dettagli

SOLUZIONE DEL PROBLEMA 1 CORSO SPERIMENTALE P.N.I. 2014

SOLUZIONE DEL PROBLEMA 1 CORSO SPERIMENTALE P.N.I. 2014 SOLUZIONE DEL PROBLEMA 1 CORSO SPERIMENTALE P.N.I. 01 1. Determiniamo l espressione analitica di g() dividendo il suo dominio in intervalli. La circonferenza di diametro AO ha equazione (+) + = + + = 0

Dettagli

Appunti sul corso di Complementi di Matematica- modulo Analisi Prof. B.Bacchelli

Appunti sul corso di Complementi di Matematica- modulo Analisi Prof. B.Bacchelli Appunti sul corso di Complementi di Matematica- modulo Analisi Prof. B.Bacchelli 09- Integrale doppio: Riferimenti: R.Adams, Calcolo ifferenziale 2. Capitoli 5.1, 5.2, 5.4. Esercizi 5.3, 5.4 Integrale

Dettagli

Corso di Analisi Matematica. Funzioni continue

Corso di Analisi Matematica. Funzioni continue a.a. 203/204 Laurea triennale in Informatica Corso di Analisi Matematica Funzioni continue Avvertenza Questi sono appunti informali delle lezioni, che vengono resi disponibili per comodità degli studenti.

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2002 Sessione suppletiva

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2002 Sessione suppletiva ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 00 Sessione suppletiva Il candidato risolva uno dei due problemi e 5 dei 0 quesiti in cui si articola il questionario. PROBLEMA Se il polinomio

Dettagli

I appello - 24 Marzo 2006

I appello - 24 Marzo 2006 Facoltà di Ingegneria - Corso di Laurea in Ing. Energetica e Gestionale A.A.2005/2006 I appello - 24 Marzo 2006 Risolvere gli esercizi motivando tutte le risposte. I.) Studiare la convergenza puntuale,

Dettagli

I appello - 26 Gennaio 2007

I appello - 26 Gennaio 2007 Facoltà di Ingegneria - Corso di Laurea in Ing. Informatica e delle Telecom. A.A.006/007 I appello - 6 Gennaio 007 Risolvere gli esercizi motivando tutte le risposte. (N.B. il quesito teorico è obbligatorio)

Dettagli

FUNZIONI CONVESSE. + e x 0

FUNZIONI CONVESSE. + e x 0 FUNZIONI CONVESSE Sia I un intervallo aperto di R (limitato o illimitato) e sia f(x) una funzione definita in I. Dato x 0 I, la retta r passante per il punto P 0 (x 0, f(x 0 )) di equazione y = f(x 0 )

Dettagli

SIMULAZIONE DI PROVA D ESAME CORSO DI ORDINAMENTO

SIMULAZIONE DI PROVA D ESAME CORSO DI ORDINAMENTO SIMULAZINE DI PRVA D ESAME CRS DI RDINAMENT Risolvi uno dei due problemi e 5 dei quesiti del questionario. PRBLEMA Considera la famiglia di funzioni k ln f k () se k se e la funzione g() ln se. se. Determina

Dettagli

Soluzione del tema d esame di matematica, A.S. 2005/2006

Soluzione del tema d esame di matematica, A.S. 2005/2006 Soluzione del tema d esame di matematica, A.S. 2005/2006 Niccolò Desenzani Sun-ra J.N. Mosconi 22 giugno 2006 Problema. Indicando con A e B i lati del rettangolo, il perimetro è 2A + 2B = λ mentre l area

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2001 Sessione suppletiva

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2001 Sessione suppletiva ESME DI STT DI LICE SCIENTIFIC CRS DI RDINMENT 1 Sessione suppletiva Il candidato risolva uno dei due problemi e dei 1 quesiti in cui si articola il questionario. PRBLEM 1 Si consideri la funzione reale

Dettagli

CORSO DI LAUREA IN INGEGNERIA.

