esame di stato 2013 seconda prova scritta per il liceo scientifico di ordinamento

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "esame di stato 2013 seconda prova scritta per il liceo scientifico di ordinamento"

Transcript

1 Archimede esame di stato seconda prova scritta per il liceo scientifico di ordinamento ARTICOLO Il candidato risolva uno dei due problemi e risponda a 5 quesiti del questionario. PROBLEMA La funzione f è definita da f ( ) = appartenenti all intervallo chiuso [, 9]. t dt + cos per tutti i numeri reali. Si calcolino f'(p) e f'(p) ove f' indica la derivata di f.. Si tracci, in un sistema di coordinate cartesiane, il grafico S di f'() e da esso si deduca per quale o per quali valori di, f() presenta massimi o minimi. Si tracci altresì l andamento di f() deducendolo da quello di f'().. Si trovi il valor medio di f'() sull intervallo [, p].. Sia R la regione del piano delimitata da S e dall asse per ; R è la base di un solido W le cui sezioni con piani ortogonali all asse hanno, per ciascun, area A ( ) = sen π. Si calcoli il volume di W. Sia f la funzione definita, per tutti gli reali, da f ( ) = + 8. Si studi f e se ne disegni il grafico F in un sistema di coordinate cartesiane O. Si scrivano le equazioni delle tangenti a F nei punti P( ; ) e Q(; ) e si consideri il quadrilatero convesso che esse individuano con le rette OP e OQ. Si provi che tale quadrilatero è un rombo e si determinino le misure, in gradi e primi sessagesimali, dei suoi angoli.. Sia G la circonferenza di raggio e centro (; ). Una retta t, per l origine degli assi, taglia G oltre che in O in un punto A e taglia la retta di equazione = in un punto B. Si provi che, qualunque sia t, l ascissa di B e l ordinata di A sono le coordinate (; ) di un punto di F.. PROBLEMA 9

2 ARTICOLO Archimede. Si consideri la regione R compresa tra F e l asse sull intervallo [, ]. Si provi che R è equivalente al cerchio delimitato da G e si provi altresì che la regione compresa tra F e tutto l asse è equivalente a quattro volte il cerchio.. La regione R, ruotando attorno all asse, genera il solido W. Si scriva, spiegandone il perché, ma senza calcolarlo, l integrale definito che fornisce il volume W. 9 Questionario. Un triangolo ha area e due lati che misurano e. Qual è la misura del terzo lato? Si giustifichi la risposta.. Si calcoli il dominio della funzione f ( ) =.. Si considerino, nel piano cartesiano, i punti A(; ) e B( 6; 8). Si determini l equazione della retta passante per B e avente distanza massima da A.. Di un tronco di piramide retta a base quadrata si conoscono l altezza h e i lati a e b delle due basi. Si esprima il volume V del tronco in funzione di a, b e h, giustificando il ragionamento seguito. 5. In un libro si legge: «Due valigie della stessa forma sembrano quasi uguali, quanto a capacità, quando differiscono di poco le dimensioni lineari: non sembra che in genere le persone si rendano ben conto che ad un aumento delle dimensioni lineari (lunghezza, larghezza, altezza) del % (oppure del % o del 5%) corrispondono aumenti di capacità (volume) di circa % (oppure 75% o %: raddoppio)». È così? Si motivi esaurientemente la risposta. 6. Con le cifre da a 7 è possibile formare 7! = 5 numeri corrispondenti alle permutazioni delle 7 cifre. Ad esempio i numeri 567 e 567 corrispondono a due di queste permutazioni. Se i 5 numeri ottenuti dalle permutazioni si dispongono in ordine crescente qual è il numero che occupa la settima posizione e quale quello che occupa la 7-esima posizione? 7. Un foglio rettangolare, di dimensioni a e b, ha area m e forma tale che, tagliandolo a metà (parallelamente al lato minore) si ottengono due rettangoli simili a quello di partenza. Quali sono le misure di a e b? 8. La funzione f ha il grafico in figura. Se g( ) = f ( t) dt, per quale valore positivo di, g ha un minimo? Si illustri il ragionamento seguito. sen cos sen 9. Si calcoli: lim.

3 . Se la figura a lato rappresenta il grafico di f (), quale dei seguenti potrebbe essere il grafico di f'()? Si giustifichi la risposta. f () Archimede ARTICOLO f'() f'() A) C) f'() f'() B) D) Durata massima della prova: 6 ore. È consentito l uso della calcolatrice non programmabile. È consentito l uso del dizionario bilingue (italiano-lingua del paese di provenienza) per i candidati di madrelingua non italiana. Non è consentito lasciare l Istituto prima che siano trascorse ore dalla dettatura del tema. risoluzione del problema. Per il teorema fondamentale del calcolo integrale si ha f '( ) = cos ; + π quindi f '( π) = cos, + = mentre f '( π) = cos π + =. 9

4 ARTICOLO Archimede. Il grafico S è deducibile da quello di = cos, mediante una dilatazione π orizzontale di rapporto (infatti il periodo di f' è T = = π ), composta con una traslazione di vettore v ; /, come in figura. : = cos + = cos() π 8 p π = cos 8 9 Figura La funzione f' è definita e continua in R, dunque f è sempre derivabile e continua; perciò f può presentare massimi o minimi locali interni al dominio solo nei valori in cui la derivata prima si annulla: cos da cui k + = = ± π + π e quindi = ± π + kπ, k Z. 8 Soltanto i valori p e p appartengono all intervallo [, 9]. A questi aggiungiamo come punto di minimo e 9 come punto di massimo in quanto, in base al segno di f', la funzione f è crescente in 8, π π, 9. Deduciamo dal grafico S altre proprietà di f(): la funzione è decrescente in 8 π, π, ha un massimo in p ed un minimo in 8 p ; tenendo conto delle aree comprese tra S e l asse, si può affermare che f () =, mentre 8 8 f π f π, e f (9) sono valori positivi, con f π f 9 f π < ( ) <. 9

5 Archimede Dalla crescenza o decrescenza di f' segue che f ha la concavità rivolta verso il basso in ], p[, verso l alto in ]p, 9] e presenta un flesso a tangente obliqua in = p. Ciò è sufficiente per tracciare il grafico di f (figura ); per essere più accurati, possiamo calcolare le immagini dei punti più significativi: sapendo che ARTICOLO si trova ( ) = f t dt + cos = sen + f 8 f π π π f π π = +,8; ( ) =, ; 9 9 π,6 ; f 9 sen +,5. = + ( ) =,8 p,5,6 f() π 5 6 p π 9. La funzione f'() è continua in [, p], e dunque il valor medio è m = ( ) = ( ) + Figura Ricordiamo che f ' dt f c ; dunque: π ( ) f ' dt π. m = π ( ) f ' dt π + sen = π π = + π π =. 95

6 ARTICOLO Archimede. Possiamo calcolare il volume del solido di rotazione W mediante il metodo delle sezioni normali: VW = A( ) d = sen d co π π = π s. = π Il fatto che la base di W sia R non ha alcuna importanza per il calcolo richiesto. risoluzione del problema. La funzione è definita per tutti i reali (D = R), è positiva e continua in tutto il suo dominio, ed è pari in quanto f() = f( ): quindi il suo grafico F è simmetrico rispetto all asse. L unica intersezione con gli assi è il punto M(; ); per quanto riguarda il comportamento agli estremi del dominio, la 8 funzione ha l asse come asintoto orizzontale, essendo lim =. La + 6 derivata prima f '( ) = si annulla in =, è positiva in ], [ + ( ) e negativa in ], + [ ; pertanto M è l unico massimo assoluto di F. La 6( ) derivata seconda f "( ) = si annulla in = ± ( + ), mentre è positiva nell insieme +,,. In questi intervalli la funzione f rivolge la concavità verso l alto, mentre la rivolge verso il basso in, ; nei punti D ; e E ; vi sono flessi a tangente obliqua (figura ). M E D F 5 5 Figura 96

