Dunque Q(x) e vera per ogni x. Sia ora P (y) = x x + y = y + x allora P (0) e vera poiche Q(x) e vera per ogni x. Supponiamo ora vera P (y) e

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Dunque Q(x) e vera per ogni x. Sia ora P (y) = x x + y = y + x allora P (0) e vera poiche Q(x) e vera per ogni x. Supponiamo ora vera P (y) e"

Transcript

1 Esercizi Esercizio 4.1: Dimostrare che ω e il piu piccolo insieme bene ordinato infinito, cioe se (A, <) e bene ordinato infinito, allora esiste ψ : ω A che preserva l ordine (e quindi iniettiva). Dim: Essendo A b.o. e infinito possiamo definire: { A 0 = A dove a n = min(a n ) A n+1 = A n {a n } Definiamo allora: ψ : ω A t.c. ψ(n) = a n Questa e la funzione richiesta poiche ψ(n) < ψ(n + 1), cioe e iniettiva e preserva l ordine. Esercizio 4.2: Dimostrare che le seguenti proprieta sono teoremi di P A II (cioe sono dimostrabili usando gli assiomi di Peano al secondo ordine): 1(a) x y z (x + y) + z = x + (y + z) 1(b) x y z (x y) z = x (y z) 2(c) x y x + y = y + x 2(d) x y x y = y x 3(e) x y z (x + y) z = x z + y z Dim: 1(a) Sia P (z) = x y (x + y) + z = x + (y + z) e vediamo per induzione che essa e vera per tutti gli z: P (0) e vera poiche (x + y) + 0 = x + y e x + (y + 0) = x + y Supponiamo vera P (z) e dimostriamo che anche P (S(z)) e vera (dove S e la funzione successore): essa e vera poiche (x + y) + S(z) = S((x + y) + z) = S(x + (y + z)) e x + (y + S(z)) = x + S(y + z) = S(x + (y + z)) Dunque P (z) e vera per ogni z. 2(c) Dimostriamo preliminarmente che Q(x) = x + 0 = 0 + x e vera per ogni x: Q(0) e vera poiche = Supponiamo ora che Q(x) sai vera e dimostriamo che Q(S(x)) e vera: 0 + S(x) = S(0 + x) = S(x + 0) = S(x) = S(x)

2 Dunque Q(x) e vera per ogni x. Sia ora P (y) = x x + y = y + x allora P (0) e vera poiche Q(x) e vera per ogni x. Supponiamo ora vera P (y) e dimostriamo che P (S(y)) e vera, cioe devo dimostrare che x + S(y) = S(y) + x x ω per farlo dimostro prima che S(y + x) = S(y) + x x ω: x = 0 : S(y + 0) = S(y) = S(y) + 0 x S(x) : S(y + S(x)) = S(S(y + x)) = S(S(y) + x) = S(y) + S(x) Detto questo abbiamo che x + S(y) = S(x + y) = S(y + x) = S(y) + x cioe P (S(y)) e vera e dunque P (y) e vera per ogni y. 3(e) Sia P (z) = x y (x + y) z = x z + y z P (0) e vera poiche (x + y) 0 = 0 e x 0 + y 0 = = 0 Suppongo vera P (z) e dimostro che P (S(z)) e vera: essa e vera poiche (x + y) S(z) = (x + y) z + (x + y) = x z + y z + x + y x S(z) + y S(z) = x z + x + y z + y = x z + y z + x + y e dunque P (z) e vera per ogni z. 2(d) Dimostriamo preliminarmente che 0 x = 0 x ω : x = 0 : 0 0 = 0 x S(x) : 0 S(x) = 0 x + 0 = = 0 Detto questo, sia P (y) = x x y = y x. Allora P (0) e vera poiche x 0 = 0 e 0 x = 0 per l osservazione di prima. Supponiamo vera P (y) e dimostriamo che P (S(y)) e vera,cioe che x S(y) = S(y) x x ω. Osserviamo che S(y) x = y x + x, infatti: x = 0 : S(y) 0 = 0 = y x S(x) : S(y) S(x) = S(y) x + S(y) = y x + x + S(y) = y x + S(x + y) = y x + S(y + x) = y x + y + S(x) = y S(x) + S(x) Grazie a questo risultato abbiamo che: x S(y) = x y + x = y x + x = S(y) x dunquep (y) e vera per ogni y. 1(b) Sia P (z) = x y (x y) z = x (y z) P (0) e vera poiche (x y) 0 = 0 e x (y 0) = x 0 = 0 Supponiamo vera P (z) ; allora P (S(z)) e vera poiche : (x y) S(z) = (x y) z + x y e x (y S(z)) = x (y z + y) = (y z + y) x = (y z) x + y x = x (y z) + x y = (x y) z + x y. Dunque P (z) e vera per ogni z. 2

3 Esercizio 4.2: Sia (N, 0, S, +, ) un sistema di numeri naturali e definiamo x < y z 0 t.c. x + z = y. Dimostrare che (N, <) e totalmente ordinato. Dim: Essendo un sistema dei numeri naturali valgono le usuali proprieta commutativa, associativa e distributiva. < e irriflessiva: Sia P (x) = (x < x). P (0) e vera poiche se per assurdo 0 < 0 allora esisterebbe z 0 t.c. 0 + z = 0 cioe z = 0 assurdo. P (x) P (S(x)) : se per assurdo S(x) < S(x) allora z 0 t.c. S(x) = S(x) + z = z + S(x) = S(z + x) e siccome S e iniettiva si avrebbe x = z + x e dunque x < x assurdo. < e simmetrica. siano x, y N t.c. x < y. Allora z 0 t.c. y = x + z. Se per assurdo y < x allora h 0 t.c. x = h + y. Quindi y = h + y + z = (h + z) +y = k + y con k 0 (infatti se fosse k = 0 allora }{{} =k h + z = 0. Tuttavia e h, z 0 dunque a, b N t.c. h = S(a) e z = S(b) dunque avrei 0 = h + z = S(a) + S(b) = S(S(a) + b) ma cio e assurdo perche 0 non e successore di nulla). Dunque avrei y < y che e assurdo per il punto precedente, quindi abbiamo dimostrato che se x < y allora non puo essere y < x. < e transitiva: siano x, y, z N t.c. x < y e y < z. Allora a, b 0 t.c. y = x + a e z = y + b. Dunque. z = y + b = x + a + b e a + b 0 (stesso argomento di prima), quindi abbiamo x < z. Veniamo alla tricotomia: per asimmetria e irriflessivita vale al piu una sola delle possibilita x < y y < x x = y. Facciamo vedere che almeno una e verificata: sia P (y) = x Nx < y x = y y < x P (0) e vera poiche possiamo avere x = 0 o se x 0 allora 0 < x poiche x = 0 + x. 3

