esame di stato 2013 seconda prova scritta per il liceo scientifico di ordinamento

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "esame di stato 2013 seconda prova scritta per il liceo scientifico di ordinamento"

Transcript

1 Archimede esame di stato seconda prova scritta per il liceo scientifico di ordinamento ARTICOLO Il candidato risolva uno dei due problemi e risponda a 5 quesiti del questionario. PROBLEMA La funzione f è definita da f ( ) = appartenenti all intervallo chiuso [, 9]. t dt + cos per tutti i numeri reali. Si calcolino f'(p) e f'(p) ove f' indica la derivata di f.. Si tracci, in un sistema di coordinate cartesiane, il grafico S di f'() e da esso si deduca per quale o per quali valori di, f() presenta massimi o minimi. Si tracci altresì l andamento di f() deducendolo da quello di f'().. Si trovi il valor medio di f'() sull intervallo [, p].. Sia R la regione del piano delimitata da S e dall asse per ; R è la base di un solido W le cui sezioni con piani ortogonali all asse hanno, per ciascun, area A ( ) = sen π. Si calcoli il volume di W. Sia f la funzione definita, per tutti gli reali, da f ( ) = + 8. Si studi f e se ne disegni il grafico F in un sistema di coordinate cartesiane O. Si scrivano le equazioni delle tangenti a F nei punti P( ; ) e Q(; ) e si consideri il quadrilatero convesso che esse individuano con le rette OP e OQ. Si provi che tale quadrilatero è un rombo e si determinino le misure, in gradi e primi sessagesimali, dei suoi angoli.. Sia G la circonferenza di raggio e centro (; ). Una retta t, per l origine degli assi, taglia G oltre che in O in un punto A e taglia la retta di equazione = in un punto B. Si provi che, qualunque sia t, l ascissa di B e l ordinata di A sono le coordinate (; ) di un punto di F.. PROBLEMA 9

2 ARTICOLO Archimede. Si consideri la regione R compresa tra F e l asse sull intervallo [, ]. Si provi che R è equivalente al cerchio delimitato da G e si provi altresì che la regione compresa tra F e tutto l asse è equivalente a quattro volte il cerchio.. La regione R, ruotando attorno all asse, genera il solido W. Si scriva, spiegandone il perché, ma senza calcolarlo, l integrale definito che fornisce il volume W. 9 Questionario. Un triangolo ha area e due lati che misurano e. Qual è la misura del terzo lato? Si giustifichi la risposta.. Si calcoli il dominio della funzione f ( ) =.. Si considerino, nel piano cartesiano, i punti A(; ) e B( 6; 8). Si determini l equazione della retta passante per B e avente distanza massima da A.. Di un tronco di piramide retta a base quadrata si conoscono l altezza h e i lati a e b delle due basi. Si esprima il volume V del tronco in funzione di a, b e h, giustificando il ragionamento seguito. 5. In un libro si legge: «Due valigie della stessa forma sembrano quasi uguali, quanto a capacità, quando differiscono di poco le dimensioni lineari: non sembra che in genere le persone si rendano ben conto che ad un aumento delle dimensioni lineari (lunghezza, larghezza, altezza) del % (oppure del % o del 5%) corrispondono aumenti di capacità (volume) di circa % (oppure 75% o %: raddoppio)». È così? Si motivi esaurientemente la risposta. 6. Con le cifre da a 7 è possibile formare 7! = 5 numeri corrispondenti alle permutazioni delle 7 cifre. Ad esempio i numeri 567 e 567 corrispondono a due di queste permutazioni. Se i 5 numeri ottenuti dalle permutazioni si dispongono in ordine crescente qual è il numero che occupa la settima posizione e quale quello che occupa la 7-esima posizione? 7. Un foglio rettangolare, di dimensioni a e b, ha area m e forma tale che, tagliandolo a metà (parallelamente al lato minore) si ottengono due rettangoli simili a quello di partenza. Quali sono le misure di a e b? 8. La funzione f ha il grafico in figura. Se g( ) = f ( t) dt, per quale valore positivo di, g ha un minimo? Si illustri il ragionamento seguito. sen cos sen 9. Si calcoli: lim.

3 . Se la figura a lato rappresenta il grafico di f (), quale dei seguenti potrebbe essere il grafico di f'()? Si giustifichi la risposta. f () Archimede ARTICOLO f'() f'() A) C) f'() f'() B) D) Durata massima della prova: 6 ore. È consentito l uso della calcolatrice non programmabile. È consentito l uso del dizionario bilingue (italiano-lingua del paese di provenienza) per i candidati di madrelingua non italiana. Non è consentito lasciare l Istituto prima che siano trascorse ore dalla dettatura del tema. risoluzione del problema. Per il teorema fondamentale del calcolo integrale si ha f '( ) = cos ; + π quindi f '( π) = cos, + = mentre f '( π) = cos π + =. 9

4 ARTICOLO Archimede. Il grafico S è deducibile da quello di = cos, mediante una dilatazione π orizzontale di rapporto (infatti il periodo di f' è T = = π ), composta con una traslazione di vettore v ; /, come in figura. : = cos + = cos() π 8 p π = cos 8 9 Figura La funzione f' è definita e continua in R, dunque f è sempre derivabile e continua; perciò f può presentare massimi o minimi locali interni al dominio solo nei valori in cui la derivata prima si annulla: cos da cui k + = = ± π + π e quindi = ± π + kπ, k Z. 8 Soltanto i valori p e p appartengono all intervallo [, 9]. A questi aggiungiamo come punto di minimo e 9 come punto di massimo in quanto, in base al segno di f', la funzione f è crescente in 8, π π, 9. Deduciamo dal grafico S altre proprietà di f(): la funzione è decrescente in 8 π, π, ha un massimo in p ed un minimo in 8 p ; tenendo conto delle aree comprese tra S e l asse, si può affermare che f () =, mentre 8 8 f π f π, e f (9) sono valori positivi, con f π f 9 f π < ( ) <. 9

5 Archimede Dalla crescenza o decrescenza di f' segue che f ha la concavità rivolta verso il basso in ], p[, verso l alto in ]p, 9] e presenta un flesso a tangente obliqua in = p. Ciò è sufficiente per tracciare il grafico di f (figura ); per essere più accurati, possiamo calcolare le immagini dei punti più significativi: sapendo che ARTICOLO si trova ( ) = f t dt + cos = sen + f 8 f π π π f π π = +,8; ( ) =, ; 9 9 π,6 ; f 9 sen +,5. = + ( ) =,8 p,5,6 f() π 5 6 p π 9. La funzione f'() è continua in [, p], e dunque il valor medio è m = ( ) = ( ) + Figura Ricordiamo che f ' dt f c ; dunque: π ( ) f ' dt π. m = π ( ) f ' dt π + sen = π π = + π π =. 95

6 ARTICOLO Archimede. Possiamo calcolare il volume del solido di rotazione W mediante il metodo delle sezioni normali: VW = A( ) d = sen d co π π = π s. = π Il fatto che la base di W sia R non ha alcuna importanza per il calcolo richiesto. risoluzione del problema. La funzione è definita per tutti i reali (D = R), è positiva e continua in tutto il suo dominio, ed è pari in quanto f() = f( ): quindi il suo grafico F è simmetrico rispetto all asse. L unica intersezione con gli assi è il punto M(; ); per quanto riguarda il comportamento agli estremi del dominio, la 8 funzione ha l asse come asintoto orizzontale, essendo lim =. La + 6 derivata prima f '( ) = si annulla in =, è positiva in ], [ + ( ) e negativa in ], + [ ; pertanto M è l unico massimo assoluto di F. La 6( ) derivata seconda f "( ) = si annulla in = ± ( + ), mentre è positiva nell insieme +,,. In questi intervalli la funzione f rivolge la concavità verso l alto, mentre la rivolge verso il basso in, ; nei punti D ; e E ; vi sono flessi a tangente obliqua (figura ). M E D F 5 5 Figura 96