7 Archimede La retta s tangente a F in Q(; ) ha equazione = f'()( ) +, cioè = + e, analogamente, la retta t tangente in P( ; ) ha equazione = + + ; le due tangenti s intersecano in M(; ). Dunque il quadrilatero convesso da considerare è MPOQ (figura ). ARTICOLO s M t P a Q F t b 5 O 5 Figura Per dimostrare che MPOQ è un rombo possiamo calcolare le lunghezze dei lati e verificare che sono tutte uguali a 5, oppure osservare che i vertici del quadrilatero sono simmetrici rispetto alle rette = ed =, e quindi dedurre la congruenza tra i lati. Per determinare l ampiezza dell angolo acuto a ms mt (figura ) usiamo la formula nota dalla geometria analitica: tg α = ; + ms mt si trova α = arctg '. 5 8 L angolo b è supplementare di a e quindi b 6 5'. In alternativa, possiamo determinare l ampiezza di a mediante la trigonometria applicata al triangolo OQM: OQ + MQ OM α = arccos arccos OQ MQ = '.. La circonferenza G ha equazione + ( ) =, ovvero + =, mentre la retta t ha equazione = m, con m, oppure =. Nel primo caso determiniamo le coordinate di A ponendo a sistema le equazioni di G 97

8 ARTICOLO Archimede m m e t, ottenendo A ; + m + m. Analogamente determiniamo le coordinate di B intersecando t ed = : troviamo B ;. m Pertanto il punto cercato è P ;, m m + m ed è facile verificare che le sue coordinate soddisfano l equazione di F, il che significa che P appartiene a F. Se t coincide con l asse, i punti A e B hanno coordinate (; ), e lo stesso il punto P: possiamo nuovamente concludere che P appartiene a F (figura 5). t = B A P G F Figura 5. La circonferenza G ha raggio unitario, e quindi il cerchio corrispondente ha area uguale a p. Determiniamo l area di R mediante l integrale definito di f nell intervallo [, ]: Area R ( ) = 8 + d 8 = + d = arctg = π = π + e la prima affermazione è così dimostrata. Se S è l area della regione compresa tra F e l asse, allora S = 8 + d ; poiché la funzione f è pari risulta S = d. Si tratta di un integrale in senso improprio, e il calcolo fornisce il valore 98

9 b 8 S d = lim = lim arctg b + b + + = = b = π lim arctg b + = π, b Archimede ARTICOLO 8 W + d. pari a volte l area del cerchio.. Per esprimere il volume di W usiamo il metodo dei gusci cilindrici. Consideriamo il cilindro in figura 6, avente raggio di base e altezza f(); la sua superficie laterale è S l = p f(). Il volume del guscio cilindro di spessore d è pertanto dv = p f () d. Quindi il volume del solido di rotazione W è V = π f ( ) d = π f () W F Figura 6 risposte al questionario. Siano a =, b = e c i lati del triangolo, e sia S = la sua area. ab L area S di un triangolo qualsiasi è S = sen γ, ove g è l angolo compreso tra a e b. Sostituendo i dati, otteniamo γ =. Quindi il triangolo è π rettangolo e a e b sono i suoi cateti. Per determinare la misura del terzo lato c basta applicare il teorema di Pitagora: c = a + b =. Si arrivava più rapidamente alla stessa conclusione osservando che l area è la metà del prodotto delle lunghezze dei due lati noti, il che è sufficiente per affermare che i due lati sono i cateti di un triangolo rettangolo. 99

10 ARTICOLO Archimede ( ) =. Per calcolare il dominio della funzione f consideriamo il sistema formato dalle condizioni di esistenza relative ai tre radicali: e quindi il dominio cercato è D = [, ].. Sia AH la distanza di A di una generica retta r passante per B. Il triangolo AHB è rettangolo in H e quindi l ipotenusa AB è maggiore o uguale ad AH. Pertanto AH è massimo quando H coincide con B e la retta t cercata è la perpendicolare al segmento AB passante per B. A B Il coefficiente angolare di AB è mab = = 7 A B 8 e dunque m t = 8 7. La generica retta r passante per B ha equazione + 8 = m( + 6); concludiamo che l equazione richiesta è =.. Consideriamo il tronco di piramide avente per basi il quadrato ABCD di lato a ed il quadrato EFGH di lato b (con b < a), e per altezza il segmento PQ = h (figura 7). Come noto, le piramidi VABCD e VEFGH sono simili e vale la proporzione a : b = VP : VQ. Applicando la proprietà dello scomporre, otteniamo (a b) : b = h : VQ e dunque VQ = bh a b ; in modo ah analogo otteniamo VP = a b. Il volume del tronco di cono è la differenza tra i volumi delle due piramidi, ovvero ah VTronco = VVABCD VVEFGH = VP a VQ b = a b a bh a b b = = h a b a b = h( a + ab + b ). Per una risoluzione per via analitica si veda l articolo sul tema PNI.

11 V Archimede ARTICOLO E H b Q F G h D P C A a Figura 7 B 5. Immaginando che le valigie abbiano la forma di parallelepipedo rettangolo, siano a, b, c le dimensioni del primo, che dunque ha volume V = abc, ed a', b', c' le dimensioni del secondo, avente volume V'. Aumentando a del K% otteniamo a' = a + K% a = ( + K%)a e analogamente per b' e c'; quindi V' = a'b'c' = ( + K%) V. Dunque l aumento di volume è DV K = V' V = ( + K%) V V = [( + K%) ] V = = [(K% + K% + K% ] V. Sostituiamo i valori indicati nel testo e verifichiamo se le conclusioni sono corrette: ( ) se K% = % otteniamo V = + % V =, V, che corrisponde ad un aumento di capacità di circa il %; ( ) se K% = % otteniamo V = + % V =, 78 V, che corrisponde ad un aumento di capacità di circa il 7%; ( ) se K% = 5% otteniamo V5 = + 5% V, 95 V, che corrisponde a quasi il raddoppio del volume. 6. Tra tutti i 5 numeri che si ottengono permutando le cifre da a 7, il minimo è 567; se fissiamo le prime quattro cifre () e permutiamo le ultime otteniamo! = 6 numeri, che, in ordine crescente, sono i primi 6 ed esauriscono tutte le possibilità che iniziano con. Dunque il 7 numero è quello immediatamente successivo, cioè il minimo tra i numeri che iniziano con

12 ARTICOLO Archimede la sequenza 5, ovvero 567. Analogamente, i numeri che hanno per cifra iniziale sono esattamente 6! = 7, e quindi quello che occupa la 7-esima posizione è il minimo tra i numeri che iniziano con, cioè 567. D a E a C b A F a B Figura 8 7. Per ipotesi a b = m con a > e b > ; inoltre, con riferimento alla figura 8, i rettangoli ABCD e BCEF sono simili: dunque a : b = b : a. Dalla condizione ab = (in m ) si ricava a = /b. Dalla precedente proporzione segue allora: b a = = e quindi b = b m e a = m. Approssimando, si trovano come dimensioni del foglio a = 89 mm e b = 8 mm. 8. Per determinare il minimo della funzione g, studiamo la sua derivata; per il teorema fondamentale del calcolo integrale g'() = f(). Questa funzione è continua, e dunque il minimo va cercato tra i punti stazionari di g, cioè fra i punti in cui g' = f si annulla: {; ; }, come risulta dal grafico. Sempre dal grafico deduciamo che f è negativa a sinistra di e positiva alla sua destra, cioè g è decrescente a sinistra di e crescente alla sua destra, e tanto basta per affermare che g ha un minimo in. Notiamo altresì che il valore è escluso a priori dal testo, mentre in la funzione g ha un massimo. 9. Il limite proposto si presenta nella forma indeterminata e può essere calcolato mediante l uso di limiti notevoli. Ricordando che lim cos =, otteniamo: sen cos sen cos lim = lim sen = =.