4 Sia vera P (y) e voglio dimostrare P (S(y)) cioe che dato un x N accade che x < S(y) x = S(y) S(y) < x. Per ipotesi induttiva vale x < y x = y y < x ; dunque: se x < y allora y = x + z con z 0, quindi S(y) = S(x + z) = x + S(z) e quindi x < S(y). se x = y allora S(y) = S(x) = S(x + 0) = x + S(0) dunque e x < S(y). se y < x allora x = y + z con z 0 dunque h N t.c. z = S(h) quindi x = y + S(h) = S(y + h) = S(h + y) = h + S(y). Ora se h = 0 allora x = S(y) mentre se h 0 allora S(y) < x. Esercizio 4.3: Dimostrare che (ω, 0,ˆ, +, ) e un modello di P A II (doveˆe la funzione successore e +, sono le operazioni fra naturali di Von Neumann). Dim: 1. Sappiamo cheˆ: ω ω {0} e bigettiva,dunque sia x ω {0} allora esiste y ω t.c. ŷ = x. Viceversa se x = ŷ allora x 0 altrimenti 0 ω {0} 2. ˆe iniettiva poiche e bigettiva. 3. sia n ω. Allora n + 0 = A dove A = n,dunque n + 0 = A = A = n. Siano n, m ω e siano A, B disgiunti con A = n e B = m e sia x / A B. Allora B {x} = m {m} = S(m) dunque n + S(m) = A (B {x}) = (A B) {x} = S(n + m). 4. Sia A t.c. A = n, allora n 0 = A = = 0. Sia inoltre B = m e x / B ; allora (A B) (A {x}) = e A {x} = A = n. Dunque: n S(m) = A (B {x} = (A B) (A {x}) = n m + m. 5. A lezione si e visto che su ω vale il principio di induzione. Esercizio 4.4: Sia F = {(A i, < i ) i I} una catena di insiemi parzialmente ordinati. Dimostrare che F = (X, <) e parzialmente ordinato, dove: X = i I A i e x < y x < i y (A i, < i ) F t.c. x, y A i. Dim: Riflessivita : sia x X e sia A = {A i F x A i }. Siccome gli A i sono parzialmente ordinati,allora A i A x < i x e dunque x < x. Antisimmetria: siano x, y X t.c. x < y y < x e sia A = {A i F x, y A i }. Abbiamo: 4

5 x < y A i A x < i y e y < x A i A y < i x Essendo gli A i parzialmente ordinati segue che x = y. Transitivita : siano x, y, z X t.c. x < y y < z. Siano A = {F F x, z F } B = {F F x, y F } {F F y, z F }. Abbiamo: x < y dunque x < F y F B e y < z cioe y < F z F C. Devo dimostrare che x < z cioe che x < F z F A. Sia F A ; considero un G B e siccome F e una catena si ha che F G o G F. Se F G allora x, y, z G e siccome e y < z e x < y vale che y < G z e x < G y e poiche G e parzialmente ordinato allora x < G z. Sempre per definizione di catena essendo F G e x < G z abbiamo che x < F z. Se invece e G F allora x, y, z F e per gli stessi motivi appena esposti y < z implica che y < F z e x < y implica che x < F y ed essendo F parzialmente ordinato segue che x < F z. Esercizio 4.5: Dimostrare le proprieta : 1. Se (A, <) e bene ordinato e a A allora A a = A. 2. Se (A, <) e bene ordinato e a a,con a, a A,allora A a = Aa 3. Se f : A B e isomorfismo di insiemi bene ordinati, allora e unico. 4. Sia φ : A B isomorfismo di insiemi bene ordinati. Allora A φ Aa : A a B φ(a) e isomorfismo. Dim: 4. Siano A, B insiemi bene ordinati e sia φ : A B isomorfismo. Sia a A e considero A a = {x A x < a} ; abbiamo dunque che x A a x < a e siccome φ preserva l ordine abbiamo che x A a φ(x) < φ(a), dunque Im(φ Aa ) = {y Im(φ) y < φ(a)} = B }{{} φ(a). =B e dunque si ha che φ Aa : A a B φ(a) e che e isomorfismo. 1. Sia a A con a min(a) ; allora A a e siccome A a A e A e ben ordinato, esiste ã = min(a a ). Dunque x A a ã < x. Se per assurdo ψ : A a A isomorfismo, allora x A a ψ(ã) < ψ(x) e dunque ψ(ã) = min(im(ψ)) = min(a) percio x A ψ(ã) < x. In particolare se prendo un x A a allora ψ(ã) < x < a, cioe ψ(ã) < a e 5

6 quindi ψ(ã) A a ovvero ã < ψ(ã) ma cio e assurdo poiche ψ(ã) e il minimo di A Mentre se a = min(a) allora A a = e sicuramente A a =. 2. Siano a, a A con a a e supponiamo ad esempio che sia a < a ; abbiamo allora che A a A a (infatti a A a ma a A a ). Se per assurdo ψ : A a A a isomorfismo, allora potrei costruire la funzione φ : A A t.c. { x se x A A a φ(x) = ψ(x) se x A a che sarebbe automorfismo di un insieme ben ordinato, e per quanto visto a lezione si avrebbe φ = id A, dunque in particolare avrei che x A a x = φ(x) = ψ(x) ovvero ψ = id Aa e dunque A a = A a assurdo. Dunque abbiamo A a = Aa. 3. Sia f : A B isomorfismo di insiemi bene ordinati. Se per assurdo g : A B isomorfismo con g f, allora X = {a A f(a) g(a)} dunque ã X. Per il punto 4. Aã = Bf(ã) e Aã = Bg(ã) dunque avrei B f(ã) = Bg(ã). Ma cio e assurdo poiche B e ben ordinato e f(ã) g(ã) e quindi per il punto 2. dovrebbe essere B f(ã) = Bg(ã). Ne deduciamo che f = g cioe l isomorfismo e unico. 6

ESERCIZI ELEMENTI TEORIA DEGLI INSIEMI A.A. 2017/2018 Giovanni Luciano Matr TEORIA ZF E ASSIOMI DI PEANO. Esercizio 1