CORSO DI LAUREA IN INGEGNERIA. CORSO DI LAUREA IN INGEGNERIA. FOGLIO DI ESERCIZI 4 GEOMETRIA E ALGEBRA LINEARE 2010/11 Esercizio 4.1 (2.2). Determinare l equazione parametrica e Cartesiana della retta dello spazio (a) Passante per i

Dettagli

UNIVERSITÀ DEGLI STUDI DI UDINE. Corsi di Laurea in Ingegneria. Luciano BATTAIA, Pier Carlo CRAIGHERO MATEMATICA DI BASE

UNIVERSITÀ DEGLI STUDI DI UDINE. Corsi di Laurea in Ingegneria. Luciano BATTAIA, Pier Carlo CRAIGHERO MATEMATICA DI BASE UNIVERSITÀ DEGLI STUDI DI UDINE Corsi di Laurea in Ingegneria Luciano BATTAIA, Pier Carlo CRAIGHERO MATEMATICA DI BASE Testi dei temi d esame ed esercizi proposti con soluzione breve Versione del 1 settembre

Dettagli

ESAME DI STATO 2010 SECONDA PROVA SCRITTA PER IL LICEO SCIENTIFICO DI ORDINAMENTO

ESAME DI STATO 2010 SECONDA PROVA SCRITTA PER IL LICEO SCIENTIFICO DI ORDINAMENTO Archimede ESAME DI STATO SECONDA PROVA SCRITTA PER IL LICEO SCIENTIFICO DI ORDINAMENTO ARTICOLO Il candidato risolva uno dei due problemi e risponda a 5 quesiti del questionario. Sia ABCD un quadrato di

Dettagli

Corso di Laurea in Ingegneria Civile Analisi Matematica I

Corso di Laurea in Ingegneria Civile Analisi Matematica I Corso di Laurea in Ingegneria Civile Analisi Matematica I Lezioni A.A. 2003/2004, prof. G. Stefani primo semiperiodo 22/9/03-8/11/03 Testo consigliato: Robert A. Adams - Calcolo differenziale 1 - Casa

Dettagli

LICEO SCIENTIFICO STATALE G.GALILEI CATANIA A.S. 2006/2007 SIMULAZIONE DI II PROVA - A

LICEO SCIENTIFICO STATALE G.GALILEI CATANIA A.S. 2006/2007 SIMULAZIONE DI II PROVA - A LICEO SCIENTIFICO STATALE G.GALILEI CATANIA A.S. 6/7 SIMULAZIONE DI II PROVA - A Tempo a disposizione: cinque ore E consentito l uso della calcolatrice non programmabile. Non è consentito uscire dall aula

Dettagli

x ( 3) + Inoltre (essendo il grado del numeratore maggiore del grado del denominatore, d ancora dallo studio del segno),

x ( 3) + Inoltre (essendo il grado del numeratore maggiore del grado del denominatore, d ancora dallo studio del segno), 6 - Grafici di funzioni Soluzioni Esercizio. Studiare il grafico della funzione f(x) = x x + 3. ) La funzione è definita per x 3. ) La funzione non è né pari, né dispari, né periodica. 3) La funzione è

Dettagli

B. Vogliamo determinare l equazione della retta

B. Vogliamo determinare l equazione della retta Risoluzione quesiti ordinamento Quesito N.1 Indicata con α la misura dell angolo CAB, si ha che: 1 Area ( ABC ) = AC AB sinα = 3 sinα π 3 sinα = 3 sinα = 1 α = Il triangolo è quindi retto in A. La misura

Dettagli

Rette e piani con le matrici e i determinanti

Rette e piani con le matrici e i determinanti CAPITOLO Rette e piani con le matrici e i determinanti Esercizio.. Stabilire se i punti A(, ), B(, ) e C(, ) sono allineati. Esercizio.. Stabilire se i punti A(,,), B(,,), C(,, ) e D(4,,0) sono complanari.