7 Archimede La retta s tangente a F in Q(; ) ha equazione = f'()( ) +, cioè = + e, analogamente, la retta t tangente in P( ; ) ha equazione = + + ; le due tangenti s intersecano in M(; ). Dunque il quadrilatero convesso da considerare è MPOQ (figura ). ARTICOLO s M t P a Q F t b 5 O 5 Figura Per dimostrare che MPOQ è un rombo possiamo calcolare le lunghezze dei lati e verificare che sono tutte uguali a 5, oppure osservare che i vertici del quadrilatero sono simmetrici rispetto alle rette = ed =, e quindi dedurre la congruenza tra i lati. Per determinare l ampiezza dell angolo acuto a ms mt (figura ) usiamo la formula nota dalla geometria analitica: tg α = ; + ms mt si trova α = arctg '. 5 8 L angolo b è supplementare di a e quindi b 6 5'. In alternativa, possiamo determinare l ampiezza di a mediante la trigonometria applicata al triangolo OQM: OQ + MQ OM α = arccos arccos OQ MQ = '.. La circonferenza G ha equazione + ( ) =, ovvero + =, mentre la retta t ha equazione = m, con m, oppure =. Nel primo caso determiniamo le coordinate di A ponendo a sistema le equazioni di G 97

8 ARTICOLO Archimede m m e t, ottenendo A ; + m + m. Analogamente determiniamo le coordinate di B intersecando t ed = : troviamo B ;. m Pertanto il punto cercato è P ;, m m + m ed è facile verificare che le sue coordinate soddisfano l equazione di F, il che significa che P appartiene a F. Se t coincide con l asse, i punti A e B hanno coordinate (; ), e lo stesso il punto P: possiamo nuovamente concludere che P appartiene a F (figura 5). t = B A P G F Figura 5. La circonferenza G ha raggio unitario, e quindi il cerchio corrispondente ha area uguale a p. Determiniamo l area di R mediante l integrale definito di f nell intervallo [, ]: Area R ( ) = 8 + d 8 = + d = arctg = π = π + e la prima affermazione è così dimostrata. Se S è l area della regione compresa tra F e l asse, allora S = 8 + d ; poiché la funzione f è pari risulta S = d. Si tratta di un integrale in senso improprio, e il calcolo fornisce il valore 98

9 b 8 S d = lim = lim arctg b + b + + = = b = π lim arctg b + = π, b Archimede ARTICOLO 8 W + d. pari a volte l area del cerchio.. Per esprimere il volume di W usiamo il metodo dei gusci cilindrici. Consideriamo il cilindro in figura 6, avente raggio di base e altezza f(); la sua superficie laterale è S l = p f(). Il volume del guscio cilindro di spessore d è pertanto dv = p f () d. Quindi il volume del solido di rotazione W è V = π f ( ) d = π f () W F Figura 6 risposte al questionario. Siano a =, b = e c i lati del triangolo, e sia S = la sua area. ab L area S di un triangolo qualsiasi è S = sen γ, ove g è l angolo compreso tra a e b. Sostituendo i dati, otteniamo γ =. Quindi il triangolo è π rettangolo e a e b sono i suoi cateti. Per determinare la misura del terzo lato c basta applicare il teorema di Pitagora: c = a + b =. Si arrivava più rapidamente alla stessa conclusione osservando che l area è la metà del prodotto delle lunghezze dei due lati noti, il che è sufficiente per affermare che i due lati sono i cateti di un triangolo rettangolo. 99

10 ARTICOLO Archimede ( ) =. Per calcolare il dominio della funzione f consideriamo il sistema formato dalle condizioni di esistenza relative ai tre radicali: e quindi il dominio cercato è D = [, ].. Sia AH la distanza di A di una generica retta r passante per B. Il triangolo AHB è rettangolo in H e quindi l ipotenusa AB è maggiore o uguale ad AH. Pertanto AH è massimo quando H coincide con B e la retta t cercata è la perpendicolare al segmento AB passante per B. A B Il coefficiente angolare di AB è mab = = 7 A B 8 e dunque m t = 8 7. La generica retta r passante per B ha equazione + 8 = m( + 6); concludiamo che l equazione richiesta è =.. Consideriamo il tronco di piramide avente per basi il quadrato ABCD di lato a ed il quadrato EFGH di lato b (con b < a), e per altezza il segmento PQ = h (figura 7). Come noto, le piramidi VABCD e VEFGH sono simili e vale la proporzione a : b = VP : VQ. Applicando la proprietà dello scomporre, otteniamo (a b) : b = h : VQ e dunque VQ = bh a b ; in modo ah analogo otteniamo VP = a b. Il volume del tronco di cono è la differenza tra i volumi delle due piramidi, ovvero ah VTronco = VVABCD VVEFGH = VP a VQ b = a b a bh a b b = = h a b a b = h( a + ab + b ). Per una risoluzione per via analitica si veda l articolo sul tema PNI.

11 V Archimede ARTICOLO E H b Q F G h D P C A a Figura 7 B 5. Immaginando che le valigie abbiano la forma di parallelepipedo rettangolo, siano a, b, c le dimensioni del primo, che dunque ha volume V = abc, ed a', b', c' le dimensioni del secondo, avente volume V'. Aumentando a del K% otteniamo a' = a + K% a = ( + K%)a e analogamente per b' e c'; quindi V' = a'b'c' = ( + K%) V. Dunque l aumento di volume è DV K = V' V = ( + K%) V V = [( + K%) ] V = = [(K% + K% + K% ] V. Sostituiamo i valori indicati nel testo e verifichiamo se le conclusioni sono corrette: ( ) se K% = % otteniamo V = + % V =, V, che corrisponde ad un aumento di capacità di circa il %; ( ) se K% = % otteniamo V = + % V =, 78 V, che corrisponde ad un aumento di capacità di circa il 7%; ( ) se K% = 5% otteniamo V5 = + 5% V, 95 V, che corrisponde a quasi il raddoppio del volume. 6. Tra tutti i 5 numeri che si ottengono permutando le cifre da a 7, il minimo è 567; se fissiamo le prime quattro cifre () e permutiamo le ultime otteniamo! = 6 numeri, che, in ordine crescente, sono i primi 6 ed esauriscono tutte le possibilità che iniziano con. Dunque il 7 numero è quello immediatamente successivo, cioè il minimo tra i numeri che iniziano con

12 ARTICOLO Archimede la sequenza 5, ovvero 567. Analogamente, i numeri che hanno per cifra iniziale sono esattamente 6! = 7, e quindi quello che occupa la 7-esima posizione è il minimo tra i numeri che iniziano con, cioè 567. D a E a C b A F a B Figura 8 7. Per ipotesi a b = m con a > e b > ; inoltre, con riferimento alla figura 8, i rettangoli ABCD e BCEF sono simili: dunque a : b = b : a. Dalla condizione ab = (in m ) si ricava a = /b. Dalla precedente proporzione segue allora: b a = = e quindi b = b m e a = m. Approssimando, si trovano come dimensioni del foglio a = 89 mm e b = 8 mm. 8. Per determinare il minimo della funzione g, studiamo la sua derivata; per il teorema fondamentale del calcolo integrale g'() = f(). Questa funzione è continua, e dunque il minimo va cercato tra i punti stazionari di g, cioè fra i punti in cui g' = f si annulla: {; ; }, come risulta dal grafico. Sempre dal grafico deduciamo che f è negativa a sinistra di e positiva alla sua destra, cioè g è decrescente a sinistra di e crescente alla sua destra, e tanto basta per affermare che g ha un minimo in. Notiamo altresì che il valore è escluso a priori dal testo, mentre in la funzione g ha un massimo. 9. Il limite proposto si presenta nella forma indeterminata e può essere calcolato mediante l uso di limiti notevoli. Ricordando che lim cos =, otteniamo: sen cos sen cos lim = lim sen = =.