ESERCIZI ELEMENTI TEORIA DEGLI INSIEMI A.A. 2017/2018 Giovanni Luciano Matr TEORIA ZF E ASSIOMI DI PEANO. Esercizio 1 ESERCIZI ELEMENTI TEORIA DEGLI INSIEMI A.A. 2017/2018 Giovanni Luciano Matr. 546897 TEORIA ZF E ASSIOMI DI PEANO Esercizio 1 Dimostrare che A B F un(a, B) Abbiamo visto a lezione l esistenza dell insieme

Dettagli

Esercizi. H(b) e tale insieme e dom(r). Sia (a, β) I(a) ; per l assioma della coppia esiste {β} e per unione esiste

Esercizi. H(b) e tale insieme e dom(r). Sia (a, β) I(a) ; per l assioma della coppia esiste {β} e per unione esiste Esercizi Esercizio 3.0: Dimostrare i seguenti fatti usando gli assiomi di ZFC: (a)data una famiglia F non vuota di insiemi, esiste F. (b)data una relazione R,esistono gli insiemi dom(r) e Im(R). (c)sia

Dettagli

Elementi di Teoria degli Insiemi

Elementi di Teoria degli Insiemi Elementi di Teoria degli Insiemi 2016/17 Esercizi di Giacomo Bertolucci (matr. 519430) Lezioni 7-10 Lezione 7 Esercizio 1. Dimostrare che, se A R con A ℵ 0, allora R A è denso in R. Se così non fosse,

Dettagli

Esercizi di Elementi di Teoria degli Insiemi, Parte 2 Fabrizio Anelli

Esercizi di Elementi di Teoria degli Insiemi, Parte 2 Fabrizio Anelli Esercizi di Elementi di Teoria degli Insiemi, Parte 2 Fabrizio Anelli Lezione 5, Esercizio 1 Dimostrare che A B Fun(A, B). Per l assioma delle parti, ammesso che esista A B, esiste P(A B). Usando poi l

Dettagli

Elementi di teoria degli insiemi. Esercizio 1: coppia di Kuratowski

Elementi di teoria degli insiemi. Esercizio 1: coppia di Kuratowski Elementi di teoria degli insiemi Esercizio 1: coppia di Kuratowski tesi:(a, b) = (c, d) a = c b = d Supponiamo (a, b) = (c, d) cioe {{a},{a, b}} = {{c},{c, d}} Per estensionalita due insiemi sono uguali

Dettagli

Esercizi. t.c. biunivoca e preserva l ordine, cioe e l isomorfismo cercato.

Esercizi. t.c. biunivoca e preserva l ordine, cioe e l isomorfismo cercato. Esercizi Esercizio 5.1: Se A = A e B = B allora A B = A B Dim: Per ipotesi esistono due isomorfismi f :{ A A e g : B B. Allora la funzione ψ : A B A B (a, 0) (f(a), 0) t.c. e (b, 1) (g(b), 1) biunivoca

Dettagli

ALGEBRA I: ASSIOMI DI PEANO E PROPRIETÀ DEI NUMERI NATURALI

ALGEBRA I: ASSIOMI DI PEANO E PROPRIETÀ DEI NUMERI NATURALI ALGEBRA I: ASSIOMI DI PEANO E PROPRIETÀ DEI NUMERI NATURALI 1. GLI ASSIOMI DI PEANO Come puro esercizio di stile voglio offrire una derivazione delle proprietà elementari dei numeri naturali e delle operazioni

Dettagli

Istituzioni di Logica Matematica

Istituzioni di Logica Matematica Istituzioni di Logica Matematica Sezione 8 del Capitolo 2 Alessandro Andretta Dipartimento di Matematica Università di Torino A. Andretta (Torino) Istituzioni di Logica Matematica AA 2012 2013 1 / 31 Strutture

Dettagli

Elementi di Teoria degli Insiemi

Elementi di Teoria degli Insiemi Esercizi di Elementi di Teoria degli Insiemi A.A. 2017/2018 Cristofer Villani mat. 561436 Parte I. Esercizio 1. Definita (a, b) := {{a}, {a, b}}, vale (a, b) = (a, b ) a = a b = b. Soluzione. ) (a, b)

Dettagli

DAI NUMERI NATURALI AI NUMERI RAZIONALI

DAI NUMERI NATURALI AI NUMERI RAZIONALI DAI NUMERI NATURALI AI NUMERI RAZIONALI 1. L insieme dei numeri naturali Nel sistema assiomatico ZF, l Assioma dell infinito stabilisce che: Esiste un insieme A, i cui elementi sono insiemi e tale che

Dettagli

INDUZIONE E NUMERI NATURALI

INDUZIONE E NUMERI NATURALI INDUZIONE E NUMERI NATURALI 1. Il principio di induzione Il principio di induzione è una tecnica di dimostrazione molto usata in matematica. Lo scopo di questa sezione è di enunciare tale principio e di

Dettagli

Esercizi di Logica Matematica (parte 2)

Esercizi di Logica Matematica (parte 2) Luca Costabile Esercizio 317 Esercizi di Logica Matematica (parte 2) Dimostro per induzione sulla costruzione del termine : - Supponiamo che sia una variabile :, - Supponiamo che sia una variabile diversa

Dettagli

ELEMENTI DI LOGICA MATEMATICA LEZIONE VII

ELEMENTI DI LOGICA MATEMATICA LEZIONE VII ELEMENTI DI LOGICA MATEMATICA LEZIONE VII MAURO DI NASSO In questa lezione introdurremo i numeri naturali, che sono forse gli oggetti matematici più importanti della matematica. Poiché stiamo lavorando

Dettagli

Esercizi. Esercizio 2.5:Dimostrare che se A A e B B allora: Dim: Per ipotesi esistono f : A A e g : B B iniettive. 1. Sia h : A B A B t.c.

Esercizi. Esercizio 2.5:Dimostrare che se A A e B B allora: Dim: Per ipotesi esistono f : A A e g : B B iniettive. 1. Sia h : A B A B t.c. Esercizi Esercizio 2.5:Dimostrare che se A A e B B allora: 1. A B A B se A B = A B = 2. A B A B 3. P(A) P(A ) 4. F un(a, B) F un(a, B ) Dim: Per ipotesi esistono f : A A e g : B B iniettive. 1. Sia h :

Dettagli

Istituzioni di Logica Matematica

Istituzioni di Logica Matematica Istituzioni di Logica Matematica Sezione 12 del Capitolo 3 Alessandro Andretta Dipartimento di Matematica Università di Torino A. Andretta (Torino) Istituzioni di Logica Matematica AA 2013 2014 1 / 25

Dettagli

ELEMENTI DI TEORIA DEGLI INSIEMI Dispensa 5. Mauro Di Nasso

ELEMENTI DI TEORIA DEGLI INSIEMI Dispensa 5. Mauro Di Nasso ELEMENTI DI TEORIA DEGLI INSIEMI Dispensa 5 Mauro Di Nasso 1. BUONI ORDINI 3 Buoni ordini e ordinali 1. Buoni ordini Con questa lezione iniziamo lo studio degli insiemi bene ordinati. Si tratta di un

Dettagli

Dimostrazione: Data una allora non appartiene all immagine. Se per

Dimostrazione: Data una allora non appartiene all immagine. Se per Attenzione: Questi appunti sono la trascrizione delle lezioni del corso di ETI tenuto nel 2014 dal Prof. Di Nasso, questo file contiene le dimostrazioni svolte ma avendo perso il quaderno subito prima

Dettagli

Tommaso Cortopassi- Settimana 6-8 (da 4 Aprile a 21 Aprile) Esercizio 1 Mostrare che A (B C) = (A B) (A C) come insiemi ordinati.