Dettagli

FUNZIONI ELEMENTARI Esercizi risolti

FUNZIONI ELEMENTARI Esercizi risolti FUNZIONI ELEMENTARI Esercizi risolti 1 Discutendo graficamente la disequazione x > 3+x, verificare che l insieme delle soluzioni è un intervallo e trovarne gli estremi Rappresentare nel piano x, y) l insieme

Dettagli

FUNZIONE REALE DI UNA VARIABILE

FUNZIONE REALE DI UNA VARIABILE FUNZIONE REALE DI UNA VARIABILE Funzione: legge che ad ogni elemento di un insieme D (Dominio) tale che D R, fa corrispondere un elemento y R ( R = Codominio ). f : D R : f () = y ; La funzione f(): A

Dettagli

Convessità e derivabilità

Convessità e derivabilità Convessità e derivabilità Definizione 1 (convessità per funzioni derivabili) Sia f : (a, b) R derivabile su (a, b). Diremo che f è convessa o concava su (a, b) se per ogni 0 (a,b) il grafico di f sta tutto

Dettagli

ESAME DI STATO 2002 SECONDA PROVA SCRITTA PER IL LICEO SCIENTIFICO A INDIRIZZO SPERIMENTALE (PNI)

ESAME DI STATO 2002 SECONDA PROVA SCRITTA PER IL LICEO SCIENTIFICO A INDIRIZZO SPERIMENTALE (PNI) ESAME DI STATO 2002 SECONDA PROVA SCRITTA PER IL LICEO SCIENTIFICO A INDIRIZZO SPERIMENTALE (PNI) Il candidato risolva uno dei due problemi e 5 dei 10 quesiti in cui si articola il questionario. Problema

Dettagli

Esame di Analisi Matematica prova scritta del 23 settembre 2013

Esame di Analisi Matematica prova scritta del 23 settembre 2013 Esame di Analisi Matematica prova scritta del 23 settembre 2013 1. Determinare dominio, limiti significativi, intervalli di monotonia della funzione f (x) = (2x + 3) 2 e x/2 e tracciarne il grafico. In

Dettagli

Capitolo 16 Esercizi sugli integrali doppi

Capitolo 16 Esercizi sugli integrali doppi Capitolo 6 sercizi sugli integrali doppi Brevi richiami di teoria Sia f : [a, b] [c, d] B IR una funzione limitata e non negativa, definita sul rettangolo R = [a, b] [c, d]. Dividiamo l intervallo [a,

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ODINAMENTO 2011. Il candidato risolva uno dei due problemi e 5 dei 10 quesiti scelti nel questionario 1.

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ODINAMENTO 2011. Il candidato risolva uno dei due problemi e 5 dei 10 quesiti scelti nel questionario 1. ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ODINAMENTO 11 Il candidato risolva uno dei due problemi e 5 dei 1 quesiti scelti nel questionario 1. PROBLEMA 1 Si considerino le funzioni f e g definite, per

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. 2008

ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. 2008 PRVA SPERIMENTALE P.N.I. 8 ESAME DI STAT DI LICE SCIENTIFIC CRS SPERIMENTALE P.N.I. 8 Il candidato risolva uno dei due problemi e 5 dei quesiti in cui si articola il questionario. PRBLEMA Nel piano riferito

Dettagli

EQUAZIONI DIFFERENZIALI Esercizi svolti. y = xy. y(2) = 1.