13 Archimede sen In alternativa è possibile usare i limiti notevoli lim lim cos = e =, ottenendo: ARTICOLO cos lim sen sen = lim sen cos = =.. Studiando il grafico di f(), si osserva che per ], [ ]+, + [ la funzione è crescente, e dunque f'() >, mentre per ], +[ la funzione è decrescente e quindi f'() <. L unico grafico che soddisfa questa condizione è l A. commenti Nel complesso, il tema proposto è alla portata degli studenti del Liceo Scientifico di Ordinamento. Nella prova di quest anno è molto presente il calcolo integrale (integrale definito e in senso improprio, calcolo di superfici e volumi, funzione integrale e teorema fondamentale del calcolo integrale, media integrale), ma vengono toccati molti fra gli argomenti principali del triennio: la geometria analitica del III anno, la trigonometria del IV anno e, naturalmente, lo studio di funzione ed il calcolo differenziale del V anno. I punti più discutibili di questo tema si manifestano nei problemi, nei quali viene chiesto di determinare aree o volumi mediante procedimenti che non sono necessariamente in programma. Viceversa, un aspetto positivo ed interessante è il tentativo di inserire quesiti pratici e concreti, risolvibili anche con ragionamenti abbastanza semplici, alla portata di studenti anche prima del V anno. Vediamo nel dettaglio i problemi e i quesiti. Il primo problema non è molto impegnativo dal punto di vista dei calcoli, ma lo è dal punto di vista teorico, anche solo per il fatto di proporre fin dall inizio una funzione integrale: ciò ha fatto propendere la maggior parte dei maturandi per il secondo problema. A parte la presenza delle funzioni goniometriche, aspetto che spesso intimidisce gli studenti, le richieste vertono sul programma del V anno, in modo originale e completo: calcolo della derivata, studio di funzione, ricerca di massimi e minimi, integrale definito, volume di un solido. In particolare è interessante la richiesta di dedurre il grafico di f da quello di f', anche se f è calcolabile e si potrebbe rappresentare per altra via; ciò rende il punto il più articolato del problema. Il punto è interessante, ma richiede il metodo delle sezioni normali, argomento che spesso non viene approfondito e si incontra solo nello svolgimento di temi già assegnati. Inoltre è completamente slegato dal problema, tanto che poteva costituire un quesito a parte: la risposta rimane invariata se S è una qualunque curva continua in [, ]! A tal proposito si veda il punto del primo problema del tema d Ordinamento, che è invece perfettamente integrato nel problema.

14 ARTICOLO Archimede Il secondo problema ruota attorno ad una funzione razionale fratta, che rappresenta un caso particolare della «versiera di Agnesi». L esercizio si caratterizza per la richiesta di dimostrare una proprietà specifica della versiera di Agnesi mediante un integrale in senso improprio, argomento spesso non svolto e addirittura assente in alcuni libri di testo. Si sarebbe potuto evitare questa richiesta e pretendere nel quarto punto di calcolare l integrale che rappresenta il volume del solido W, invece di limitarsi a scriverlo: probabilmente questa scelta è stata fatta per aumentare il «tasso teorico» del problema. Come già accennato, i quesiti risultano nel complesso stimolanti e soprattutto vari, in particolare se confrontati con quelli del, maggiormente incentrati sul programma di V. Il quesito, già presente nel tema d Ordinamento in forma quasi identica, e il quesito 6, hanno spiazzato molti studenti che, in preparazione all esame, hanno semplicemente memorizzato formule di geometria solida e di calcolo combinatorio, o si sono esercitati nelle loro applicazioni più dirette. I quesiti 5 e 7 riguardano entrambi le proporzioni e non risultano particolarmente difficili; va sottolineato il loro carattere estremamente pratico, in quanto si parla di oggetti reali (valigie e fogli) e situazioni concrete: nel primo caso la falsa percezione che l uomo comune ha del rapporto tra lunghezza e volume, nel secondo caso la ricerca delle dimensioni del foglio di carta capostipite dei formati della serie A, ovvero l A (per inciso: un problema analogo sul formato dei fogli era stato assegnato pochi mesi prima per i concorsi a cattedra della classe A59; si veda alle pagine 8-8 di questo fascicolo). Il quesito 8 è ridondante, in quanto ricalca il problema : chiede infatti di dedurre informazioni su una funzione integrale a partire dalla sua derivata. I restanti quesiti trattano di argomenti diversi, sono semplici e adatti allo scopo, anche se non presentano aspetti rilevanti. Enrico Menara Istituto Don Bosco Padova

B. Vogliamo determinare l equazione della retta

B. Vogliamo determinare l equazione della retta Risoluzione quesiti ordinamento Quesito N.1 Indicata con α la misura dell angolo CAB, si ha che: 1 Area ( ABC ) = AC AB sinα = 3 sinα π 3 sinα = 3 sinα = 1 α = Il triangolo è quindi retto in A. La misura

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2011

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2011 ESAME DI STAT DI LICE SCIENTIFIC CRS DI RDINAMENT Il candidato risolva uno dei due problemi e 5 dei quesiti in cui si articola il questionario. PRBLEMA Si considerino le funzioni f e g definite, per tutti

Dettagli

esame di stato 2014 seconda prova scritta per i licei scientifici di ordinamento

esame di stato 2014 seconda prova scritta per i licei scientifici di ordinamento ARTICOLO Archimede 4 4 esame di stato 4 seconda prova scritta per i licei scientifici di ordinamento Il candidato risolva uno dei due problemi e risponda a 5 quesiti del questionario. PROBLEMA Nella figura

Dettagli

Corso di ordinamento Sessione straordinaria - a.s. 2009-2010 ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO SESSIONE STRAORDINARIA

Corso di ordinamento Sessione straordinaria - a.s. 2009-2010 ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO SESSIONE STRAORDINARIA Sessione straordinaria - a.s. 9- ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO SESSIONE STRAORDINARIA Tema di: MATEMATICA a.s. 9- Svolgimento a cura di Nicola De Rosa Il candidato risolva uno

Dettagli

esame di stato 2012 seconda prova scritta per il liceo scientifico di ordinamento

esame di stato 2012 seconda prova scritta per il liceo scientifico di ordinamento RTICL rchimede 4 esame di stato seconda prova scritta per il liceo scientifico di ordinamento Il candidato risolva uno dei due problemi e risponda a 5 quesiti del questionario PRBLEM Siano f e g le funzioni

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ODINAMENTO 2011. Il candidato risolva uno dei due problemi e 5 dei 10 quesiti scelti nel questionario 1.

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ODINAMENTO 2011. Il candidato risolva uno dei due problemi e 5 dei 10 quesiti scelti nel questionario 1. ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ODINAMENTO 11 Il candidato risolva uno dei due problemi e 5 dei 1 quesiti scelti nel questionario 1. PROBLEMA 1 Si considerino le funzioni f e g definite, per

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2002 Sessione suppletiva

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2002 Sessione suppletiva ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 00 Sessione suppletiva Il candidato risolva uno dei due problemi e 5 dei 0 quesiti in cui si articola il questionario. PROBLEMA Se il polinomio

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. 2008

ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. 2008 PRVA SPERIMENTALE P.N.I. 8 ESAME DI STAT DI LICE SCIENTIFIC CRS SPERIMENTALE P.N.I. 8 Il candidato risolva uno dei due problemi e 5 dei quesiti in cui si articola il questionario. PRBLEMA Nel piano riferito

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2001 Sessione suppletiva

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2001 Sessione suppletiva ESME DI STT DI LICE SCIENTIFIC CRS DI RDINMENT 1 Sessione suppletiva Il candidato risolva uno dei due problemi e dei 1 quesiti in cui si articola il questionario. PRBLEM 1 Si consideri la funzione reale

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2004

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2004 ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 004 Il candidato risolva uno dei due problemi e 5 dei 10 quesiti in cui si articola il questionario. PROBLEMA 1 Sia f la funzione definita da: f

Dettagli

Nicola De Rosa, Liceo scientifico di ordinamento sessione suppletiva 2011, matematicamente.it

Nicola De Rosa, Liceo scientifico di ordinamento sessione suppletiva 2011, matematicamente.it Nicola De Rosa, Liceo scientifico di ordinamento sessione suppletiva, matematicamente.it PROBLEMA Data una semicirconferenza di diametro AB =, si prenda su di essa un punto P e sia M la proiezione di P

Dettagli

ESAME DI STATO 2002 SECONDA PROVA SCRITTA PER IL LICEO SCIENTIFICO DI ORDINAMENTO

ESAME DI STATO 2002 SECONDA PROVA SCRITTA PER IL LICEO SCIENTIFICO DI ORDINAMENTO ARCHIMEDE 4/ 97 ESAME DI STATO SECONDA PROVA SCRITTA PER IL LICEO SCIENTIFICO DI ORDINAMENTO Il candidato risolva uno dei due problemi e 5 dei quesiti in cui si articola il questionario. PROBLEMA In un