Tommaso Cortopassi- Settimana 6-8 (da 4 Aprile a 21 Aprile) Esercizio 1 Mostrare che A (B C) = (A B) (A C) come insiemi ordinati. Tommaso Cortopassi- Settimana 6-8 (da 4 Aprile a 2 Aprile) Esercizio Mostrare che A (B C) = (A B) (A C) come insiemi ordinati. Intanto fissiamo i termini. Definiamo somma e prodotto nel seguente modo:

Dettagli

ALGEBRE DI BOOLE. (d) x, y X x y oppure y x.

ALGEBRE DI BOOLE. (d) x, y X x y oppure y x. ALGEBRE DI BOOLE Un insieme parzialmente ordinato è una coppia ordinata (X, ) dove X è un insieme non vuoto e " " è una relazione binaria definita su X tale che (a) x X x x (riflessività) (b) x, y, X se

Dettagli

CAPITOLO SECONDO APPLICAZIONI TRA INSIEMI E RELAZIONI DI EQUIVALENZA

CAPITOLO SECONDO APPLICAZIONI TRA INSIEMI E RELAZIONI DI EQUIVALENZA CAPITOLO SECONDO APPLICAZIONI TRA INSIEMI E RELAZIONI DI EQUIVALENZA 1 Applicazioni tra insiemi Siano A, insiemi. Una corrispondenza tra A e è un qualsiasi sottoinsieme del prodotto cartesiano A ; Se D

Dettagli

Dispense del corso di Algebra 1. Soluzioni di alcuni esercizi

Dispense del corso di Algebra 1. Soluzioni di alcuni esercizi Dispense del corso di Algebra 1 Soluzioni di alcuni esercizi Esercizio 1.1. 1) Vero; ) Falso; 3) V; 4) F; 5) F; 6) F (infatti: {x x Z,x < 1} {0}); 7) V. Esercizio 1.3. Se A B, allora ogni sottoinsieme

Dettagli

Appunti del corso Fondamenti di Analisi e Didattica

Appunti del corso Fondamenti di Analisi e Didattica Appunti del corso Fondamenti di Analisi e Didattica (PAS 2013-2014, Classe A049, docente prof. L. Chierchia) redatti da: A. Damiani, V. Pantanetti, R. Caruso, M. L. Conciatore, C. De Maggi, E. Becce e

Dettagli

Osservazione 1.1 Si verifica facilmente che esiste un unica relazione d ordine totale su Q che lo renda un campo ordinato.

Osservazione 1.1 Si verifica facilmente che esiste un unica relazione d ordine totale su Q che lo renda un campo ordinato. 1 Numeri reali Definizione 1.1 Un campo ordinato è un campo K munito di una relazione d ordine totale, compatibile con le operazioni di somma e prodotto nel senso seguente: 1. a, b, c K, a b = a + c b

Dettagli

Esercizi di Elementi di Teoria degli Insiemi, Parte 1 Fabrizio Anelli

Esercizi di Elementi di Teoria degli Insiemi, Parte 1 Fabrizio Anelli Esercizi di Elementi di Teoria degli Insiemi, Parte 1 Fabrizio Anelli Lezione 1, Esercizio 1 Dimostrare che per le coppie di Kuratowski vale che (a, b) = (a, b ) a = a b = b. Perché i due insiemi {{a},

Dettagli

Complemento 1 Gli insiemi N, Z e Q

Complemento 1 Gli insiemi N, Z e Q AM110 Mat, Univ. Roma Tre (AA 2010/11 L. Chierchia) 30/9/10 1 Complemento 1 Gli insiemi N, Z e Q Il sistema dei numeri reali (R, +,, ) può essere definito tramite sedici assiomi: quindici assiomi algebrici

Dettagli

Note del corso di Calcolabilità e Linguaggi Formali - Lezione 10

Note del corso di Calcolabilità e Linguaggi Formali - Lezione 10 Note del corso di Calcolabilità e Linguaggi Formali - Lezione 10 Alberto Carraro DAIS, Università Ca Foscari Venezia http://www.dsi.unive.it/~acarraro 1 Teoremi fondamentali della Recursion Theory Theorem

Dettagli

Gli insiemi N, Z e Q. I numeri naturali

Gli insiemi N, Z e Q. I numeri naturali Università Roma Tre L. Chierchia 1 Gli insiemi N, Z e Q Il sistema dei numeri reali (R, +,, ) può essere definito tramite sedici assiomi: quindici assiomi algebrici (si veda ad esempio 2.3 in [Giusti,

Dettagli

Luca Costabile Esercizi di Logica Matematica Dispensa Calcolo Proposizionale 1

Luca Costabile Esercizi di Logica Matematica Dispensa Calcolo Proposizionale 1 Luca Costabile Esercizi di Logica Matematica Dispensa Calcolo Proposizionale 1 Esercizio 1.12 Per dimostrare che per ogni funzione esiste una formula in cui compaiono le variabili tale che la corrispondente

Dettagli

1 COMPITINO DI ALGEBRA 1 7 novembre 2018 Soluzioni

1 COMPITINO DI ALGEBRA 1 7 novembre 2018 Soluzioni 1 COMPITINO DI ALGEBRA 1 7 novembre 2018 Soluzioni 1. Sia G il sottogruppo di S 6 generato dalle permutazioni 1, 2, 3 e 1, 42, 53, 6. a Descrivere G come prodotto semidiretto di gruppi abeliani. b Per

Dettagli

Appunti del corso Elementi di Geometria da un Punto di Vista Superiore

Appunti del corso Elementi di Geometria da un Punto di Vista Superiore Appunti del corso Elementi di Geometria da un Punto di Vista Superiore tenuto dal Prof. Salvatore Coen Università di Bologna - Anno Accademico 2013/2014 Michele Santa Maria Indice 1 Nozioni Preliminari

Dettagli

3.3 - Il principio del buon ordine. Sia A un insieme, e sia una relazione di ordine in A. Si dice che è un buon

3.3 - Il principio del buon ordine. Sia A un insieme, e sia una relazione di ordine in A. Si dice che è un buon Marco Barlotti appunti di Teoria degli insiemi supplemento numero 1 Pag. 1 3.3 - Il principio del buon ordine. Sia A un insieme, e sia una relazione di ordine in A. Si dice che è un buon ordine per A,

Dettagli

Se con e indichiamo l elemento neutro di in G, e deve appartenere ad H.