EQUAZIONI DIFFERENZIALI Esercizi svolti. y = xy. y(2) = 1. EQUAZIONI DIFFERENZIALI Esercizi svolti 1. Determinare la soluzione dell equazione differenziale (x 2 + 1)y + y 2 =. y + x tan y = 2. Risolvere il problema di Cauchy y() = 1 2 π. 3. Risolvere il problema

Dettagli

Grafico qualitativo di una funzione reale di variabile reale

Grafico qualitativo di una funzione reale di variabile reale Grafico qualitativo di una funzione reale di variabile reale Mauro Saita 1 Per commenti o segnalazioni di errori scrivere, per favore, a: maurosaita@tiscalinet.it Dicembre 2014 Indice 1 Qualè il grafico

Dettagli

Anno 5 4 Funzioni reali. elementari

Anno 5 4 Funzioni reali. elementari Anno 5 4 Funzioni reali elementari 1 Introduzione In questa lezione studieremo alcune funzioni molto comuni, dette per questo funzioni elementari. Al termine di questa lezione sarai in grado di definire

Dettagli

Corso di Matematica per CTF Appello 15/12/2010

Corso di Matematica per CTF Appello 15/12/2010 Appello 15/12/2010 Svolgere i seguenti esercizi: 1) Calcolare entrambi i limiti: a) lim(1 x) 1 e x 1 ; x 0 x log 2 x b) lim x 1 1 cos(x 1). 2) Data la funzione: f(x) = x log x determinarne dominio, eventuali

Dettagli

a) Osserviamo innanzi tutto che dev essere x > 0. Pertanto il dominio è ]0, + [. b) Poniamo t = log x. Innanzi tutto si ha:

a) Osserviamo innanzi tutto che dev essere x > 0. Pertanto il dominio è ]0, + [. b) Poniamo t = log x. Innanzi tutto si ha: ESERCIZIO - Data la funzione f (x) = (log x) 6 7(log x) 5 + 2(log x) 4, si chiede di: a) calcolare il dominio di f ; ( punto) b) studiare la positività e le intersezioni con gli assi; (3 punti) c) stabilire

Dettagli

ELEMENTI DI ANALISI SPETTRALE 1 I DUE DOMINI

ELEMENTI DI ANALISI SPETTRALE 1 I DUE DOMINI Lezioni di Fisica della Terra Solida, Università di Chieti, a.a. 999/. Docente A. De Santis ELEMENTI DI ANALISI SPETTRALE I DUE DOMINI È spesso utile pensare alle unzioni ed alle loro trasormate di Fourier

Dettagli

Esercizio 2 Si consideri la funzione f definita dalle seguenti condizioni: e x. per x 1 f(x) = α x + e 1 per 1 < x

Esercizio 2 Si consideri la funzione f definita dalle seguenti condizioni: e x. per x 1 f(x) = α x + e 1 per 1 < x FUNZIONI Esercizio 1 Studiare la funzione f(x) = ln ( ) x e disegnarne il grafico. x 1 Esercizio 2 Si consideri la funzione f definita dalle seguenti condizioni: { e x per x 1 f(x) = α x + e 1 per 1

Dettagli

INTEGRALI DEFINITI. Tale superficie viene detta trapezoide e la misura della sua area si ottiene utilizzando il calcolo di un integrale definito.

INTEGRALI DEFINITI. Tale superficie viene detta trapezoide e la misura della sua area si ottiene utilizzando il calcolo di un integrale definito. INTEGRALI DEFINITI Sia nel campo scientifico che in quello tecnico si presentano spesso situazioni per affrontare le quali è necessario ricorrere al calcolo dell integrale definito. Vi sono infatti svariati

Dettagli

Protocollo dei saperi imprescindibili Ordine di scuola: professionale

Protocollo dei saperi imprescindibili Ordine di scuola: professionale Protocollo dei saperi imprescindibili Ordine di scuola: professionale DISCIPLINA: MATEMATICA RESPONSABILE: CAGNESCHI F. IMPERATORE D. CLASSE: prima servizi commerciali Utilizzare le tecniche e le procedure

Dettagli

Università di Trieste Facoltà d Ingegneria. Esercizi sul calcolo differenziale in IR N. Dott. Franco Obersnel

Università di Trieste Facoltà d Ingegneria. Esercizi sul calcolo differenziale in IR N. Dott. Franco Obersnel Università di Trieste Facoltà d Ingegneria Esercizi sul calcolo differenziale in IR N Dott Franco Obersnel Esercizio 1 Si calcoli la derivata direzionale nell origine lungo la direzione y del versore v

Dettagli

LEZIONE 7. Esercizio 7.1. Quale delle seguenti funzioni è decrescente in ( 3, 0) e ha derivata prima in 3 che vale 0? x 3 3 + x2. 2, x3 +2x +3.