Dettagli

SIMULAZIONE DI PROVA D ESAME CORSO DI ORDINAMENTO

SIMULAZIONE DI PROVA D ESAME CORSO DI ORDINAMENTO SIMULAZINE DI PRVA D ESAME CRS DI RDINAMENT Risolvi uno dei due problemi e 5 dei quesiti del questionario. PRBLEMA Considera la famiglia di funzioni k ln f k () se k se e la funzione g() ln se. se. Determina

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. 2004

ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. 2004 ESAME DI STAT DI LICE SCIENTIFIC CRS SPERIMENTALE P.N.I. 004 Il candidato risolva uno dei due problemi e 5 dei 0 quesiti in cui si articola il questionario. PRBLEMA Sia la curva d equazione: ke ove k e

Dettagli

SOLUZIONE DEL PROBLEMA 2 CORSO DI ORDINAMENTO 2013. 8 4 + x 2, con dominio R (infatti x2 + 4 0 per ogni. 8 4 + ( x) = 8. 4 + x 2

SOLUZIONE DEL PROBLEMA 2 CORSO DI ORDINAMENTO 2013. 8 4 + x 2, con dominio R (infatti x2 + 4 0 per ogni. 8 4 + ( x) = 8. 4 + x 2 SOLUZIONE DEL PROBLEMA CORSO DI ORDINAMENTO. Studiamo la funzione f(x) = x R). Notiamo che f( x) = 4 + x, con dominio R (infatti x + 4 per ogni 4 + ( x) = 4 + x = f(x), cioè la funzione è pari e il grafico

Dettagli

LICEO SCIENTIFICO STATALE G.GALILEI CATANIA A.S. 2006/2007 SIMULAZIONE DI II PROVA - A

LICEO SCIENTIFICO STATALE G.GALILEI CATANIA A.S. 2006/2007 SIMULAZIONE DI II PROVA - A LICEO SCIENTIFICO STATALE G.GALILEI CATANIA A.S. 6/7 SIMULAZIONE DI II PROVA - A Tempo a disposizione: cinque ore E consentito l uso della calcolatrice non programmabile. Non è consentito uscire dall aula

Dettagli

b) Il luogo degli estremanti in forma cartesiana è:

b) Il luogo degli estremanti in forma cartesiana è: Soluzione della simulazione di prova del 9/5/ PROBLEMA È data la funzione di equazione: k f( ). a) Determinare i valori di k per cui la funzione ammette punti di massimo e minimo relativi. b) Scrivere

Dettagli

3. Sia g(x) = 4. Si calcoli l area del triangolo mistilineo ROS, ove l arco RS appartiene al grafico di f(x) o, indifferentemente, di g(x).

3. Sia g(x) = 4. Si calcoli l area del triangolo mistilineo ROS, ove l arco RS appartiene al grafico di f(x) o, indifferentemente, di g(x). Esame liceo Scientifico : ordinamento Il candidato risolva uno dei due problemi e risponda a 5 quesiti del questionario. PROBLEMI Problema. Sia ABCD un quadrato di lato, P un punto di AB e γ la circonferenza

Dettagli

ESAME DI STATO 2010 SECONDA PROVA SCRITTA PER IL LICEO SCIENTIFICO DI ORDINAMENTO

ESAME DI STATO 2010 SECONDA PROVA SCRITTA PER IL LICEO SCIENTIFICO DI ORDINAMENTO Archimede ESAME DI STATO SECONDA PROVA SCRITTA PER IL LICEO SCIENTIFICO DI ORDINAMENTO ARTICOLO Il candidato risolva uno dei due problemi e risponda a 5 quesiti del questionario. Sia ABCD un quadrato di

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. 2002 Sessione suppletiva

ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. 2002 Sessione suppletiva ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. Sessione suppletiva Il candidato risolva uno dei due problemi e dei quesiti in cui si articola il questionario. PROBLEMA Nel piano riferito

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. 2003 Sessione straordinaria

ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. 2003 Sessione straordinaria ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. 3 Sessione straordinaria Il candidato risolva uno dei due problemi e 5 dei quesiti in cui si articola il questionario. PROBLEMA È assegnata

Dettagli

Geometria analitica di base (prima parte)

Geometria analitica di base (prima parte) SAPERE Al termine di questo capitolo, avrai appreso: come fissare un sistema di riferimento cartesiano ortogonale il significato di equazione di una retta il significato di coefficiente angolare di una

Dettagli

Guida pratica per la prova scritta di matematica della maturità scientifica

Guida pratica per la prova scritta di matematica della maturità scientifica Giulio Donato Broccoli Guida pratica per la prova scritta di matematica della maturità scientifica Comprende: Metodi matematici fondamentali per affrontare i temi assegnati Esercizi interamente svolti

Dettagli

Per studio di funzione intendiamo un insieme di procedure che hanno lo scopo di analizzare le proprietà di una funzione f ( x) R R

Per studio di funzione intendiamo un insieme di procedure che hanno lo scopo di analizzare le proprietà di una funzione f ( x) R R Studio di funzione Per studio di funzione intendiamo un insieme di procedure che hanno lo scopo di analizzare le proprietà di una funzione f ( x) R R : allo scopo di determinarne le caratteristiche principali.

Dettagli

Liceo G.B. Vico Corsico

Liceo G.B. Vico Corsico Liceo G.B. Vico Corsico Classe: 3A Materia: MATEMATICA Insegnante: Nicola Moriello Testo utilizzato: Bergamini Trifone Barozzi: Manuale blu.0 di Matematica Moduli S, L, O, Q, Beta ed. Zanichelli 1) Programma

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. 2004 Sessione straordinaria

ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. 2004 Sessione straordinaria ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. 004 Sessione straordinaria Il candidato risolva uno dei due problemi e 5 dei 0 quesiti in cui si articola il questionario. PROBLEMA In un piano

Dettagli

Definisci il Campo di Esistenza ( Dominio) di una funzione reale di variabile reale e, quindi, determinalo per la funzione:

Definisci il Campo di Esistenza ( Dominio) di una funzione reale di variabile reale e, quindi, determinalo per la funzione: Verso l'esame di Stato Definisci il Campo di Esistenza ( Dominio) di una funzione reale di variabile reale e, quindi, determinalo per la funzione: y ln 5 6 7 8 9 0 Rappresenta il campo di esistenza determinato

Dettagli

ELEMENTI DI GEOMETRIA ANALITICA: LA RETTA.

ELEMENTI DI GEOMETRIA ANALITICA: LA RETTA. ELEMENTI DI GEOMETRIA ANALITICA: LA RETTA. Prerequisiti I radicali Risoluzione di sistemi di equazioni di primo e secondo grado. Classificazione e dominio delle funzioni algebriche Obiettivi minimi Saper

Dettagli

Studio grafico-analitico delle funzioni reali a variabile reale

Studio grafico-analitico delle funzioni reali a variabile reale Studio grafico-analitico delle funzioni reali a variabile reale Sequenza dei passi Classificazione In pratica Classifica il tipo di funzione: Funzione razionale: intera / fratta Funzione irrazionale: intera

Dettagli

I quesiti dal 2008 al 2012 a cura di Daniela Valenti

I quesiti dal 2008 al 2012 a cura di Daniela Valenti I quesiti dal 2008 al 2012 a cura di Daniela Valenti Geometria del piano e dello spazio, trigonometria [2008, ORD] Si consideri la seguente proposizione: Se due solidi hanno uguale volume, allora, tagliati

Dettagli

a) Si descriva, internamente al triangolo, con centro in B e raggio x, l arco di circonferenza di π π

a) Si descriva, internamente al triangolo, con centro in B e raggio x, l arco di circonferenza di π π PROBLEMA Il triangolo rettangolo ABC ha l ipotenusa AB = a e l angolo CAB =. a) Si descriva, internamente al triangolo, con centro in B e raggio, l arco di circonferenza di estremi P e Q rispettivamente