Se con e indichiamo l elemento neutro di in G, e deve appartenere ad H. Abbiamo visto a lezione che una sottoalgebra B di un algebra A è identificabile con l immagine di un omomorfismo iniettivo a valori in A. Una sottoalgebra B di A è in particolare un sottoinsieme non vuoto

Dettagli

ELEMENTI DI TEORIA DEGLI INSIEMI

ELEMENTI DI TEORIA DEGLI INSIEMI ELEMENTI DI TEORIA DEGLI INSIEMI Diamo per note le nozioni fondamentali di teoria degli insiemi, come: la nozione di appartenenza di un elemento a un insieme (x A), la nozione di insieme vuoto (indicato

Dettagli

CORSO DI GEOMETRIA DETERMINANTE A.A. 2018/2019 PROF. VALENTINA BEORCHIA

CORSO DI GEOMETRIA DETERMINANTE A.A. 2018/2019 PROF. VALENTINA BEORCHIA CORSO DI GEOMETRIA DETERMINANTE AA 2018/2019 PROF VALENTINA BEORCHIA INDICE 1 Definizione induttiva di determinante 1 2 Caratterizzazione delle matrici quadrate di rango massimo 5 3 Regole di Laplace 6

Dettagli

A.A CORSO DI ALGEBRA 1. PROFF. P. PIAZZA, E. SPINELLI. SOLUZIONE ESERCIZI FOGLIO SPECIALE 1.

A.A CORSO DI ALGEBRA 1. PROFF. P. PIAZZA, E. SPINELLI. SOLUZIONE ESERCIZI FOGLIO SPECIALE 1. A.A. 2015-2016. CORSO DI ALGEBRA 1. PROFF. P. PIAZZA, E. SPINELLI. SOLUZIONE ESERCIZI FOGLIO SPECIALE 1. Nota preliminare. Nell esercizio S. 1. 5. non vi è alcuna ragione per restringersi ai campi finiti

Dettagli

Esercizi per Casa corso di Elementi di teoria degli insiemi Dario Rancati-2016/2017

Esercizi per Casa corso di Elementi di teoria degli insiemi Dario Rancati-2016/2017 Coppie ordinate Esercizi per Casa corso di Elementi di teoria degli insiemi Dario Rancati-2016/2017 ( Es.4.2 dispense 1) Notiamo innanzitutto che, se a = c e b = d, per il principio di estensionalitá vale

Dettagli

APPUNTI DI TEORIA DEGLI INSIEMI. L assioma della scelta e il lemma di Zorn Sia {A i } i I

APPUNTI DI TEORIA DEGLI INSIEMI. L assioma della scelta e il lemma di Zorn Sia {A i } i I APPUNTI DI TEORIA DEGLI INSIEMI MAURIZIO CORNALBA L assioma della scelta e il lemma di Zorn Sia {A i } i I un insieme di insiemi. Il prodotto i I A i è l insieme di tutte le applicazioni α : I i I A i

Dettagli

1 Polinomio minimo e ampliamenti

1 Polinomio minimo e ampliamenti Università degli studi di Roma Tre Corso di Laurea Triennale in Matematica, a.a. 2004/2005 AL2 - Algebra 2, gruppi anelli e campi Soluzioni 10 dicembre 2004 1 Polinomio minimo e ampliamenti 1. Determinare

Dettagli

Appunti del corso Fondamenti di Analisi e Didattica

Appunti del corso Fondamenti di Analisi e Didattica Appunti del corso Fondamenti di Analisi e Didattica (PAS 2013-2014, Classe A049, docente prof. L. Chierchia) redatti da: A. Damiani, V. Pantanetti, R. Caruso, M. L. Conciatore, C. De Maggi, E. Becce e

Dettagli

Il Teorema Never Two di Vaught

Il Teorema Never Two di Vaught Il Teorema Never Two di Vaught Lorenzo Lami Rosario Mennuni 8 aprile 2014 1 Contesto 1.1 Ipotesi, notazioni e definizioni Ipotesi 1.1. A meno di indicazione contraria, T sarà sempre una teoria: completa,

Dettagli

ELEMENTI DI TEORIA DEGLI INSIEMI Dispensa 4. Mauro Di Nasso

ELEMENTI DI TEORIA DEGLI INSIEMI Dispensa 4. Mauro Di Nasso ELEMENTI DI TEORIA DEGLI INSIEMI Dispensa 4 Mauro Di Nasso 1. GLI INSIEMI INITI 3 L aritmetica di Peano e gli insiemi numerici 1. Gli insiemi finiti Grazie ai numeri naturali, si può usare la nozione

Dettagli

Relazioni e Principio di Induzione

Relazioni e Principio di Induzione Relazioni e Principio di Induzione Giovanna Carnovale October 12, 2011 1 Relazioni Dato un insieme S, un sottoinsieme fissato R del prodotto cartesiano S S definisce una relazione ρ tra gli elementi di

Dettagli

CAPITOLO 1. Fondamenti. 1. Assiomi, postulati, definizioni

CAPITOLO 1. Fondamenti. 1. Assiomi, postulati, definizioni CAPITOLO 1 Fondamenti In questo capitolo presentiamo alcune nozioni necessarie per i successivi capitoli. 1. Assiomi, postulati, definizioni La Matematica è la scienza ipotetico-deduttiva per eccellenza.

Dettagli

Teoria degli insiemi

Teoria degli insiemi Teoria degli insiemi Giovanni Panti 10 marzo 1998 N.B. Questi appunti sono disponibili in ftp://ftp.dimi.uniud.it/pub/panti/notes/st.dvi. 1 Linguaggio ed assiomi Come teoria al primo ordine, il linguaggio

Dettagli

Esercizi svolti di Elementi di Teoria degli Insiemi, Volume 1. Matteo Casarosa, Elia Antonini, Francesco Moroniti

Esercizi svolti di Elementi di Teoria degli Insiemi, Volume 1. Matteo Casarosa, Elia Antonini, Francesco Moroniti Esercizi svolti di Elementi di Teoria degli Insiemi, Volume 1 Matteo Casarosa, Elia Antonini, Francesco Moroniti 4 aprile 2018 2 Indice 1 Esercizi 5 1.1 Coppia di Kuratowski.................................