13 Archimede sen In alternativa è possibile usare i limiti notevoli lim lim cos = e =, ottenendo: ARTICOLO cos lim sen sen = lim sen cos = =.. Studiando il grafico di f(), si osserva che per ], [ ]+, + [ la funzione è crescente, e dunque f'() >, mentre per ], +[ la funzione è decrescente e quindi f'() <. L unico grafico che soddisfa questa condizione è l A. commenti Nel complesso, il tema proposto è alla portata degli studenti del Liceo Scientifico di Ordinamento. Nella prova di quest anno è molto presente il calcolo integrale (integrale definito e in senso improprio, calcolo di superfici e volumi, funzione integrale e teorema fondamentale del calcolo integrale, media integrale), ma vengono toccati molti fra gli argomenti principali del triennio: la geometria analitica del III anno, la trigonometria del IV anno e, naturalmente, lo studio di funzione ed il calcolo differenziale del V anno. I punti più discutibili di questo tema si manifestano nei problemi, nei quali viene chiesto di determinare aree o volumi mediante procedimenti che non sono necessariamente in programma. Viceversa, un aspetto positivo ed interessante è il tentativo di inserire quesiti pratici e concreti, risolvibili anche con ragionamenti abbastanza semplici, alla portata di studenti anche prima del V anno. Vediamo nel dettaglio i problemi e i quesiti. Il primo problema non è molto impegnativo dal punto di vista dei calcoli, ma lo è dal punto di vista teorico, anche solo per il fatto di proporre fin dall inizio una funzione integrale: ciò ha fatto propendere la maggior parte dei maturandi per il secondo problema. A parte la presenza delle funzioni goniometriche, aspetto che spesso intimidisce gli studenti, le richieste vertono sul programma del V anno, in modo originale e completo: calcolo della derivata, studio di funzione, ricerca di massimi e minimi, integrale definito, volume di un solido. In particolare è interessante la richiesta di dedurre il grafico di f da quello di f', anche se f è calcolabile e si potrebbe rappresentare per altra via; ciò rende il punto il più articolato del problema. Il punto è interessante, ma richiede il metodo delle sezioni normali, argomento che spesso non viene approfondito e si incontra solo nello svolgimento di temi già assegnati. Inoltre è completamente slegato dal problema, tanto che poteva costituire un quesito a parte: la risposta rimane invariata se S è una qualunque curva continua in [, ]! A tal proposito si veda il punto del primo problema del tema d Ordinamento, che è invece perfettamente integrato nel problema.

14 ARTICOLO Archimede Il secondo problema ruota attorno ad una funzione razionale fratta, che rappresenta un caso particolare della «versiera di Agnesi». L esercizio si caratterizza per la richiesta di dimostrare una proprietà specifica della versiera di Agnesi mediante un integrale in senso improprio, argomento spesso non svolto e addirittura assente in alcuni libri di testo. Si sarebbe potuto evitare questa richiesta e pretendere nel quarto punto di calcolare l integrale che rappresenta il volume del solido W, invece di limitarsi a scriverlo: probabilmente questa scelta è stata fatta per aumentare il «tasso teorico» del problema. Come già accennato, i quesiti risultano nel complesso stimolanti e soprattutto vari, in particolare se confrontati con quelli del, maggiormente incentrati sul programma di V. Il quesito, già presente nel tema d Ordinamento in forma quasi identica, e il quesito 6, hanno spiazzato molti studenti che, in preparazione all esame, hanno semplicemente memorizzato formule di geometria solida e di calcolo combinatorio, o si sono esercitati nelle loro applicazioni più dirette. I quesiti 5 e 7 riguardano entrambi le proporzioni e non risultano particolarmente difficili; va sottolineato il loro carattere estremamente pratico, in quanto si parla di oggetti reali (valigie e fogli) e situazioni concrete: nel primo caso la falsa percezione che l uomo comune ha del rapporto tra lunghezza e volume, nel secondo caso la ricerca delle dimensioni del foglio di carta capostipite dei formati della serie A, ovvero l A (per inciso: un problema analogo sul formato dei fogli era stato assegnato pochi mesi prima per i concorsi a cattedra della classe A59; si veda alle pagine 8-8 di questo fascicolo). Il quesito 8 è ridondante, in quanto ricalca il problema : chiede infatti di dedurre informazioni su una funzione integrale a partire dalla sua derivata. I restanti quesiti trattano di argomenti diversi, sono semplici e adatti allo scopo, anche se non presentano aspetti rilevanti. Enrico Menara Istituto Don Bosco Padova

esame di stato 2014 seconda prova scritta per i licei scientifici di ordinamento

esame di stato 2014 seconda prova scritta per i licei scientifici di ordinamento ARTICOLO Archimede 4 4 esame di stato 4 seconda prova scritta per i licei scientifici di ordinamento Il candidato risolva uno dei due problemi e risponda a 5 quesiti del questionario. PROBLEMA Nella figura

Dettagli

esame di stato 2012 seconda prova scritta per il liceo scientifico di ordinamento

esame di stato 2012 seconda prova scritta per il liceo scientifico di ordinamento RTICL rchimede 4 esame di stato seconda prova scritta per il liceo scientifico di ordinamento Il candidato risolva uno dei due problemi e risponda a 5 quesiti del questionario PRBLEM Siano f e g le funzioni

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2004

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2004 ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 004 Il candidato risolva uno dei due problemi e 5 dei 10 quesiti in cui si articola il questionario. PROBLEMA 1 Sia f la funzione definita da: f

Dettagli

ESAME DI STATO 2002 SECONDA PROVA SCRITTA PER IL LICEO SCIENTIFICO DI ORDINAMENTO

ESAME DI STATO 2002 SECONDA PROVA SCRITTA PER IL LICEO SCIENTIFICO DI ORDINAMENTO ARCHIMEDE 4/ 97 ESAME DI STATO SECONDA PROVA SCRITTA PER IL LICEO SCIENTIFICO DI ORDINAMENTO Il candidato risolva uno dei due problemi e 5 dei quesiti in cui si articola il questionario. PROBLEMA In un

Dettagli

ESAME DI STATO 2010 SECONDA PROVA SCRITTA PER IL LICEO SCIENTIFICO DI ORDINAMENTO

ESAME DI STATO 2010 SECONDA PROVA SCRITTA PER IL LICEO SCIENTIFICO DI ORDINAMENTO Archimede ESAME DI STATO SECONDA PROVA SCRITTA PER IL LICEO SCIENTIFICO DI ORDINAMENTO ARTICOLO Il candidato risolva uno dei due problemi e risponda a 5 quesiti del questionario. Sia ABCD un quadrato di

Dettagli

SIMULAZIONE DI PROVA D ESAME CORSO DI ORDINAMENTO

SIMULAZIONE DI PROVA D ESAME CORSO DI ORDINAMENTO SIMULAZINE DI PRVA D ESAME CRS DI RDINAMENT Risolvi uno dei due problemi e 5 dei quesiti del questionario. PRBLEMA Considera la famiglia di funzioni k ln f k () se k se e la funzione g() ln se. se. Determina

Dettagli

a) Si descriva, internamente al triangolo, con centro in B e raggio x, l arco di circonferenza di π π

a) Si descriva, internamente al triangolo, con centro in B e raggio x, l arco di circonferenza di π π PROBLEMA Il triangolo rettangolo ABC ha l ipotenusa AB = a e l angolo CAB =. a) Si descriva, internamente al triangolo, con centro in B e raggio, l arco di circonferenza di estremi P e Q rispettivamente

Dettagli

ELEMENTI DI GEOMETRIA ANALITICA: LA RETTA.