Dettagli

Teoria in sintesi 10. Attività di sportello 1, 24 - Attività di sportello 2, 24 - Verifica conclusiva, 25. Teoria in sintesi 26

Teoria in sintesi 10. Attività di sportello 1, 24 - Attività di sportello 2, 24 - Verifica conclusiva, 25. Teoria in sintesi 26 Indice L attività di recupero 6 Funzioni Teoria in sintesi 0 Obiettivo Ricerca del dominio e del codominio di funzioni note Obiettivo Ricerca del dominio di funzioni algebriche; scrittura del dominio Obiettivo

Dettagli

Risposta: L area del triangolo è dove sono le misure di due lati e è l ampiezza dell angolo tra essi compreso ;

Risposta: L area del triangolo è dove sono le misure di due lati e è l ampiezza dell angolo tra essi compreso ; 1. Un triangolo ha area 3 e due lati che misurano 2 e 3. Qual è la misura del terzo lato? : L area del triangolo è dove sono le misure di due lati e è l ampiezza dell angolo tra essi compreso ; nel nostro

Dettagli

Esercizi di Analisi Matematica I

Esercizi di Analisi Matematica I Esercizi di Analisi Matematica I Andrea Corli e Alessia Ascanelli gennaio 9 Indice Introduzione iii Nozioni preliminari. Fattoriali e binomiali..................................... Progressioni..........................................

Dettagli

Verifica di Matematica Classe V

Verifica di Matematica Classe V Liceo Scientifico Paritario R. Bruni Padova, loc. Ponte di Brenta, 22/03/2016 Verifica di Matematica Classe V Soluzione Problemi. Risolvi uno dei due problemi: 1. Sei stato assunto come economo da una

Dettagli

PROBLEMI TRADIZIONALI SIMULAZIONE DELLA PROVA DI MATEMATICA

PROBLEMI TRADIZIONALI SIMULAZIONE DELLA PROVA DI MATEMATICA Simulazione 01/15 ANNO SCOLASTICO 01/15 PROBLEMI TRADIZIONALI SIMULAZIONE DELLA PROVA DI MATEMATICA DELL ESAME DI STATO PER IL LICEO SCIENTIFICO Il candidato risolva uno dei due problemi Problema 1 Nella

Dettagli

ISTITUZIONI DI MATEMATICHE E FONDAMENTI DI BIOSTATISTICA 7. DERIVATE. A. A. 2014-2015 L. Doretti

ISTITUZIONI DI MATEMATICHE E FONDAMENTI DI BIOSTATISTICA 7. DERIVATE. A. A. 2014-2015 L. Doretti ISTITUZIONI DI MATEMATICHE E FONDAMENTI DI BIOSTATISTICA 7. DERIVATE A. A. 2014-2015 L. Doretti 1 Il concetto di derivata di una funzione è uno dei più importanti e fecondi di tutta la matematica sia per

Dettagli

Proposta di soluzione della prova di matematica Liceo scientifico di Ordinamento - 2014

Proposta di soluzione della prova di matematica Liceo scientifico di Ordinamento - 2014 Proposta di soluzione della prova di matematica Liceo scientifico di Ordinamento - 14 Problema 1 Punto a) Osserviamo che g (x) = f(x) e pertanto g () = f() = in quanto Γ è tangente all asse delle ascisse,

Dettagli

4. Funzioni elementari

4. Funzioni elementari ISTITUZIONI DI MATEMATICHE E FONDAMENTI DI BIOSTATISTICA 4. Funzioni elementari A. A. 2014-2015 L.Doretti 1 Funzioni elementari Sono dette elementari un insieme di funzioni dalle quali si ottengono, mediante

Dettagli

Raccolta Temi d'esame - Corso di Ordinamento

Raccolta Temi d'esame - Corso di Ordinamento ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO Sessione ordinaria Il candidato risolva uno dei due problemi e dei quesiti in cui si articola il questionario. PROBLEMA Si consideri la seguente

Dettagli

PROVA DI AMMISIONE AI CORSI DI LAUREA DI SCIENZE (10 SETTEMBRE 2013)

PROVA DI AMMISIONE AI CORSI DI LAUREA DI SCIENZE (10 SETTEMBRE 2013) PROVA DI AMMISIONE AI CORSI DI LAUREA DI SCIENZE (10 SETTEMBRE 2013) Linguaggio matematico di base 1. Qual è l area del triangolo avente i vertici nei punti di coordinate (0,2), (4,0) e (7,6)? A 10 B 30

Dettagli

Programma di Matematica

Programma di Matematica Programma di Matematica Modulo 1. Topologia in R 2. Funzioni in R 3. Limite e continuità di una funzione Unità didattiche Struttura algebrica di R Insiemi reali limitati e illimitati Intorno di un punto

Dettagli

CLASSI PRIME Scienze Applicate 5 ORE

CLASSI PRIME Scienze Applicate 5 ORE CLASSI PRIME Scienze Applicate 5 ORE Settembre Ottobre Somministrazione di test di ingresso. Novembre dicembre Insiemi numerici Operazioni negli insiemi N, Q Operazioni negli insiemi Z, Q. Potenze con

Dettagli

CONTINUITÀ E DERIVABILITÀ Esercizi proposti. 1. Determinare lim M(sinx) (M(t) denota la mantissa di t)

CONTINUITÀ E DERIVABILITÀ Esercizi proposti. 1. Determinare lim M(sinx) (M(t) denota la mantissa di t) CONTINUITÀ E DERIVABILITÀ Esercizi proposti 1. Determinare lim M(sin) (M(t) denota la mantissa di t) kπ/ al variare di k in Z. Ove tale limite non esista, discutere l esistenza dei limiti laterali. Identificare

Dettagli

Liceo Scientifico F. Lussana Bergamo Programma di MATEMATICA A.S. 2014/2015 Classe 3 A C Prof. Matteo Bonetti. Equazioni e Disequazioni

Liceo Scientifico F. Lussana Bergamo Programma di MATEMATICA A.S. 2014/2015 Classe 3 A C Prof. Matteo Bonetti. Equazioni e Disequazioni Liceo Scientifico F. Lussana Bergamo Programma di MATEMATICA A.S. 2014/2015 Classe 3 A C Prof. Matteo Bonetti Equazioni e Disequazioni Ripasso generale relativo alla risoluzione di equazioni, disequazioni,

Dettagli

PROVA N 1. 1. Elencare gli elementi che conviene esaminare per tracciare il grafico di una funzione y=f(x) PROVA N 2. è monotona in R?

PROVA N 1. 1. Elencare gli elementi che conviene esaminare per tracciare il grafico di una funzione y=f(x) PROVA N 2. è monotona in R? PROVA N 1 1. Elencare gli elementi che conviene esaminare per tracciare il grafico di una funzione y=f(). Studiare la funzione f()= 8+ 7 9 (Sono esclusi i flessi) 3. Data la funzione f()= 1 6 3 - +5-6

Dettagli

VERIFICA DI MATEMATICA. CLASSI TERZE (3AS, 3BS, 3CS, 3DS, 3ES) 2 settembre 2013 COGNOME E NOME.. CLASSE.