Dettagli

METODI MATEMATICI PER L INFORMATICA

METODI MATEMATICI PER L INFORMATICA METODI MATEMATICI PER L INFORMATICA Tutorato Lezione 6 12/05/2016 Corso per matricole congrue a 1 Docente: Margherita Napoli Tutor: Amedeo Leo Induzione Esercizio 20 pagina 330 Mostrare che 3 n < n! se

Dettagli

Soluzioni Esercizi Algebra 8

Soluzioni Esercizi Algebra 8 Soluzioni Esercizi Algebra 8 Soluzioni Esercizio 1. 1. (R 3, +) è un gruppo abeliano Utilizzando le proprietà della somma fra numeri reali si verifica facilmente che R 3 è chiuso rispetto a + e che (R

Dettagli

Insiemi Numerici: I Numeri Naturali. 1 I Numeri Naturali: definizione assiomatica

Insiemi Numerici: I Numeri Naturali. 1 I Numeri Naturali: definizione assiomatica Insiemi Numerici: I Numeri Naturali Docente: Francesca Benanti Ottobre 018 1 I Numeri Naturali: definizione assiomatica Sin dall antichità è stata data una sistemazione rigorosa alla geometria. Euclide

Dettagli

1 Principio di Induzione

1 Principio di Induzione 1 Principio di Induzione Per numeri naturali, nel linguaggio comune, si intendono i numeri interi non negativi 0, 1,, 3, Da un punto di vista insiemistico costruttivo, a partire dall esistenza dell insieme

Dettagli

ULTRAFILTRI E METODI NONSTANDARD IN TEORIA COMBINATORIA DEI NUMERI

ULTRAFILTRI E METODI NONSTANDARD IN TEORIA COMBINATORIA DEI NUMERI ULTRAFILTRI E METODI NONSTANDARD IN TEORIA COMBINATORIA DEI NUMERI MAURO DI NASSO 1. Filtri e ultrafiltri Iniziamo introducendo le fondamentali nozioni di filtro e ultrafiltro. Definizione 1.1. Un filtro

Dettagli

SPAZI METRICI COMPLETI

SPAZI METRICI COMPLETI Capitolo 1 SPAZI METRICI COMPLETI Sia dato uno spazio metrico (X, d). Definizione 1.1 Una successione {x n } si dice successione di Cauchy se ε > 0 n 0 n, m n 0 = d(x n x m ) < ε (1.1) Esercizio 1.1 Dimostrare

Dettagli

TOPOLOGIA - APPUNTI SETTIMANA 2/12/2013-5/11/2013

TOPOLOGIA - APPUNTI SETTIMANA 2/12/2013-5/11/2013 TOPOLOGIA - APPUNTI SETTIMANA 2/12/2013-5/11/2013 KIERAN G. O GRADY - 9 DICEMBRE 2013 1. Connessione Se X è uno spazio topologico connesso per archi vale il Teorema dei valori intermedi : dati una f :

Dettagli

Relazioni e Rappresentazioni. 1 Una relazione (binaria) R su

Relazioni e Rappresentazioni. 1 Una relazione (binaria) R su S Modica 19.III.1999 Relazioni e Rappresentazioni. 1 Una relazione (binaria) R su un insieme X è un sottoinsieme di X 2 (X 2 = X X, prodotto cartesiano): R X 2. Per l appartenenza (x, y) R useremo il sinonimo

Dettagli

Esercizi Logica Matematica

Esercizi Logica Matematica Esercizi Logica Matematica Cristoforo Ca Gli esercizi riguardano tutta la parte del calcolo dei predicati del primo ordine. Esercizio 1. Sia T una teoria. Allora T è completa se e solo se T è soddisfacibile

Dettagli

Insiemi Numerici: I Numeri Naturali

Insiemi Numerici: I Numeri Naturali Insiemi Numerici: I Numeri Naturali Docente: Francesca Benanti Ottobre 2018 Page 1 of 23 1. I Numeri Naturali: definizione assiomatica Sin dall antichità è stata data una sistemazione rigorosa alla geometria.

Dettagli

Errata corrige del libro Introduzione alla logica e al linguaggio matematico

Errata corrige del libro Introduzione alla logica e al linguaggio matematico Errata corrige del libro Introduzione alla logica e al linguaggio matematico 28 gennaio 2009 Capitolo 1 Pag. 7, Definizione 6. Il complemento di un sottoinsieme A di I è il sottoinsieme A = {x I : x /

Dettagli

Giulio Del Corso. Attenzione:

Giulio Del Corso. Attenzione: Dispense di Elementi di Teoria degli insiemi (ETI) Giulio Del Corso Attenzione: Questi appunti sono la trascrizione delle lezioni del corso di ETI tenuto nel 2014 dal Prof. Di Nasso, questo file non contiene

Dettagli

11. Misure con segno.

11. Misure con segno. 11. Misure con segno. 11.1. Misure con segno. Sia Ω un insieme non vuoto e sia A una σ-algebra in Ω. Definizione 11.1.1. (Misura con segno). Si chiama misura con segno su A ogni funzione ϕ : A R verificante

Dettagli

Un modello dei numeri iperreali

Un modello dei numeri iperreali Un modello dei numeri iperreali Riccardo Dossena Introdurremo nella prossima sezione una nuova struttura matematica che sarà basilare nella costruzione di un modello dei numeri iperreali a partire dai

Dettagli

1 Relazioni. Definizione Una relazione R su un insieme A si dice relazione d ordine se gode delle proprietà 1), 3), 4).

1 Relazioni. Definizione Una relazione R su un insieme A si dice relazione d ordine se gode delle proprietà 1), 3), 4). 1 Relazioni 1. definizione di relazione; 2. definizione di relazione di equivalenza; 3. definizione di relazione d ordine Definizione Una corrispondenza tra due insiemi A e B è un sottoinsieme R del prodotto

Dettagli

Appunti del Corso Analisi 1

Appunti del Corso Analisi 1 Appunti del Corso Analisi 1 Anno Accademico 2011-2012 Roberto Monti Versione del 5 Ottobre 2011 1 Contents Chapter 1. Cardinalità 5 1. Insiemi e funzioni. Introduzione informale 5 2. Cardinalità 7 3.