ELEMENTI DI GEOMETRIA ANALITICA: LA RETTA. ELEMENTI DI GEOMETRIA ANALITICA: LA RETTA. Prerequisiti I radicali Risoluzione di sistemi di equazioni di primo e secondo grado. Classificazione e dominio delle funzioni algebriche Obiettivi minimi Saper

Dettagli

Studio grafico-analitico delle funzioni reali a variabile reale

Studio grafico-analitico delle funzioni reali a variabile reale Studio grafico-analitico delle funzioni reali a variabile reale Sequenza dei passi Classificazione In pratica Classifica il tipo di funzione: Funzione razionale: intera / fratta Funzione irrazionale: intera

Dettagli

Proposta di soluzione della prova di matematica Liceo scientifico di Ordinamento - 2014

Proposta di soluzione della prova di matematica Liceo scientifico di Ordinamento - 2014 Proposta di soluzione della prova di matematica Liceo scientifico di Ordinamento - 14 Problema 1 Punto a) Osserviamo che g (x) = f(x) e pertanto g () = f() = in quanto Γ è tangente all asse delle ascisse,

Dettagli

Risposta: L area del triangolo è dove sono le misure di due lati e è l ampiezza dell angolo tra essi compreso ;

Risposta: L area del triangolo è dove sono le misure di due lati e è l ampiezza dell angolo tra essi compreso ; 1. Un triangolo ha area 3 e due lati che misurano 2 e 3. Qual è la misura del terzo lato? : L area del triangolo è dove sono le misure di due lati e è l ampiezza dell angolo tra essi compreso ; nel nostro

Dettagli

Soluzione Punto 1 Si calcoli in funzione di x la differenza d(x) fra il volume del cono avente altezza AP e base il

Soluzione Punto 1 Si calcoli in funzione di x la differenza d(x) fra il volume del cono avente altezza AP e base il Matematica per la nuova maturità scientifica A. Bernardo M. Pedone 74 PROBLEMA Considerata una sfera di diametro AB, lungo, per un punto P di tale diametro si conduca il piano α perpendicolare ad esso

Dettagli

RETTE, PIANI, SFERE, CIRCONFERENZE

RETTE, PIANI, SFERE, CIRCONFERENZE RETTE, PIANI, SFERE, CIRCONFERENZE 1. Esercizi Esercizio 1. Dati i punti A(1, 0, 1) e B(, 1, 1) trovare (1) la loro distanza; () il punto medio del segmento AB; (3) la retta AB sia in forma parametrica,

Dettagli

DERIVATE DELLE FUNZIONI. esercizi proposti dal Prof. Gianluigi Trivia

DERIVATE DELLE FUNZIONI. esercizi proposti dal Prof. Gianluigi Trivia DERIVATE DELLE FUNZIONI esercizi proposti dal Prof. Gianluigi Trivia Incremento della variabile indipendente e della funzione. Se, sono due valori della variabile indipendente, y f ) e y f ) le corrispondenti

Dettagli

Amministrazione, finanza e marketing - Turismo Ministero dell Istruzione, dell Università e della Ricerca PROGRAMMAZIONE DISCIPLINARE PER U. di A.

Amministrazione, finanza e marketing - Turismo Ministero dell Istruzione, dell Università e della Ricerca PROGRAMMAZIONE DISCIPLINARE PER U. di A. UdA n. 1 Titolo: Disequazioni algebriche Saper esprimere in linguaggio matematico disuguaglianze e disequazioni Risolvere problemi mediante l uso di disequazioni algebriche Le disequazioni I principi delle

Dettagli

ALCUNE APPLICAZIONI DEL CALCOLO DIFFERENZIALE

ALCUNE APPLICAZIONI DEL CALCOLO DIFFERENZIALE ALCUNE APPLICAZIONI DEL CALCOLO DIFFERENZIALE Sia I un intervallo di R e siano a = inf(i) R { } e b = sup(i) R {+ }; i punti di I diversi dagli estremi a e b, ( e quindi appartenenti all intervallo aperto

Dettagli

Trasformazioni Geometriche 1 Roberto Petroni, 2011

Trasformazioni Geometriche 1 Roberto Petroni, 2011 1 Trasformazioni Geometriche 1 Roberto etroni, 2011 Trasformazioni Geometriche sul piano euclideo 1) Introduzione Def: si dice trasformazione geometrica una corrispondenza biunivoca che associa ad ogni

Dettagli

STUDIO DI UNA FUNZIONE

STUDIO DI UNA FUNZIONE STUDIO DI UNA FUNZIONE OBIETTIVO: Data l equazione Y = f(x) di una funzione a variabili reali (X R e Y R), studiare l andamento del suo grafico. PROCEDIMENTO 1. STUDIO DEL DOMINIO (CAMPO DI ESISTENZA)

Dettagli

Maturità Scientifica PNI, sessione ordinaria 2000-2001

Maturità Scientifica PNI, sessione ordinaria 2000-2001 Matematica per la nuova maturità scientifica A. Bernardo M. Pedone Maturità Scientifica PNI, sessione ordinaria 000-00 Problema Sia AB un segmento di lunghezza a e il suo punto medio. Fissato un conveniente

Dettagli

LE FUNZIONI MATEMATICHE

LE FUNZIONI MATEMATICHE ALGEBRA LE FUNZIONI MATEMATICHE E IL PIANO CARTESIANO PREREQUISITI l l l l l conoscere il concetto di insieme conoscere il concetto di relazione disporre i dati in una tabella rappresentare i dati mediante

Dettagli

a. 10 4 b. 10-15 c. 10 25 d. 10-4 a. 4,375 10-7 b. 3,625 10-6 c. 4,375 10 2 d. nessuno dei precedenti valori a. 10-5 b. 10 +5 c. 10 +15 d.

a. 10 4 b. 10-15 c. 10 25 d. 10-4 a. 4,375 10-7 b. 3,625 10-6 c. 4,375 10 2 d. nessuno dei precedenti valori a. 10-5 b. 10 +5 c. 10 +15 d. 1) Il valore di 5 10 20 è: a. 10 4 b. 10-15 c. 10 25 d. 10-4 2) Il valore del rapporto (2,8 10-4 ) / (6,4 10 2 ) è: a. 4,375 10-7 b. 3,625 10-6 c. 4,375 10 2 d. nessuno dei precedenti valori 3) La quantità

Dettagli

SEGNO DELLA FUNZIONE. Anche in questo caso, per lo studio del segno della funzione, occorre risolvere la disequazione: y > 0 Ne segue:

SEGNO DELLA FUNZIONE. Anche in questo caso, per lo studio del segno della funzione, occorre risolvere la disequazione: y > 0 Ne segue: CAMPO DI ESISTENZA. Poiché la funzione data è una razionale fratta, essa risulta definita su tutto l asse reale tranne che nei punti in cui il denominatore della frazione si annulla, cioè: C.E. { R: 0}

Dettagli

Problema n. 1: CURVA NORD

Problema n. 1: CURVA NORD Problema n. 1: CURVA NORD Sei il responsabile della gestione del settore Curva Nord dell impianto sportivo della tua città e devi organizzare tutti i servizi relativi all ingresso e all uscita degli spettatori,

Dettagli

INTEGRALI DEFINITI. Tale superficie viene detta trapezoide e la misura della sua area si ottiene utilizzando il calcolo di un integrale definito.

INTEGRALI DEFINITI. Tale superficie viene detta trapezoide e la misura della sua area si ottiene utilizzando il calcolo di un integrale definito. INTEGRALI DEFINITI Sia nel campo scientifico che in quello tecnico si presentano spesso situazioni per affrontare le quali è necessario ricorrere al calcolo dell integrale definito. Vi sono infatti svariati

Dettagli

Le trasformazioni geometriche

Le trasformazioni geometriche Le trasformazioni geometriche Le trasformazioni geometriche Le trasformazioni affini del piano o affinità Le similitudini Le isometrie Le traslazioni Le rotazioni Le simmetrie assiale e centrale Le omotetie

Dettagli

CURVE DI LIVELLO. Per avere informazioni sull andamento di una funzione f : D IR n IR può essere utile considerare i suoi insiemi di livello.