VERIFICA DI MATEMATICA. CLASSI TERZE (3AS, 3BS, 3CS, 3DS, 3ES) 2 settembre 2013 COGNOME E NOME.. CLASSE. VERIFIC DI MTEMTIC CLSSI TERZE (S, BS, CS, DS, ES) settembre COGNOME E NOME.. CLSSE. Esercizio In un piano cartesiano ortogonale determinare: a) l equazione della parabola con asse parallelo all asse,

Dettagli

Applicazioni del calcolo differenziale allo studio delle funzioni

Applicazioni del calcolo differenziale allo studio delle funzioni Capitolo 9 9.1 Crescenza e decrescenza in piccolo; massimi e minimi relativi Sia y = f(x) una funzione definita nell intervallo A; su di essa non facciamo, per ora, alcuna particolare ipotesi (né di continuità,

Dettagli

UNIVERSITÀ DEGLI STUDI DI UDINE. Corsi di Laurea in Ingegneria. A cura di Jung Kyu CANCI e Domenico FRENI. Con la collaborazione di

UNIVERSITÀ DEGLI STUDI DI UDINE. Corsi di Laurea in Ingegneria. A cura di Jung Kyu CANCI e Domenico FRENI. Con la collaborazione di UNIVERSITÀ DEGLI STUDI DI UDINE Corsi di Laurea in Ingegneria A cura di Jung Kyu CANCI e Domenico FRENI Con la collaborazione di Luciano BATTAIA e Pier Carlo CRAIGHERO MATEMATICA DI BASE TEMI D ESAME 9

Dettagli

Soluzione Punto 1 Si calcoli in funzione di x la differenza d(x) fra il volume del cono avente altezza AP e base il

Soluzione Punto 1 Si calcoli in funzione di x la differenza d(x) fra il volume del cono avente altezza AP e base il Matematica per la nuova maturità scientifica A. Bernardo M. Pedone 74 PROBLEMA Considerata una sfera di diametro AB, lungo, per un punto P di tale diametro si conduca il piano α perpendicolare ad esso

Dettagli

3. Quale affermazione è falsa?

3. Quale affermazione è falsa? 1. Quale affermazione è falsa? Se la funzione f) è continua e monotona crescente su R e se f) = 1 e f4) =, allora ha un unico zero nell intervallo, 4) f) non si annulla mai in R f ) > nell intervallo,

Dettagli

CONTINUITÀ E DERIVABILITÀ Esercizi risolti

CONTINUITÀ E DERIVABILITÀ Esercizi risolti CONTINUITÀ E DERIVABILITÀ Esercizi risolti. Determinare kπ/ [cos] al variare di k in Z. Ove tale ite non esista, discutere l esistenza dei iti laterali. Identificare i punti di discontinuità della funzione

Dettagli

MATEMATICA. PRIMO ANNO (Liceo Classico e Liceo delle Scienze Umane)

MATEMATICA. PRIMO ANNO (Liceo Classico e Liceo delle Scienze Umane) 1/7 PRIMO ANNO Testo consigliato: BERGAMINI TRIFONE BAROZZI, Matematica.azzurro, vol. 1, Zanichelli Obiettivi minimi. Acquisire il linguaggio specifico della disciplina; sviluppare espressioni algebriche

Dettagli

LICEO ARTISTICO PROGRAMMAZIONE DIDATTICA RIFERITA ALLA

LICEO ARTISTICO PROGRAMMAZIONE DIDATTICA RIFERITA ALLA Anno Scolastico 2014/15 LICEO ARTISTICO PROGRAMMAZIONE DIDATTICA RIFERITA ALLA DISCIPLINA : MATEMATICA PRIMO BIENNIO L asse matematico ha l obiettivo di far acquisire allo studente saperi e competenze

Dettagli

Esaminiamo l esame. Luciano Battaia Versione del 1 ottobre 2015

Esaminiamo l esame. Luciano Battaia Versione del 1 ottobre 2015 Esaminiamo l esame Versione del 1 ottobre 2015 Propongo, in questa nota, una serie di commenti ad alcune domande proposte nel tema di matematica dell esame di stato di Liceo Scientifico. È molto facile

Dettagli

Liceo scientifico Albert Einstein. Anno scolastico 2009-2010. Classe V H. Lavoro svolto dalla prof.ssa Irene Galbiati. Materia: MATEMATICA

Liceo scientifico Albert Einstein. Anno scolastico 2009-2010. Classe V H. Lavoro svolto dalla prof.ssa Irene Galbiati. Materia: MATEMATICA Liceo scientifico Albert Einstein Anno scolastico 2009-2010 Classe V H Lavoro svolto dalla prof.ssa Irene Galbiati Materia: MATEMATICA PROGRAMMA DI MATEMATICA CLASSE V H Contenuti Ripasso dei prerequisiti

Dettagli

Trasformazioni Geometriche 1 Roberto Petroni, 2011

Trasformazioni Geometriche 1 Roberto Petroni, 2011 1 Trasformazioni Geometriche 1 Roberto etroni, 2011 Trasformazioni Geometriche sul piano euclideo 1) Introduzione Def: si dice trasformazione geometrica una corrispondenza biunivoca che associa ad ogni

Dettagli

RETTE, PIANI, SFERE, CIRCONFERENZE

RETTE, PIANI, SFERE, CIRCONFERENZE RETTE, PIANI, SFERE, CIRCONFERENZE 1. Esercizi Esercizio 1. Dati i punti A(1, 0, 1) e B(, 1, 1) trovare (1) la loro distanza; () il punto medio del segmento AB; (3) la retta AB sia in forma parametrica,

Dettagli

CLASSI PRIME tecnico 4 ORE

CLASSI PRIME tecnico 4 ORE PIANO ANNUALE a.s. 2012/2013 CLASSI PRIME tecnico 4 ORE Settembre Ottobre Novembre dicembre dicembre gennaio- 15 aprile 15 aprile 15 maggio Somministrazione di test di ingresso. Insiemi numerici Operazioni

Dettagli

PROGRAMMAZIONE DIDATTICA RIFERITA ALLA DISCIPLINA :MATEMATICA

PROGRAMMAZIONE DIDATTICA RIFERITA ALLA DISCIPLINA :MATEMATICA Istituto Istruzione Superiore A. Venturi Modena Liceo artistico - Istituto Professionale Grafica Via Rainusso, 66-41124 MODENA Sede di riferimento (Via de Servi, 21-41121 MODENA) tel. 059-222156 / 245330

Dettagli

PROGRAMMA SVOLTO - CLASSE PRIMA sez. R - ITT. ALGAROTTI - A.S. 2014/15. Insegnante: Roberto Bottazzo Materia: FISICA

PROGRAMMA SVOLTO - CLASSE PRIMA sez. R - ITT. ALGAROTTI - A.S. 2014/15. Insegnante: Roberto Bottazzo Materia: FISICA PROGRAMMA SVOLTO - CLASSE PRIMA sez. R - ITT. ALGAROTTI - A.S. 2014/15 Materia: FISICA 1) INTRODUZIONE ALLA SCIENZA E AL METODO SCIENTIFICO La Scienza moderna. Galileo ed il metodo sperimentale. Grandezze

Dettagli

Coordinate Cartesiane nel Piano

Coordinate Cartesiane nel Piano Coordinate Cartesiane nel Piano O = (0,0) origine degli assi ascissa, y ordinata sistemi monometrici: stessa unità di misura sui due assi, y sistemi dimetrici: unità di misura diverse sui due assi (spesso

Dettagli

ESAME DI STATO 2003 SECONDA PROVA SCRITTA PER I LICEI SCIENTIFICI A INDIRIZZO SPERIMENTALE (PNI E SCIENTIFICO- TECNOLOGICO «BROCCA»)

ESAME DI STATO 2003 SECONDA PROVA SCRITTA PER I LICEI SCIENTIFICI A INDIRIZZO SPERIMENTALE (PNI E SCIENTIFICO- TECNOLOGICO «BROCCA») Archimede 4 23 ESAME DI STATO 23 SECONDA PROVA SCRITTA PER I LICEI SCIENTIFICI A INDIRIZZO SPERIMENTALE (PNI E SCIENTIFICO- TECNOLOGICO «BROCCA») Il candidato risolva uno dei due problemi e 5 dei quesiti

Dettagli

Docente: DI LISCIA F. CLASSE 1T MODULO 1: GLI INSIEMI NUMERICI

Docente: DI LISCIA F. CLASSE 1T MODULO 1: GLI INSIEMI NUMERICI Docente: DI LISCIA F. Materia: MATEMATICA CLASSE 1T MODULO 1: GLI INSIEMI NUMERICI Insiemi numerici: numeri naturali, proprietà delle operazioni aritmetiche; Potenze e loro proprietà; Criteri di divisibilità;

Dettagli

I.T.G. <> Battipaglia (SA) PROGRAMMAZIONE DI MATEMATICA CORSO SERALE SIRIO RELAZIONE

I.T.G. <<G.C.Gloriosi>> Battipaglia (SA) PROGRAMMAZIONE DI MATEMATICA CORSO SERALE SIRIO RELAZIONE I.T.G. Battipaglia (SA) PROGRAMMAZIONE DI MATEMATICA CORSO SERALE SIRIO Prof. Lucia D Aniello, CLASSI 3 A, 4 A, 5 A GEOMETRI- SIRIO RELAZIONE Premesse La programmazione è stata redatta