Dettagli

ANALISI MATEMATICA A SECONDO MODULO SOLUZIONI DEGLI ESERCIZI DELLA SETTIMANA 15. x 2 i

ANALISI MATEMATICA A SECONDO MODULO SOLUZIONI DEGLI ESERCIZI DELLA SETTIMANA 15. x 2 i ANALISI MATEMATICA A SECONDO MODULO SOLUZIONI DEGLI ESERCIZI DELLA SETTIMANA 15 (1) (Es 9 pag 117) Se per ogni x R n ( x := x 2 i ) 1/2 verificate che per ogni x, y R n vale la seguente legge del parallelogramma:

Dettagli

Teorema di rappresentazione di Stone per algebre di Boole

Teorema di rappresentazione di Stone per algebre di Boole Teorema di rappresentazione di Stone per algebre di Boole Relatore: Prof. Andrea Loi Correlatore: Prof. Stefano Montaldo Candidata: Noemi Vellante Università degli Studi di Cagliari 25 Luglio 2016 Obiettivi

Dettagli

RELAZIONI, FUNZIONI, INSIEMI NUMERICI. 1. Relazioni. Siano X e Y due insiemi non vuoti. Si definisce il prodotto cartesiano

RELAZIONI, FUNZIONI, INSIEMI NUMERICI. 1. Relazioni. Siano X e Y due insiemi non vuoti. Si definisce il prodotto cartesiano RELAZIONI, FUNZIONI, INSIEMI NUMERICI C. FRANCHI 1. Relazioni Siano X e Y due insiemi non vuoti. Si definisce il prodotto cartesiano X Y := {(x, y) x X, y Y } dove con (x, y) si intende la coppia ordinata

Dettagli

INSIEMI ORDINATI, RETICOLI. N.B.: il simbolo contrassegna gli esercizi (relativamente) più complessi.

INSIEMI ORDINATI, RETICOLI. N.B.: il simbolo contrassegna gli esercizi (relativamente) più complessi. ESERCIZI SU INSIEMI ORDINATI, RETICOLI N.B.: il simbolo contrassegna gli esercizi relativamente più complessi. Siano E ed E due insiemi non vuoti, nei quali siano date rispettivamente la relazione ω e

Dettagli

Università degli Studi Roma Tre Corso di Laurea in Matematica, a.a. 2008/2009 AL2 - Algebra 2: Gruppi, Anelli e Campi Esercitazione 1 (3 ottobre 2008)

Università degli Studi Roma Tre Corso di Laurea in Matematica, a.a. 2008/2009 AL2 - Algebra 2: Gruppi, Anelli e Campi Esercitazione 1 (3 ottobre 2008) Università degli Studi Roma Tre Corso di Laurea in Matematica, a.a. 008/009 AL - Algebra : Gruppi, Anelli e Campi Esercitazione 1 (3 ottobre 008) Esercizio 1. Sia X := {x, y}, dimostrare che il sottogruppo

Dettagli

ESERCIZI DI LOGICA MATEMATICA A.A Alessandro Combi

ESERCIZI DI LOGICA MATEMATICA A.A Alessandro Combi ESERCIZI DI LOGICA MATEMATICA A.A. 2015-16 Alessandro Combi Esercizio 1.7 Per ogni formula A, dimostrare che ρ(a) = min{n A F n } Soluzione: Chiamo rank(a) = min{n A F n }. Bisogna provare che rank segue

Dettagli

I primi postulati (o assiomi) in : Geometria: Euclide (300 a.c), Elementi. Aritmetica: Peano (1889), Arithmetices Principia, nova methodo exposita

I primi postulati (o assiomi) in : Geometria: Euclide (300 a.c), Elementi. Aritmetica: Peano (1889), Arithmetices Principia, nova methodo exposita Le slide che seguono sono state impiegate durante la conferenza PEANO E L ARITMETICA (Siena, 6 Aprile 2019). Non hanno alcuna autonomia, essendo un semplice supporto visivo ad una lezione parlata, ma possono

Dettagli

Elementi di Teoria degli Insiemi

Elementi di Teoria degli Insiemi Elementi di Teoria degli Insiemi 2016/17 Esercizi di Giacomo Bertolucci (matr. 519430) Lezioni 1-6 Lezione 1 Non sono stati lasciati esercizi. Lezione 2 Esercizio 1. Sia: Dimostrare che: (a, b) = {{a},

Dettagli

Definizione 1 Diciamo che ϕ è un applicazione (o funzione o mappa) tra A e B se per ogni a A esiste uno ed un solo b B tale che (a,b) ϕ.

Definizione 1 Diciamo che ϕ è un applicazione (o funzione o mappa) tra A e B se per ogni a A esiste uno ed un solo b B tale che (a,b) ϕ. 0.1 Applicazioni Siano A e B due insiemi non vuoti e sia ϕ una relazione binaria tra A e B. Definizione 1 Diciamo che ϕ è un applicazione (o funzione o mappa) tra A e B se per ogni a A esiste uno ed un

Dettagli

concetti matematici di base

concetti matematici di base concetti matematici di base Fabrizio d Amore Università La Sapienza, Dip. Informatica e Sistemistica A. Ruberti settembre 2008 concetti elementari di insiemistica Sia A un insieme x A significa che l elemento

Dettagli

Istituzioni di Logica Matematica

Istituzioni di Logica Matematica Istituzioni di Logica Matematica Sezione 11 del Capitolo 3 Alessandro Andretta Dipartimento di Matematica Università di Torino A. Andretta (Torino) Istituzioni di Logica Matematica AA 2013 2014 1 / 19

Dettagli

Filosofia della Scienza Soluzioni Compito 2

Filosofia della Scienza Soluzioni Compito 2 Filosofia della Scienza 2010-11 Soluzioni Compito 2 Gianluigi Bellin 10 gennaio 2011 1 Domanda 1 - Teorema di Cantor Una funzione f : A B si dice iniettiva se per ogni x, y A, f(x) f(y) implica x y. Una

Dettagli

Soluzione 1.3. L equazione delle classi è. Ord (G) Ord (C (a)) Ord (G) = Ord (S 3 ) Ord (C (id)) + Ord (S 3 ) Ord (C ((1, 2))) + Ord (S 3 )

Soluzione 1.3. L equazione delle classi è. Ord (G) Ord (C (a)) Ord (G) = Ord (S 3 ) Ord (C (id)) + Ord (S 3 ) Ord (C ((1, 2))) + Ord (S 3 ) Università degli studi di Roma Tre Corso di Laurea Triennale in Matematica, a.a. 2003/2004 AL2 - Algebra 2, gruppi anelli e campi Soluzioni 31 ottobre 2004 1 Gruppo Simmetrico 1. Per ogni divisore p, primo,