CURVE DI LIVELLO. Per avere informazioni sull andamento di una funzione f : D IR n IR può essere utile considerare i suoi insiemi di livello. CURVE DI LIVELLO Per avere informazioni sull andamento di una funzione f : D IR n IR può essere utile considerare i suoi insiemi di livello. Definizione. Si chiama insieme di livello k della funzione f

Dettagli

Kangourou Italia Gara del 19 marzo 2015 Categoria Student Per studenti di quarta e quinta della secondaria di secondo grado

Kangourou Italia Gara del 19 marzo 2015 Categoria Student Per studenti di quarta e quinta della secondaria di secondo grado Kangourou Italia Gara del 19 marzo 2015 Categoria Student Per studenti di quarta e quinta della secondaria di secondo grado I quesiti dal N. 1 al N. 10 valgono 3 punti ciascuno 1. Angela è nata nel 1997,

Dettagli

Ing. Alessandro Pochì

Ing. Alessandro Pochì Lo studio di unzione Ing. Alessandro Pochì Appunti di analisi Matematica per la Classe VD (a.s. 011/01) Schema generale per lo studio di una unzione Premessa Per Studio unzione si intende, generalmente,

Dettagli

IV-1 Funzioni reali di più variabili

IV-1 Funzioni reali di più variabili IV- FUNZIONI REALI DI PIÙ VARIABILI INSIEMI IN R N IV- Funzioni reali di più variabili Indice Insiemi in R n. Simmetrie degli insiemi............................................ 4 2 Funzioni da R n a R

Dettagli

Funzione reale di variabile reale

Funzione reale di variabile reale Funzione reale di variabile reale Siano A e B due sottoinsiemi non vuoti di. Si chiama funzione reale di variabile reale, di A in B, una qualsiasi legge che faccia corrispondere, a ogni elemento A x A

Dettagli

1 Definizione: lunghezza di una curva.

1 Definizione: lunghezza di una curva. Abstract Qui viene affrontato lo studio delle curve nel piano e nello spazio, con particolare interesse verso due invarianti: la curvatura e la torsione Il primo ci dice quanto la curva si allontana dall

Dettagli

EQUAZIONI E DISEQUAZIONI POLINOMIALI E COLLEGAMENTI CON LA GEOMETRIA ELEMENTARE

EQUAZIONI E DISEQUAZIONI POLINOMIALI E COLLEGAMENTI CON LA GEOMETRIA ELEMENTARE EQUAZIONI E DISEQUAZIONI POLINOMIALI E COLLEGAMENTI CON LA GEOMETRIA ELEMENTARE 1. EQUAZIONI Definizione: un equazione è un uguaglianza tra due espressioni letterali (cioè in cui compaiono numeri, lettere

Dettagli

Nel triangolo disegnato a lato, qual è la misura, in gradi e primi sessagesimali, di α?

Nel triangolo disegnato a lato, qual è la misura, in gradi e primi sessagesimali, di α? QUESITO 1 Nel triangolo disegnato a lato, qual è la misura, in gradi e primi sessagesimali, di α? Applicando il Teorema dei seni si può determinare il valore di senza indeterminazione, in quanto dalla

Dettagli

Convessità e derivabilità

Convessità e derivabilità Convessità e derivabilità Definizione 1 (convessità per funzioni derivabili) Sia f : (a, b) R derivabile su (a, b). Diremo che f è convessa o concava su (a, b) se per ogni 0 (a,b) il grafico di f sta tutto

Dettagli

Funzioni di più variabili. Ottimizzazione libera e vincolata

Funzioni di più variabili. Ottimizzazione libera e vincolata libera e vincolata Generalità. Limiti e continuità per funzioni di 2 o Piano tangente. Derivate successive Formula di Taylor libera vincolata Lo ordinario è in corrispondenza biunivoca con i vettori di

Dettagli

QUARTA E QUINTA ISTITUTO TECNICO INDUSTRIALE

QUARTA E QUINTA ISTITUTO TECNICO INDUSTRIALE QUARTA E QUINTA ISTITUTO TECNICO INDUSTRIALE - Matematica - Griglie di valutazione Materia: Matematica Obiettivi disciplinari Gli obiettivi indicati si riferiscono all intero percorso della classe quarta

Dettagli

LA FUNZIONE INTEGRALE

LA FUNZIONE INTEGRALE LA FUNZIONE INTEGRALE MAGLIOCURIOSO & CAMILLO magliocurioso@hotmail.it Sommario. In questa breve dispensa ho semplicementrascritto in L A TEX il contenuto di questa discussione: http://www.matematicamente.it/forum/

Dettagli

QUADERNI DI DIDATTICA

QUADERNI DI DIDATTICA Department of Applied Mathematics, University of Venice QUADERNI DI DIDATTICA Tatiana Bassetto, Marco Corazza, Riccardo Gusso, Martina Nardon Esercizi sulle funzioni di più variabili reali con applicazioni

Dettagli

Le funzioni continue. A. Pisani Liceo Classico Dante Alighieri A.S. 2002-03. A. Pisani, appunti di Matematica 1

Le funzioni continue. A. Pisani Liceo Classico Dante Alighieri A.S. 2002-03. A. Pisani, appunti di Matematica 1 Le funzioni continue A. Pisani Liceo Classico Dante Alighieri A.S. -3 A. Pisani, appunti di Matematica 1 Nota bene Questi appunti sono da intendere come guida allo studio e come riassunto di quanto illustrato

Dettagli

Calcolo differenziale Test di autovalutazione

Calcolo differenziale Test di autovalutazione Test di autovalutazione 1. Sia f : R R iniettiva, derivabile e tale che f(1) = 3, f (1) = 2, f (3) = 5. Allora (a) (f 1 ) (3) = 1 5 (b) (f 1 ) (3) = 1 2 (c) (f 1 ) (1) = 1 2 (d) (f 1 ) (1) = 1 3 2. Sia

Dettagli

LE TRASFORMAZIONI GEOMETRICHE NEL PIANO

LE TRASFORMAZIONI GEOMETRICHE NEL PIANO LE TRASFORMAZIONI GEOMETRICHE NEL PIANO Una trasformazione geometrica è una funzione che fa corrispondere a ogni punto del piano un altro punto del piano stesso Si può pensare come MOVIMENTO di punti e

Dettagli

Rilevazione degli apprendimenti. Anno Scolastico 2006 2007 PROVA DI MATEMATICA. Scuola Secondaria di II grado. Classe Terza Tipo A. Codici. Scuola:...

Rilevazione degli apprendimenti. Anno Scolastico 2006 2007 PROVA DI MATEMATICA. Scuola Secondaria di II grado. Classe Terza Tipo A. Codici. Scuola:... Ministero della Pubblica Istruzione Rilevazione degli apprendimenti Anno Scolastico 2006 2007 PROVA DI MATEMATICA Scuola Secondaria di II grado Classe Terza Tipo A Codici Scuola:..... Classe:.. Studente:.

Dettagli

LE FUNZIONI E LE LORO PROPRIETÀ

LE FUNZIONI E LE LORO PROPRIETÀ LE FUNZIONI E LE LORO PROPRIETÀ LE FUNZIONI REALI DI VARIABILE REALE COSA SONO LE FUNZIONI Dati due sottoinsiemi A e B non vuoti di R, una FUNZIONE da A a B è una relazione che associa ad ogni numero reale

Dettagli

Istituto Istruzione Superiore Liceo Scientifico Ghilarza Anno Scolastico 2013/2014 PROGRAMMA DI MATEMATICA E FISICA

Istituto Istruzione Superiore Liceo Scientifico Ghilarza Anno Scolastico 2013/2014 PROGRAMMA DI MATEMATICA E FISICA PROGRAMMA DI MATEMATICA E FISICA Classe VA scientifico MATEMATICA MODULO 1 ESPONENZIALI E LOGARITMI 1. Potenze con esponente reale; 2. La funzione esponenziale: proprietà e grafico; 3. Definizione di logaritmo;

Dettagli

γ (t), e lim γ (t) cioè esistono la tangente destra e sinistra negli estremi t j e t j+1.