LEZIONE 7. Esercizio 7.1. Quale delle seguenti funzioni è decrescente in ( 3, 0) e ha derivata prima in 3 che vale 0? x 3 3 + x2. 2, x3 +2x +3. 7 LEZIONE 7 Esercizio 7.1. Quale delle seguenti funzioni è decrescente in ( 3, 0) e ha derivata prima in 3 che vale 0? x 3 3 + x2 2 6x, x3 +2x 2 6x, 3x + x2 2, x3 +2x +3. Le derivate sono rispettivamente,

Dettagli

INDICAZIONI PER LA RICERCA DEGLI ASINTOTI VERTICALI

INDICAZIONI PER LA RICERCA DEGLI ASINTOTI VERTICALI 2.13 ASINTOTI 44 Un "asintoto", per una funzione y = f( ), è una retta alla quale il grafico della funzione "si avvicina indefinitamente", "si avvicina di tanto quanto noi vogliamo", nel senso precisato

Dettagli

Introduzione a GeoGebra

Introduzione a GeoGebra Introduzione a GeoGebra Nicola Sansonetto Istituto Sanmicheli di Verona 31 Marzo 2016 Nicola Sansonetto (Sanmicheli) Introduzione a GeoGebra 31 Marzo 2016 1 / 14 Piano dell incontro 1 Introduzione 2 Costruzioni

Dettagli

Massimi e minimi vincolati in R 2 - Esercizi svolti

Massimi e minimi vincolati in R 2 - Esercizi svolti Massimi e minimi vincolati in R 2 - Esercizi svolti Esercizio 1. Determinare i massimi e minimi assoluti della funzione f(x, y) = 2x + 3y vincolati alla curva di equazione x 4 + y 4 = 1. Esercizio 2. Determinare

Dettagli

Trigonometria: breve riepilogo.

Trigonometria: breve riepilogo. Corso di laurea in Matematica Corso di Analisi Matematica - Dott.ssa Sandra Lucente Trigonometria: breve riepilogo. Definizioni iniziali Saper misurare un angolo in gradi sessagesimali, saper svolgere

Dettagli

SOLUZIONE DEL PROBLEMA 2 CORSO DI ORDINAMENTO 2013. 8 4 + x 2, con dominio R (infatti x2 + 4 0 per ogni. 8 4 + ( x) = 8. 4 + x 2

SOLUZIONE DEL PROBLEMA 2 CORSO DI ORDINAMENTO 2013. 8 4 + x 2, con dominio R (infatti x2 + 4 0 per ogni. 8 4 + ( x) = 8. 4 + x 2 SOLUZIONE DEL PROBLEMA CORSO DI ORDINAMENTO. Studiamo la funzione f(x) = x R). Notiamo che f( x) = 4 + x, con dominio R (infatti x + 4 per ogni 4 + ( x) = 4 + x = f(x), cioè la funzione è pari e il grafico

Dettagli

Osservazione 2 L elemento di arrivo ( output) deve essere unico corrispondenza univoca da A e B. f : A B

Osservazione 2 L elemento di arrivo ( output) deve essere unico corrispondenza univoca da A e B. f : A B FUNZIONI Definizione 1 Dati due insiemi A e B, si chiama funzione da A a B una legge che ad ogni elemento di A associa un (solo) elemento di B. L insieme A si chiama dominio della funzione e l insieme