Dettagli

Piano Lauree Scientifiche 2011-2012

Piano Lauree Scientifiche 2011-2012 Piano Lauree Scientifiche 2011-2012 «non si può intendere se prima non s impara a intender lingua, e conoscer i caratteri, nei quali è scritto. Egli è scritto in lingua matematica, e i caratteri sono triangoli,

Dettagli

ESERCIZI CINEMATICA IN UNA DIMENSIONE

ESERCIZI CINEMATICA IN UNA DIMENSIONE ESERCIZI CINEMATICA IN UNA DIMENSIONE ES. 1 - Due treni partono da due stazioni distanti 20 km dirigendosi uno verso l altro rispettivamente alla velocità costante di v! = 50,00 km/h e v 2 = 100,00 km

Dettagli

Raccolta degli Scritti d Esame di ANALISI MATEMATICA U.D. 1 assegnati nei Corsi di Laurea di Fisica, Fisica Applicata, Matematica

Raccolta degli Scritti d Esame di ANALISI MATEMATICA U.D. 1 assegnati nei Corsi di Laurea di Fisica, Fisica Applicata, Matematica DIPARTIMENTO DI MATEMATICA Università degli Studi di Trento Via Sommarive - Povo (TRENTO) Raccolta degli Scritti d Esame di ANALISI MATEMATICA U.D. 1 assegnati nei Corsi di Laurea di Fisica, Fisica Applicata,

Dettagli

MODULO DI MATEMATICA. di accesso al triennio. Potenze. Proporzioni. Figure piane. Calcolo di aree

MODULO DI MATEMATICA. di accesso al triennio. Potenze. Proporzioni. Figure piane. Calcolo di aree MODULO DI MATEMATICA di accesso al triennio Abilità interessate Utilizzare terminologia specifica. Essere consapevoli della necessità di un linguaggio condiviso. Utilizzare il disegno geometrico, per assimilare

Dettagli

DERIVATE DELLE FUNZIONI. esercizi proposti dal Prof. Gianluigi Trivia

DERIVATE DELLE FUNZIONI. esercizi proposti dal Prof. Gianluigi Trivia DERIVATE DELLE FUNZIONI esercizi proposti dal Prof. Gianluigi Trivia Incremento della variabile indipendente e della funzione. Se, sono due valori della variabile indipendente, y f ) e y f ) le corrispondenti

Dettagli

ISTITUTO D'ISTRUZIONE SUPERIORE A. MOTTI PROGRAMMAZIONE ANNUALE ANNO SCOLASTICO 2014 /2015

ISTITUTO D'ISTRUZIONE SUPERIORE A. MOTTI PROGRAMMAZIONE ANNUALE ANNO SCOLASTICO 2014 /2015 ISTITUTO D'ISTRUZIONE SUPERIORE A. MOTTI PROGRAMMAZIONE ANNUALE ANNO SCOLASTICO 2014 /2015 A047 MATEMATICA CLASSE PRIMA PROFESSIONALE DOCENTI : CARAFFI ALESSANDRA, CORREGGI MARIA GRAZIA, FAZIO ANGELA,

Dettagli

Competenze. -Saper semplificare le frazioni algebriche -Saper eseguire le operazioni con le frazioni algebriche

Competenze. -Saper semplificare le frazioni algebriche -Saper eseguire le operazioni con le frazioni algebriche Disciplina MATEMATICA Secondo biennio e anno conclusivo Liceo Economico sociale Classe terza Finalità Conoscenze Obiettivi minimi Finalità della matematica nel corso del secondo biennio è di proseguire

Dettagli

ESAME DI STATO 2006, SECONDA PROVA SCRITTA PER I LICEI SCIENTIFICI SCIENTIFICI DI ORDINAMENTO

ESAME DI STATO 2006, SECONDA PROVA SCRITTA PER I LICEI SCIENTIFICI SCIENTIFICI DI ORDINAMENTO 4 006 Archimede ESAME DI STATO 006, SECONDA PROVA SCRITTA PER I LICEI SCIENTIFICI SCIENTIFICI DI ORDINAMENTO Il candidato risolva uno dei due problemi e 5 dei 0 quesiti in cui si articola il questionario.

Dettagli

Elenco moduli Argomenti Strumenti / Testi Letture. Tassi equivalenti. Rendite temporanee e perpetue. Rimborso di prestiti.

Elenco moduli Argomenti Strumenti / Testi Letture. Tassi equivalenti. Rendite temporanee e perpetue. Rimborso di prestiti. Pagina 1 di 9 DISCIPLINA: MATEMATICA APPLICATA INDIRIZZO: SISTEMI INFORMATIVI AZIENDALI CLASSE: 4 SI DOCENTE : ENRICA GUIDETTI Elenco moduli Argomenti Strumenti / Testi Letture 1 Ripasso Retta e coniche;

Dettagli

Analisi Matematica 2 per Matematica Esempi di compiti, primo semestre 2011/2012

Analisi Matematica 2 per Matematica Esempi di compiti, primo semestre 2011/2012 Analisi Matematica 2 per Matematica Esempi di compiti, primo semestre 211/212 Ricordare: una funzione lipschitziana tra spazi metrici manda insiemi limitati in insiemi limitati; se il dominio di una funzione

Dettagli

ALCUNE APPLICAZIONI DEL CALCOLO DIFFERENZIALE

ALCUNE APPLICAZIONI DEL CALCOLO DIFFERENZIALE ALCUNE APPLICAZIONI DEL CALCOLO DIFFERENZIALE Sia I un intervallo di R e siano a = inf(i) R { } e b = sup(i) R {+ }; i punti di I diversi dagli estremi a e b, ( e quindi appartenenti all intervallo aperto

Dettagli

TAVOLE E FORMULARI DI MATEMATICA PER LE SCUOLE MEDIE E SUPERIORI DI OGNI ORDINE E GRADO

TAVOLE E FORMULARI DI MATEMATICA PER LE SCUOLE MEDIE E SUPERIORI DI OGNI ORDINE E GRADO TAVOLE E FORMULARI DI MATEMATICA PER LE SCUOLE MEDIE E SUPERIORI DI OGNI ORDINE E GRADO Carlo Sintini www.matematicamente.it INDICE TAVOLE NUMERICHE Potenze e radici quadre e cube dei numeri fino a 200

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2004 Sessione suppletiva

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2004 Sessione suppletiva ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO Sessione suppletiva Il candidato risolva uno dei due problemi e dei 1 quesiti in cui si articola il questionario. PROBLEMA 1 In un piano, riferito

Dettagli

MATEMATICA TRIENNIO CORSO TURISTICO, AMMINISTRAZIONE FINANZA MARKETING, SISTEMI INFORMATIVI AZIENDALI

MATEMATICA TRIENNIO CORSO TURISTICO, AMMINISTRAZIONE FINANZA MARKETING, SISTEMI INFORMATIVI AZIENDALI MATEMATICA TRIENNIO CORSO TURISTICO, AMMINISTRAZIONE FINANZA MARKETING, SISTEMI INFORMATIVI AZIENDALI Obiettivi del triennio: ; elaborando opportune soluzioni; 3) utilizzare le reti e gli strumenti informatici

Dettagli

RDefinizione (Funzione) . y. . x CAPITOLO 2

RDefinizione (Funzione) . y. . x CAPITOLO 2 CAPITOLO 2 Funzioni reali di variabile reale Nel capitolo precedente è stata introdotta la nozione generale di funzione f : A B, con A e B insiemi arbitrari. Nel presente capitolo si analizzeranno più

Dettagli

FUNZIONE REALE DI UNA VARIABILE

FUNZIONE REALE DI UNA VARIABILE FUNZIONE REALE DI UNA VARIABILE Funzione: legge che ad ogni elemento di un insieme D (Dominio) tale che D R, fa corrispondere un elemento y R ( R = Codominio ). f : D R : f () = y ; La funzione f(): A

Dettagli

ISTITUTO DI ISTRUZIONE SECONDARIA SUPERIORE MINERARIO GIORGIO ASPRONI ENRICO FERMI IGLESIAS

ISTITUTO DI ISTRUZIONE SECONDARIA SUPERIORE MINERARIO GIORGIO ASPRONI ENRICO FERMI IGLESIAS ISTITUTO DI ISTRUZIONE SECONDARIA SUPERIORE MINERARIO GIORGIO ASPRONI ENRICO FERMI IGLESIAS Classe: 3 a B Informatica Docente: Gianni Lai PROGRAMMAZIONE DIDATTICA DISCIPLINARE MATEMATICA e COMPLEMENTI

Dettagli

SOLUZIONI D = (-1,+ ).