γ (t), e lim γ (t) cioè esistono la tangente destra e sinistra negli estremi t j e t j+1. Capitolo 6 Integrali curvilinei In questo capitolo definiamo i concetti di integrali di campi scalari o vettoriali lungo curve. Abbiamo bisogno di precisare le curve e gli insiemi che verranno presi in

Dettagli

FUNZIONI CONVESSE. + e x 0

FUNZIONI CONVESSE. + e x 0 FUNZIONI CONVESSE Sia I un intervallo aperto di R (limitato o illimitato) e sia f(x) una funzione definita in I. Dato x 0 I, la retta r passante per il punto P 0 (x 0, f(x 0 )) di equazione y = f(x 0 )

Dettagli

Unità Didattica N 28 Punti notevoli di un triangolo

Unità Didattica N 28 Punti notevoli di un triangolo 68 Unità Didattica N 8 Punti notevoli di un triangolo Unità Didattica N 8 Punti notevoli di un triangolo 0) ircocentro 0) Incentro 03) Baricentro 04) Ortocentro Pagina 68 di 73 Unità Didattica N 8 Punti

Dettagli

ED. Equazioni cardinali della dinamica

ED. Equazioni cardinali della dinamica ED. Equazioni cardinali della dinamica Dinamica dei sistemi La dinamica dei sistemi di punti materiali si può trattare, rispetto ad un osservatore inerziale, scrivendo l equazione fondamentale della dinamica

Dettagli

Servizio Nazionale di Valutazione a.s. 2013/14 Guida alla lettura Prova di Matematica Classe seconda Scuola secondaria di II grado

Servizio Nazionale di Valutazione a.s. 2013/14 Guida alla lettura Prova di Matematica Classe seconda Scuola secondaria di II grado Servizio Nazionale di Valutazione a.s. 2013/14 Guida alla lettura Prova di Matematica Classe seconda Scuola secondaria di II grado I quesiti sono distribuiti negli ambiti secondo la tabella seguente Ambito

Dettagli

CS. Cinematica dei sistemi

CS. Cinematica dei sistemi CS. Cinematica dei sistemi Dopo aver esaminato la cinematica del punto e del corpo rigido, che sono gli schemi più semplificati con cui si possa rappresentare un corpo, ci occupiamo ora dei sistemi vincolati.

Dettagli

Rilevazione degli apprendimenti. Anno Scolastico 2006 2007 PROVA DI MATEMATICA. Scuola Secondaria di II grado. Classe Terza Tipo A. Codici. Scuola:...

Rilevazione degli apprendimenti. Anno Scolastico 2006 2007 PROVA DI MATEMATICA. Scuola Secondaria di II grado. Classe Terza Tipo A. Codici. Scuola:... Ministero della Pubblica Istruzione Rilevazione degli apprendimenti Anno Scolastico 2006 2007 PROVA DI MATEMATICA Scuola Secondaria di II grado Classe Terza Tipo A Codici Scuola:..... Classe:.. Studente:.

Dettagli

QUAL È LA DISTANZA TRA ROMA E NEW YORK? UN PO' DI GEOMETRIA ANALITICA SULLA SFERA

QUAL È LA DISTANZA TRA ROMA E NEW YORK? UN PO' DI GEOMETRIA ANALITICA SULLA SFERA QUAL È LA DISTANZA TRA ROMA E NEW YORK? UN PO' DI GEOMETRIA ANALITICA SULLA SFERA Michele Impedovo Bollettino dei Docenti di Matematica del Canton Ticino (CH) n 36, maggio 98. Il problema Il lavoro che

Dettagli

GEOMETRIA I Corso di Geometria I (seconda parte)

GEOMETRIA I Corso di Geometria I (seconda parte) Corso di Geometria I (seconda parte) anno acc. 2009/2010 Cambiamento del sistema di riferimento in E 3 Consideriamo in E 3 due sistemi di riferimento ortonormali R e R, ed un punto P (x, y, z) in R. Lo

Dettagli

Esercizi svolti sui numeri complessi

Esercizi svolti sui numeri complessi Francesco Daddi - ottobre 009 Esercizio 1 Risolvere l equazione z 1 + i = 1. Soluzione. Moltiplichiamo entrambi i membri per 1 + i in definitiva la soluzione è z 1 + i 1 + i = 1 1 + i z = 1 1 i. : z =

Dettagli

APPUNTI DI MATEMATICA LE FUNZIONI ALESSANDRO BOCCONI

APPUNTI DI MATEMATICA LE FUNZIONI ALESSANDRO BOCCONI APPUNTI DI MATEMATICA LE FUNZIONI ALESSANDRO BOCCONI Indice 1 Le funzioni nel discreto 3 1.1 Le funzioni nel discreto.................................. 3 1.1.1 La rappresentazione grafica............................

Dettagli

PROGRAMMA DI FISICA ( CLASSE I SEZ. E) ( anno scol. 2013/2014)

PROGRAMMA DI FISICA ( CLASSE I SEZ. E) ( anno scol. 2013/2014) PROGRAMMA DI FISICA ( CLASSE I SEZ. E) ( anno scol. 2013/2014) Le grandezze fisiche. Metodo sperimentale di Galilei. Concetto di grandezza fisica e della sua misura. Il Sistema internazionale di Unità

Dettagli

Indice generale. Modulo 1 Algebra 2

Indice generale. Modulo 1 Algebra 2 Indice generale Modulo 1 Algebra 2 Capitolo 1 Scomposizione in fattori. Equazioni di grado superiore al primo 1.1 La scomposizione in fattori 2 1.2 Raccoglimento a fattor comune 3 1.3 Raccoglimenti successivi

Dettagli

Liceo Scientifico G. Galilei Trebisacce

Liceo Scientifico G. Galilei Trebisacce Liceo Scientifico G. Galilei Trebisacce Anno Scolastico 2011-2012 Prova di Matematica : Relazioni + Geometria Alunno: Classe: 1 C 05.06.2012 prof. Mimmo Corrado 1. Dati gli insiemi =2,3,5,7 e =2,4,6, rappresenta

Dettagli

Consideriamo due polinomi

Consideriamo due polinomi Capitolo 3 Il luogo delle radici Consideriamo due polinomi N(z) = (z z 1 )(z z 2 )... (z z m ) D(z) = (z p 1 )(z p 2 )... (z p n ) della variabile complessa z con m < n. Nelle problematiche connesse al

Dettagli

Numeri reali. Funzioni e loro grafici

Numeri reali. Funzioni e loro grafici Argomento Numeri reali. Funzioni e loro grafici Parte B - Funzioni e loro grafici Funzioni reali di variabile reale Definizioni. Supponiamo che A sia un sottoinsieme di R e che esista una legge che ad

Dettagli

Esercizi di Algebra Lineare. Claretta Carrara

Esercizi di Algebra Lineare. Claretta Carrara Esercizi di Algebra Lineare Claretta Carrara Indice Capitolo 1. Operazioni tra matrici e n-uple 1 1. Soluzioni 3 Capitolo. Rette e piani 15 1. Suggerimenti 19. Soluzioni 1 Capitolo 3. Gruppi, spazi e

Dettagli

Analisi Mat. 1 - Ing. Inform. - Soluzioni del compito del 23-3-06

Analisi Mat. 1 - Ing. Inform. - Soluzioni del compito del 23-3-06 Analisi Mat. - Ing. Inform. - Soluzioni del compito del 3-3-6 Sia p il polinomio di quarto grado definito da pz = z 4. Sia S il settore circolare formato dai numeri complessi che hanno modulo minore o

Dettagli

LA MATEMATICA PER LE ALTRE DISCIPLINE. Prerequisiti e sviluppi universitari G. ACCASCINA, G. ANICHINI, G. ANZELLOTTI, F. ROSSO, V. VILLANI, R.