Dettagli

Raccolta degli Scritti d Esame di ANALISI MATEMATICA U.D. 1 assegnati nei Corsi di Laurea di Fisica, Fisica Applicata, Matematica

Raccolta degli Scritti d Esame di ANALISI MATEMATICA U.D. 1 assegnati nei Corsi di Laurea di Fisica, Fisica Applicata, Matematica DIPARTIMENTO DI MATEMATICA Università degli Studi di Trento Via Sommarive - Povo (TRENTO) Raccolta degli Scritti d Esame di ANALISI MATEMATICA U.D. 1 assegnati nei Corsi di Laurea di Fisica, Fisica Applicata,

Dettagli

Lezione 6 (16/10/2014)

Lezione 6 (16/10/2014) Lezione 6 (16/10/2014) Esercizi svolti a lezione Esercizio 1. La funzione f : R R data da f(x) = 10x 5 x è crescente? Perché? Soluzione Se f fosse crescente avrebbe derivata prima (strettamente) positiva.

Dettagli

Docente: DI LISCIA F. CLASSE 1T MODULO 1: GLI INSIEMI NUMERICI

Docente: DI LISCIA F. CLASSE 1T MODULO 1: GLI INSIEMI NUMERICI Docente: DI LISCIA F. Materia: MATEMATICA CLASSE 1T MODULO 1: GLI INSIEMI NUMERICI Insiemi numerici: numeri naturali, proprietà delle operazioni aritmetiche; Potenze e loro proprietà; Criteri di divisibilità;

Dettagli

Esercizi sugli integrali impropri

Esercizi sugli integrali impropri Esercizi sugli integrali impropri Esercizio. Studiare 2 x4 dx. Svolgimento: è un integrale improprio, in quanto f(x) =, x (, 2] ha una singolarità in : x4 lim x + x4 = +. Osserviamo che f è positiva, quindi

Dettagli

MATEMATICA GENERALE Prova d esame del 4 giugno 2013 - FILA A

MATEMATICA GENERALE Prova d esame del 4 giugno 2013 - FILA A MATEMATICA GENERALE Prova d esame del 4 giugno 2013 - FILA A Nome e cognome Matricola I Parte OBBLIGATORIA (quesiti preliminari: 1 punto ciascuno). Riportare le soluzioni su questo foglio, mostrando i

Dettagli

La funzione è continua nel suo dominio perchè y = f(x) è composizione di funzioni continue. Il punto x = 0 è un punto isolato per D f.

La funzione è continua nel suo dominio perchè y = f(x) è composizione di funzioni continue. Il punto x = 0 è un punto isolato per D f. FUNZIONI CONTINUE - ALCUNI ESERCIZI SVOLTI SIMONE ALGHISI 1. Continuità di una funzione Dati un insieme D R, una funzione f : D R e x 0 R, si è detto che f è continua in x 0 se sono soddisfatte le seguenti

Dettagli

Analisi Mat. 1 - Ing. Inform. - Soluzioni del compito del 23-3-06

Analisi Mat. 1 - Ing. Inform. - Soluzioni del compito del 23-3-06 Analisi Mat. - Ing. Inform. - Soluzioni del compito del 3-3-6 Sia p il polinomio di quarto grado definito da pz = z 4. Sia S il settore circolare formato dai numeri complessi che hanno modulo minore o

Dettagli

RELAZIONI BINARIE. Proprietà delle relazioni Data una relazione R, definita in un insieme non vuoto U, si hanno le seguenti proprietà :

RELAZIONI BINARIE. Proprietà delle relazioni Data una relazione R, definita in un insieme non vuoto U, si hanno le seguenti proprietà : RELAZIONI INARIE Dati due insiemi non vuoti, A detto dominio e detto codominio, eventualmente coincidenti, si chiama relazione binaria (o corrispondenza) di A in, e si indica con f : A, (oppure R ) una

Dettagli

Appunti sul corso di Complementi di Matematica - prof. B.Bacchelli. 03 - Equazioni differenziali lineari omogenee a coefficienti costanti.