SOLUZIONI D = (-1,+ ). SOLUZIONI. Data la funzione f() ( ) ln( ) a) trova il dominio di f b) indica quali sono gli intervalli in cui f() risulta positiva e quelli in cui risulta negativa c) determina le eventuali intersezioni

Dettagli

Anno 4 Grafico di funzione

Anno 4 Grafico di funzione Anno 4 Grafico di funzione Introduzione In questa lezione impareremo a disegnare il grafico di una funzione reale. Per fare ciò è necessario studiare alcune caratteristiche salienti della funzione che

Dettagli

Trigonometria: breve riepilogo.

Trigonometria: breve riepilogo. Corso di laurea in Matematica Corso di Analisi Matematica - Dott.ssa Sandra Lucente Trigonometria: breve riepilogo. Definizioni iniziali Saper misurare un angolo in gradi sessagesimali, saper svolgere

Dettagli

SOLUZIONE DEL PROBLEMA 1 CORSO SPERIMENTALE P.N.I. 2014

SOLUZIONE DEL PROBLEMA 1 CORSO SPERIMENTALE P.N.I. 2014 SOLUZIONE DEL PROBLEMA 1 CORSO SPERIMENTALE P.N.I. 01 1. Determiniamo l espressione analitica di g() dividendo il suo dominio in intervalli. La circonferenza di diametro AO ha equazione (+) + = + + = 0

Dettagli

G6. Studio di funzione

G6. Studio di funzione G6 Studio di funzione G6 Come tracciare il grafico di una funzione data Nei capitoli precedenti si sono svolti tutti gli argomenti necessari per tracciare il grafico di una funzione In questo capitolo

Dettagli

UNIVERSITÀ DEGLI STUDI DI UDINE. Corsi di Laurea in Ingegneria. Luciano BATTAIA, Pier Carlo CRAIGHERO MATEMATICA DI BASE

UNIVERSITÀ DEGLI STUDI DI UDINE. Corsi di Laurea in Ingegneria. Luciano BATTAIA, Pier Carlo CRAIGHERO MATEMATICA DI BASE UNIVERSITÀ DEGLI STUDI DI UDINE Corsi di Laurea in Ingegneria Luciano BATTAIA, Pier Carlo CRAIGHERO MATEMATICA DI BASE Testi dei temi d esame ed esercizi proposti con soluzione breve Versione del 1 settembre

Dettagli

LICEO ARTISTICO BOCCIONI A.S. 2013-2014. Programma di MATEMATICA svolto nella Classe Prima L

LICEO ARTISTICO BOCCIONI A.S. 2013-2014. Programma di MATEMATICA svolto nella Classe Prima L LICEO ARTISTICO BOCCIONI A.S. 2013-2014 Programma di MATEMATICA svolto nella Classe Prima L I numeri naturali e i numeri interi Che cosa sono i numeri naturali. L insieme dei numeri naturali N. Le quattro

Dettagli

6) f(x, y) = xy 1 log(5 2x 2y) x + y. 2x x 2 y 2 z 2 x 2 + y 2 + z 2 x Esercizio 2. Studiare gli insiemi di livello delle seguenti funzioni:

6) f(x, y) = xy 1 log(5 2x 2y) x + y. 2x x 2 y 2 z 2 x 2 + y 2 + z 2 x Esercizio 2. Studiare gli insiemi di livello delle seguenti funzioni: FUNZIONI IN PIÙ VARIABILI 1. Esercizi Esercizio 1. Determinare il dominio delle seguenti funzioni, specificando se si tratta di un insieme aperto o chiuso: 1) f(x, ) = log(x x ) ) f(x, ) = x + 3) f(x,

Dettagli

Studio di funzioni ( )

Studio di funzioni ( ) Studio di funzioni Effettuare uno studio qualitativo e tracciare un grafico approssimativo delle seguenti funzioni. Si studi in particolare anche la concavità delle funzioni e si indichino esplicitamente

Dettagli

Amministrazione, finanza e marketing - Turismo Ministero dell Istruzione, dell Università e della Ricerca PROGRAMMAZIONE DISCIPLINARE PER U. di A.

Amministrazione, finanza e marketing - Turismo Ministero dell Istruzione, dell Università e della Ricerca PROGRAMMAZIONE DISCIPLINARE PER U. di A. UdA n. 1 Titolo: Disequazioni algebriche Saper esprimere in linguaggio matematico disuguaglianze e disequazioni Risolvere problemi mediante l uso di disequazioni algebriche Le disequazioni I principi delle

Dettagli

CLASSE 1ª Manutenzione e Assistenza Tecnica

CLASSE 1ª Manutenzione e Assistenza Tecnica CLASSE 1ª Manutenzione e Assistenza Tecnica Programma svolto di MATEMATICA Anno scolastico 2013/14 ELEMENTI DI RACCORDO CON LA SCUOLA MEDIA GLI INSIEMI CALCOLO LETTERALE GEOMETRIA - Ordinamento, proprietà,

Dettagli

Trasformazioni geometriche nel piano cartesiano

Trasformazioni geometriche nel piano cartesiano Trasformazioni geometriche nel piano cartesiano Francesco Biccari 18 marzo 2013 Una trasformazione geometrica del piano è una legge (corrispondenza biunivoca) che consente di associare a un determinato

Dettagli

Elementi di topologia della retta

Elementi di topologia della retta Elementi di topologia della retta nome insieme definizione l insieme è un concetto primitivo che si accetta come intuitivamente noto secondo George Cantor, il padre della teoria degli insiemi: Per insieme

Dettagli

Esercizi di Analisi Matematica

Esercizi di Analisi Matematica Esercizi di Analisi Matematica CAPITOLO 1 LE FUNZIONI Exercise 1.0.1. Risolvere le seguenti disuguaglianze: (1) x 1 < 3 () x + 1 > (3) x + 1 < 1 (4) x 1 < x + 1 x 1 < 3 x + 1 < 3 x < 4 Caso: (a): x 1

Dettagli

MATEMATICA 5 PERIODI

MATEMATICA 5 PERIODI BAC EUROPEO 2008 MATEMATICA 5 PERIODI DATA 5 giugno 2008 DURATA DELL ESAME : 4 ore (240 minuti) MATERIALE AUTORIZZATO Formulario delle scuole europee Calcolatrice non grafica e non programmabile AVVERTENZE

Dettagli

STUDIO DI UNA FUNZIONE

STUDIO DI UNA FUNZIONE STUDIO DI UNA FUNZIONE OBIETTIVO: Data l equazione Y = f(x) di una funzione a variabili reali (X R e Y R), studiare l andamento del suo grafico. PROCEDIMENTO 1. STUDIO DEL DOMINIO (CAMPO DI ESISTENZA)

Dettagli

CLASSE terza SEZIONE E A.S. 2014-15 PROGRAMMA SVOLTO

CLASSE terza SEZIONE E A.S. 2014-15 PROGRAMMA SVOLTO CLASSE terza SEZIONE E A.S. 2014-15 L insieme dei numeri razionali. Equazioni e disequazioni di primo grado Sistemi di equazioni e disequazioni di primo grado.. IL PIANO CARTESIANO Il piano cartesiano.

Dettagli

Massimi e minimi vincolati di funzioni in due variabili

Massimi e minimi vincolati di funzioni in due variabili Massimi e minimi vincolati di funzioni in due variabili I risultati principali della teoria dell ottimizzazione, il Teorema di Fermat in due variabili e il Test dell hessiana, si applicano esclusivamente

Dettagli