LA MATEMATICA PER LE ALTRE DISCIPLINE. Prerequisiti e sviluppi universitari G. ACCASCINA, G. ANICHINI, G. ANZELLOTTI, F. ROSSO, V. VILLANI, R. LA MATEMATICA PER LE ALTRE DISCIPLINE Prerequisiti e sviluppi universitari a cura di G. ACCASCINA, G. ANICHINI, G. ANZELLOTTI, F. ROSSO, V. VILLANI, R. ZAN Unione Matematica Italiana 2006 Ho continuato

Dettagli

Geometria nel piano complesso

Geometria nel piano complesso Geometria nel piano complesso Giorgio Ottaviani Contents Un introduzione formale del piano complesso 2 Il teorema di Napoleone 5 L inversione circolare 6 4 Le trasformazioni di Möbius 7 5 Il birapporto

Dettagli

ESEMPI DIDATTICI CON CABRI Jr. A cura di P. Accomazzo C. Dané N. Nolli

ESEMPI DIDATTICI CON CABRI Jr. A cura di P. Accomazzo C. Dané N. Nolli ESEMPI DIDATTICI CON CABRI Jr. A cura di P. Accomazzo C. Dané N. Nolli I tasti utilizzati con Cabri Jr. [Y=] [WINDOW] [ZOOM] [TRACE] [GRAPH] [2ND] [DEL] [CLEAR] [ALPHA] [ENTER] Apre il menu File (F1).

Dettagli

POLITECNICO DI BARI REGOLAMENTO TEST DI AMMISSIONE

POLITECNICO DI BARI REGOLAMENTO TEST DI AMMISSIONE POLITECNICO DI BARI REGOLAMENTO TEST DI AMMISSIONE IMMATRICOLAZIONI AL PRIMO ANNO DEI CORSI DI LAUREA TRIENNA- LI IN INGEGNERIA DEL POLITECNICO DI BARI - A.A. 2015/2016 Sommario REGOLAMENTO TEST DI AMMISSIONE...

Dettagli

CNC. Linguaggio ProGTL3. (Ref. 1308)

CNC. Linguaggio ProGTL3. (Ref. 1308) CNC 8065 Linguaggio ProGTL3 (Ref. 1308) SICUREZZA DELLA MACCHINA È responsabilità del costruttore della macchina che le sicurezze della stessa siano abilitate, allo scopo di evitare infortuni alle persone

Dettagli

EQUAZIONI non LINEARI

EQUAZIONI non LINEARI EQUAZIONI non LINEARI Francesca Pelosi Dipartimento di Matematica, Università di Roma Tor Vergata CALCOLO NUMERICO e PROGRAMMAZIONE http://www.mat.uniroma2.it/ pelosi/ EQUAZIONI non LINEARI p.1/44 EQUAZIONI

Dettagli

Rette e piani con le matrici e i determinanti

Rette e piani con le matrici e i determinanti CAPITOLO Rette e piani con le matrici e i determinanti Esercizio.. Stabilire se i punti A(, ), B(, ) e C(, ) sono allineati. Esercizio.. Stabilire se i punti A(,,), B(,,), C(,, ) e D(4,,0) sono complanari.

Dettagli

LIMITI E CONFRONTO LOCALE Esercizi svolti. b) lim. d) lim. h) lim x x + 1 x. l) lim. b) lim x cos x. x 0 sin 2 3x cos x p) lim.

LIMITI E CONFRONTO LOCALE Esercizi svolti. b) lim. d) lim. h) lim x x + 1 x. l) lim. b) lim x cos x. x 0 sin 2 3x cos x p) lim. LIMITI E CONFRONTO LOCALE Esercizi svolti. Calcolare i seguenti iti: a + 4 + b + 4 + 4 c 5 e ± g i + + sin 4 m sin o π q sin π + 4 + 7 d + 4 + + 5 4 + f 4 4 + 5 4 + 4 h + + l + + cos n sin cos p π π +

Dettagli

Da una a più variabili: derivate

Da una a più variabili: derivate Da una a più variabili: derivate ( ) 5 gennaio 2011 Scopo di questo articolo è di evidenziare le analogie e le differenze, relativamente al calcolo differenziale, fra le funzioni di una variabile reale

Dettagli

1 Numeri Complessi, Formula di Eulero, Decomposizioni Notevoli,... ecc.

1 Numeri Complessi, Formula di Eulero, Decomposizioni Notevoli,... ecc. Classi Numeriche 1 1 Numeri Complessi, Formula di Eulero, Decomposizioni Notevoli,... ecc. In questo breve capitolo richiamiamo le definizioni delle classi numeriche fondamentali, già note al lettore,

Dettagli

Esercitazioni di Meccanica Applicata alle Macchine

Esercitazioni di Meccanica Applicata alle Macchine Università degli Studi di Roma La Sapienza Facoltà di Ingegneria Dipartimento di Meccanica ed Aeronautica Corso di Laurea Triennale in Ingegneria Meccanica Esercitazioni di Meccanica Applicata alle Macchine

Dettagli

1) IL MOMENTO DI UNA FORZA

1) IL MOMENTO DI UNA FORZA 1) IL MOMENTO DI UNA FORZA Nell ambito dello studio dei sistemi di forze, diamo una definizione di momento: il momento è un ente statico che provoca la rotazione dei corpi. Le forze producono momenti se

Dettagli

MATEMATICA. { 2 x =12 y 3 y +8 x =0, si pone il problema di trovare, se esistono, un numero x ed un numero y che risolvano entrambe le equazioni.

MATEMATICA. { 2 x =12 y 3 y +8 x =0, si pone il problema di trovare, se esistono, un numero x ed un numero y che risolvano entrambe le equazioni. MATEMATICA. Sistemi lineari in due equazioni due incognite. Date due equazioni lineari nelle due incognite x, y come ad esempio { 2 x =12 y 3 y +8 x =0, si pone il problema di trovare, se esistono, un

Dettagli

FASCI DI RETTE. scrivere la retta in forma esplicita: 2y = 3x + 4 y = 3 2 x 2. scrivere l equazione del fascio di rette:

FASCI DI RETTE. scrivere la retta in forma esplicita: 2y = 3x + 4 y = 3 2 x 2. scrivere l equazione del fascio di rette: FASCI DI RETTE DEFINIZIONE: Si chiama fascio di rette parallele o fascio improprio [erroneamente data la somiglianza effettiva con un fascio!] un insieme di rette che hanno tutte lo stesso coefficiente

Dettagli

f : A A = f (A) In altre parole f è una funzione che associa a un punto del piano un altro punto del piano e che si può invertire.

f : A A = f (A) In altre parole f è una funzione che associa a un punto del piano un altro punto del piano e che si può invertire. Consideriamo l insieme P dei punti del piano e una f funzione biiettiva da P in P: f : { P P A A = f (A) In altre parole f è una funzione che associa a un punto del piano un altro punto del piano e che

Dettagli

(accuratezza) ovvero (esattezza)

(accuratezza) ovvero (esattezza) Capitolo n 2 2.1 - Misure ed errori In un analisi chimica si misurano dei valori chimico-fisici di svariate grandezze; tuttavia ogni misura comporta sempre una incertezza, dovuta alla presenza non eliminabile

Dettagli

Argomento interdisciplinare

Argomento interdisciplinare 1 Argomento interdisciplinare Tecnologia-Matematica Libro consigliato: Disegno Laboratorio - IL MANUALE DI TECNOLOGIA _G.ARDUINO_LATTES studiare da pag.19.da 154 a 162 Unità aggiornata: 7/2012 2 Sono corpi

Dettagli

Terne pitagoriche e teorema di Pitagora, numeri e triangoli. Riccardo Ricci: Dipartimento di Matematica U.Dini ricci@math.unif.it

Terne pitagoriche e teorema di Pitagora, numeri e triangoli. Riccardo Ricci: Dipartimento di Matematica U.Dini ricci@math.unif.it 3 4 5 Terne pitagoriche e teorema di Pitagora, numeri e triangoli Riccardo Ricci: Dipartimento di Matematica U.Dini ricci@math.unif.it Qualche osservazione preliminare sul Teorema di Pitagora e le terne

Dettagli

x 1 + x 2 3x 4 = 0 x1 + x 2 + x 3 = 0 x 1 + x 2 3x 4 = 0.

x 1 + x 2 3x 4 = 0 x1 + x 2 + x 3 = 0 x 1 + x 2 3x 4 = 0. Problema. Sia W il sottospazio dello spazio vettoriale R 4 dato da tutte le soluzioni dell equazione x + x 2 + x = 0. (a. Sia U R 4 il sottospazio dato da tutte le soluzioni dell equazione Si determini

Dettagli

6. Moto in due dimensioni

6. Moto in due dimensioni 6. Moto in due dimensioni 1 Vettori er descriere il moto in un piano, in analogia con quanto abbiamo fatto per il caso del moto in una dimensione, è utile usare una coppia di assi cartesiani, come illustrato

Dettagli

Il concetto di valore medio in generale

Il concetto di valore medio in generale Il concetto di valore medio in generale Nella statistica descrittiva si distinguono solitamente due tipi di medie: - le medie analitiche, che soddisfano ad una condizione di invarianza e si calcolano tenendo

Dettagli

La curva grafico della funzione, partendo dal punto A(a,f(a)), si snoda con continuità, senza interruzioni, fino ad approdare nel punto B(b,f(b)).