Appunti sul corso di Complementi di Matematica - prof. B.Bacchelli. 03 - Equazioni differenziali lineari omogenee a coefficienti costanti. Appunti sul corso di Complementi di Matematica - prof. B.Bacchelli 03 - Equazioni differenziali lineari omogenee a coefficienti costanti. Def. Si dice equazione differenziale lineare del secondo ordine

Dettagli

ESERCITAZIONI DI ANALISI 1 FOGLIO 1 FOGLIO 2 FOGLIO 3 FOGLIO 4 FOGLIO 5 FOGLIO 6 FOGLIO 7 SVOLTI. Marco Pezzulla

ESERCITAZIONI DI ANALISI 1 FOGLIO 1 FOGLIO 2 FOGLIO 3 FOGLIO 4 FOGLIO 5 FOGLIO 6 FOGLIO 7 SVOLTI. Marco Pezzulla ESERCITAZIONI DI ANALISI FOGLIO FOGLIO FOGLIO 3 FOGLIO 4 FOGLIO 5 FOGLIO 6 FOGLIO 7 SVOLTI Marco Pezzulla gennaio 05 FOGLIO. Determinare il dominio e il segno della funzione ( ) f(x) arccos x x + π/3.

Dettagli

Proposta di soluzione della prova di matematica Liceo scientifico di Ordinamento - 2014

Proposta di soluzione della prova di matematica Liceo scientifico di Ordinamento - 2014 Proposta di soluzione della prova di matematica Liceo scientifico di Ordinamento - 14 Problema 1 Punto a) Osserviamo che g (x) = f(x) e pertanto g () = f() = in quanto Γ è tangente all asse delle ascisse,

Dettagli

allora la retta di equazione x=c è asintoto (verticale) della funzione

allora la retta di equazione x=c è asintoto (verticale) della funzione 1)Cosa rappresenta il seguente limite e quale ne è il valore? E il limite del rapporto incrementale della funzione f(x)= con punto iniziale, al tendere a 0 dell incremento h. Il valore del limite può essere

Dettagli

Syllabus delle conoscenze per il modulo: matematica. Esempi di domande

Syllabus delle conoscenze per il modulo: matematica. Esempi di domande Syllabus delle conoscenze per il modulo: matematica Esempi di domande Nelle pagine che seguono sono riportati, come esempio, quindici quesiti proposti nel 2008/09. Le risposte corrette (che si consiglia

Dettagli

Università di Trieste Facoltà d Ingegneria. Esercitazioni per la preparazione della prova scritta di Matematica 3 Dott.

Università di Trieste Facoltà d Ingegneria. Esercitazioni per la preparazione della prova scritta di Matematica 3 Dott. Università di Trieste Facoltà d Ingegneria. Esercitazioni per la preparazione della prova scritta di Matematica 3 Dott. Franco Obersnel Lezione 19: campi vettoriali e formule di Gauss-Green nel piano.

Dettagli

Archimede 1 2009 BORSE 2008 DELL ISTITUTO NAZIONALE DI ALTA MATEMATICA

Archimede 1 2009 BORSE 2008 DELL ISTITUTO NAZIONALE DI ALTA MATEMATICA ARTICOLO Archimede 1 009 BORSE 008 DELL ISTITUTO NAZIONALE DI ALTA MATEMATICA Si è svolto il 9 settembre 008 il consueto concorso per l assegnazione di 40 borse di studio a studenti che si immatricolino

Dettagli

Gli asintoti di una funzione sono rette, quindi possono essere: rette verticali o rette orizzontali o rette oblique.