La curva grafico della funzione, partendo dal punto A(a,f(a)), si snoda con continuità, senza interruzioni, fino ad approdare nel punto B(b,f(b)). Calcolo differenziale Il teorema di Rolle TEOREMA DI ROLLE Ipotesi f continua su [a, b] f derivabile per lo meno su (a,b) f(a) = f(b) Tesi Esiste almeno un punto c in (a, b) tale che Giustificazione con

Dettagli

Funzioni in più variabili

Funzioni in più variabili Funzioni in più variabili Corso di Analisi 1 di Andrea Centomo 27 gennaio 2011 Indichiamo con R n, n 1, l insieme delle n-uple ordinate di numeri reali R n4{(x 1, x 2,,x n ), x i R, i =1,,n}. Dato X R

Dettagli

Elementi di topografia parte II

Elementi di topografia parte II Corso di Topografia Istituto Agrario S. Michele Elementi di topografia parte II prof. Maines Fernando Giugno 2010 Elementi di meccanica agraria pag. 164 Maines Fernando Sommario 1 Gli errori e il loro

Dettagli

PROGRAMMAZIONE LINEARE IN DUE VARIABILI

PROGRAMMAZIONE LINEARE IN DUE VARIABILI 1 PROGRAMMAZIONE LINEARE IN DUE VARIABILI La ricerca operativa nata durante la seconda guerra mondiale ed utilizzata in ambito militare, oggi viene applicata all industria, nel settore pubblico e nell

Dettagli

Materiale originale prodotto dal Centro Didattico della Matematica - www.cedima.it - Tel. 0229408552

Materiale originale prodotto dal Centro Didattico della Matematica - www.cedima.it - Tel. 0229408552 Materiale originale prodotto dal Centro Didattico della Matematica - www.cedima.it - Tel. 0940855 La funzione: y = cos x DEFINIZIONE Si dice funzione coseno di un angolo nel cerchio trigonometrico, la

Dettagli

Equazione della Circonferenza - Grafico di una Circonferenza - Intersezione tra Circonferenza e Retta

Equazione della Circonferenza - Grafico di una Circonferenza - Intersezione tra Circonferenza e Retta Equazione della Circonferenza - Grafico di una Circonferenza - Intersezione tra Circonferenza e Retta Francesco Zumbo www.francescozumbo.it http://it.geocities.com/zumbof/ Questi appunti vogliono essere

Dettagli

ISTITUTO DI ISTRUZIONE SUPERIORE 25 APRILE di Cuorgnè

ISTITUTO DI ISTRUZIONE SUPERIORE 25 APRILE di Cuorgnè ISTITUTO DI ISTRUZIONE SUERIORE 25 RILE di Cuorgnè NNO SCOLSTICO 2013-2014 CLSSE 3G TTIVIT ESTIV ER LLUNNI CON GIUDIZIO SOSESO MTERI: TOOGRFI DOCENTE: rof. TONIOLO Serena Dopo aver rivisto i contenuti

Dettagli

PROBABILITA, VALORE ATTESO E VARIANZA DELLE QUANTITÁ ALEATORIE E LORO RELAZIONE CON I DATI OSSERVATI

PROBABILITA, VALORE ATTESO E VARIANZA DELLE QUANTITÁ ALEATORIE E LORO RELAZIONE CON I DATI OSSERVATI statistica, Università Cattaneo-Liuc, AA 006-007, lezione del 08.05.07 IDICE (lezione 08.05.07 PROBABILITA, VALORE ATTESO E VARIAZA DELLE QUATITÁ ALEATORIE E LORO RELAZIOE CO I DATI OSSERVATI 3.1 Valore

Dettagli

Prova scritta di Fisica Generale I Corso di studio in Astronomia 22 giugno 2012

Prova scritta di Fisica Generale I Corso di studio in Astronomia 22 giugno 2012 Prova scritta di Fisica Generale I Corso di studio in Astronomia 22 giugno 2012 Problema 1 Due carrelli A e B, di massa m A = 104 kg e m B = 128 kg, collegati da una molla di costante elastica k = 3100

Dettagli

Anno 5 Funzioni inverse e funzioni composte

Anno 5 Funzioni inverse e funzioni composte Anno 5 Funzioni inverse e funzioni composte 1 Introduzione In questa lezione impareremo a definire e ricercare le funzioni inverse e le funzioni composte. Al termine di questa lezione sarai in grado di:

Dettagli

Moto sul piano inclinato (senza attrito)

Moto sul piano inclinato (senza attrito) Moto sul piano inclinato (senza attrito) Per studiare il moto di un oggetto (assimilabile a punto materiale) lungo un piano inclinato bisogna innanzitutto analizzare le forze che agiscono sull oggetto

Dettagli

I Numeri Complessi. Si verifica facilmente che, per l operazione di somma in definita dalla (1), valgono le seguenti

I Numeri Complessi. Si verifica facilmente che, per l operazione di somma in definita dalla (1), valgono le seguenti Y T T I Numeri Complessi Operazioni di somma e prodotto su Consideriamo, insieme delle coppie ordinate di numeri reali, per cui si ha!"# $&% '( e )("+* Introduciamo in tale insieme una operazione di somma,/0"#123045"#

Dettagli

bensì una tendenza a ruotare quando vengono applicate in punti diversi di un corpo

bensì una tendenza a ruotare quando vengono applicate in punti diversi di un corpo Momento di una forza Nella figura 1 è illustrato come forze uguali e contrarie possono non produrre equilibrio, bensì una tendenza a ruotare quando vengono applicate in punti diversi di un corpo esteso.

Dettagli

Le origini delle coniche: da Euclide ad Apollonio

Le origini delle coniche: da Euclide ad Apollonio Corso di Storia ed epistemologia della matematica Prof. Lucio Benaglia Le origini delle coniche: da Euclide ad Apollonio Specializzando: Stefano Adriani Matricola 56152 Relatore: prof. Lucio Benaglia Anno

Dettagli

Programmazione Generale. Matematica e Complementi. Classi: 2 Biennio Quarta. Istituto Tecnico Tecnologico Basilio Focaccia Salerno

Programmazione Generale. Matematica e Complementi. Classi: 2 Biennio Quarta. Istituto Tecnico Tecnologico Basilio Focaccia Salerno Istituto Tecnico Tecnologico Basilio Focaccia Salerno Programmazione Generale Matematica e Complementi Classi: 2 Biennio Quarta I Docenti della Disciplina Salerno, lì 12 settembre 2014 Finalità della Disciplina

Dettagli

STUDIO DEL SEGNO DI UNA FUNZIONE

STUDIO DEL SEGNO DI UNA FUNZIONE STUDIO DEL SEGNO DI UNA FUNZIONE Quando si studia una funzione! " #$%&' (funzione reale di variabile reale) è fondamentale conoscere il segno, in altre parole sapere per quali valori di &( #$%&'$è positiva,

Dettagli

Appunti ed esercizi. di Meccanica Razionale

Appunti ed esercizi. di Meccanica Razionale Appunti ed esercizi di Meccanica Razionale Università degli Studi di Trieste - Sede di Pordenone Facoltà di Ingegneria Appunti ed esercizi di Meccanica Razionale Luciano Battaia Versione del 29 dicembre

Dettagli