Gli asintoti di una funzione sono rette, quindi possono essere: rette verticali o rette orizzontali o rette oblique. Asintoti Gli asintoti di una funzione sono rette, quindi possono essere: rette verticali o rette orizzontali o rette oblique. Asintoti verticali Sia 0 punto di accumulazione per dom(f). La retta = 0 è

Dettagli

6) f(x, y) = xy 1 log(5 2x 2y) x + y. 2x x 2 y 2 z 2 x 2 + y 2 + z 2 x Esercizio 2. Studiare gli insiemi di livello delle seguenti funzioni:

6) f(x, y) = xy 1 log(5 2x 2y) x + y. 2x x 2 y 2 z 2 x 2 + y 2 + z 2 x Esercizio 2. Studiare gli insiemi di livello delle seguenti funzioni: FUNZIONI IN PIÙ VARIABILI 1. Esercizi Esercizio 1. Determinare il dominio delle seguenti funzioni, specificando se si tratta di un insieme aperto o chiuso: 1) f(x, ) = log(x x ) ) f(x, ) = x + 3) f(x,

Dettagli

Prova scritta di Geometria 2 Prof. M. Boratynski

Prova scritta di Geometria 2 Prof. M. Boratynski 10/9/2008 Es. 1: Si consideri la forma bilineare simmetrica b su R 3 associata, rispetto alla base canonica {e 1, e 2, e 3 } alla matrice 3 2 1 A = 2 3 0. 1 0 1 1) Provare che (R 3, b) è uno spazio vettoriale

Dettagli

6. Calcolare le derivate parziali prime e seconde, verificando la validità del teorema di Schwarz:

6. Calcolare le derivate parziali prime e seconde, verificando la validità del teorema di Schwarz: FUNZIONI DI PIU VARIABILI Esercizi svolti. Determinare il dominio delle seguenti funzioni e rappresentarlo graficamente : (a) f log( x y ) (b) f log(x + y ) (c) f y x 4 (d) f sin(x + y ) (e) f log(xy +

Dettagli

Esponenziali e logaritmi

Esponenziali e logaritmi Capitolo 9 Esponenziali e logaritmi... Capitolo 0 Funzioni circolari 0. Descrizione di fenomeni periodici Tra le funzioni elementari ne esistono due atte a descrivere fenomeni che si ripetono periodicamente

Dettagli

esame di stato 2013 seconda prova scritta per il liceo scientifico di ordinamento

esame di stato 2013 seconda prova scritta per il liceo scientifico di ordinamento Archimede esame di stato seconda prova scritta per il liceo scientifico di ordinamento ARTICOLO Il candidato risolva uno dei due problemi e risponda a 5 quesiti del questionario. PROBLEMA La funzione f

Dettagli

NUMERI COMPLESSI. Test di autovalutazione

NUMERI COMPLESSI. Test di autovalutazione NUMERI COMPLESSI Test di autovalutazione 1. Se due numeri complessi z 1 e z 2 sono rappresentati nel piano di Gauss da due punti simmetrici rispetto all origine: (a) sono le radici quadrate di uno stesso

Dettagli

Per studio di funzione intendiamo un insieme di procedure che hanno lo scopo di analizzare le proprietà di una funzione f ( x) R R

Per studio di funzione intendiamo un insieme di procedure che hanno lo scopo di analizzare le proprietà di una funzione f ( x) R R Studio di funzione Per studio di funzione intendiamo un insieme di procedure che hanno lo scopo di analizzare le proprietà di una funzione f ( x) R R : allo scopo di determinarne le caratteristiche principali.

Dettagli

Risposta: L area del triangolo è dove sono le misure di due lati e è l ampiezza dell angolo tra essi compreso ;

Risposta: L area del triangolo è dove sono le misure di due lati e è l ampiezza dell angolo tra essi compreso ; 1. Un triangolo ha area 3 e due lati che misurano 2 e 3. Qual è la misura del terzo lato? : L area del triangolo è dove sono le misure di due lati e è l ampiezza dell angolo tra essi compreso ; nel nostro

Dettagli