Dettagli

Esempi 1. Troviamo, se esistono, sup/inf, max/min dell insieme A = n : n N,n>0 } A è composto dai numeri. 4,... Vediamo subito che 1 A e 1 n 2, 1 3, 1

Esempi 1. Troviamo, se esistono, sup/inf, max/min dell insieme A = n : n N,n>0 } A è composto dai numeri. 4,... Vediamo subito che 1 A e 1 n 2, 1 3, 1 Lezioni -4 8 Esempi 1. Troviamo, se esistono, sup/inf, max/min dell insieme A = A è composto dai numeri { 1 n : n N,n>0 }. 1, 1 2, 1, 1 4,... Vediamo subito che 1 A e 1 n 1 per ogni n N, n > 0. Questa

Dettagli

ANALISI 1 1 TERZA LEZIONE

ANALISI 1 1 TERZA LEZIONE ANALISI 1 1 TERZA LEZIONE 1 prof. Claudio Saccon, Dipartimento di Matematica Applicata, Via F. Buonarroti 1/C email: saccon@mail.dm.unipi.it web: http://www2.ing.unipi.it/ d6081/index.html Ricevimento:

Dettagli

Gruppi, anelli, campi e polinomi: le prime definizioni.

Gruppi, anelli, campi e polinomi: le prime definizioni. Gruppi, anelli, campi e polinomi: le prime definizioni. Ilaria Del Corso 1 GRUPPI Definizione 1.1. Sia G un insieme, G e sia un operazione su G. Si dice che (G, ) è un gruppo se 1. è associativa, ossia

Dettagli

(a, b) (x, y) = (ax, by). la compatibilità fra le due operazioni è data dalla compatibilità delle operazioni di R e R.

(a, b) (x, y) = (ax, by). la compatibilità fra le due operazioni è data dalla compatibilità delle operazioni di R e R. Università degli studi di Roma Tre Corso di Laurea Triennale in Matematica, a.a. 2004/2005 AL2 - Algebra 2, gruppi anelli e campi Soluzioni 26 Novembre 2004 1 Anelli e Ideali 1. Dati due anelli R e R,

Dettagli

1 I numeri naturali. 1.1 Gli assiomi di Peano

1 I numeri naturali. 1.1 Gli assiomi di Peano 1 I numeri naturali I numeri naturali sono il punto di partenza per la costruzione degli altri insiemi numerici: numeri interi, razionali, reali e quindi complessi, interi modulo n. Il concetto di numero

Dettagli

COSTRUZIONE ASSIOMATICA DEI NUMERI REALI

COSTRUZIONE ASSIOMATICA DEI NUMERI REALI COSTRUZIONE ASSIOMATICA DEI NUMERI REALI Si vuole arrivare alla descrizione completa dell insieme dei numeri reali R per via assiomatica partendo dall insieme dei numeri naturali N e passando attraverso

Dettagli

Esercitazione n. 35 (24/02/2016)

Esercitazione n. 35 (24/02/2016) Esercitazione n 35 (24/02/206) Argomenti Morfismo di Frobenius Esercizi vari sugli anelli II Teorema di isomorfismo, applicazioni Anelli di funzioni Esercizio (Morfismo di Frobenius) Sia p un numero primo

Dettagli

Cenni di logica matematica e di teoria degli insiemi Paola Rubbioni

Cenni di logica matematica e di teoria degli insiemi Paola Rubbioni Cenni di logica matematica e di teoria degli insiemi Paola Rubbioni CORSI INTRODUTTIVI Dipartimento di Ingegneria di Perugia a.a. 2018/2019 1 Corsi Introduttivi - a.a. 2017/2018 2 1 Logica matematica Serve

Dettagli

Esercizi lezione 23/3/15, Andrea Vaccaro

Esercizi lezione 23/3/15, Andrea Vaccaro Esercizi lezione 3/3/15, Andrea Vaccaro 31 marzo 015 Proposizione 0.1. Sia A N interno. A è iperinfinito esiste f : A N interna bigettiva. Dimostrazione. Prima di cominciare con la dimostrazione vera e

Dettagli

Esercizi di Elementi di Teoria degli Insiemi

Esercizi di Elementi di Teoria degli Insiemi Esercizi di Elementi di Teoria degli Insiemi Gemma di Petrillo 531909 3 aprile 2018 1 Esercizi sulla prima parte Esercizio 1.1. I seguenti fatti sono equivalenti: 1. Se < A i i I > è una sequenza di insiemi

Dettagli

INSIEMI E RELAZIONI. 1. Insiemi e operazioni su di essi

INSIEMI E RELAZIONI. 1. Insiemi e operazioni su di essi INSIEMI E RELAZIONI 1. Insiemi e operazioni su di essi Il concetto di insieme è primitivo ed è sinonimo di classe, totalità. Sia A un insieme di elementi qualunque. Per indicare che a è un elemento di

Dettagli

INSIEMI. Se X è un insieme, indichiamo con P(X) l insieme dei sottoinsiemi di X (sono elementi di P(X) anche e X).

INSIEMI. Se X è un insieme, indichiamo con P(X) l insieme dei sottoinsiemi di X (sono elementi di P(X) anche e X). INSIEMI Se X è un insieme, indichiamo con P(X) l insieme dei sottoinsiemi di X (sono elementi di P(X) anche e X). Sia A = {A λ : λ Λ} una famiglia di insiemi. Definiamo: unione A = A λ è l insieme U tale

Dettagli

ANALISI 1 1 SEDICESIMA - DICIASETTESIMA LEZIONE Serie

ANALISI 1 1 SEDICESIMA - DICIASETTESIMA LEZIONE Serie ANALISI 1 1 SEDICESIMA - DICIASETTESIMA LEZIONE Serie 1 prof. Claudio Saccon, Dipartimento di Matematica Applicata, Via F. Buonarroti 1/C email: saccon@mail.dm.unipi.it web: http://www2.ing.unipi.it/ d6081/index.html

Dettagli

11/3 IRRIDUCIBILITÀ NELLO SPAZIO DI HILBERT 10/11 1 IRRIDUCIBILITÀ

11/3 IRRIDUCIBILITÀ NELLO SPAZIO DI HILBERT 10/11 1 IRRIDUCIBILITÀ 11/3 IRRIDUCIBILITÀ NELLO SPAZIO DI HILBERT 10/11 1 IRRIDUCIBILITÀ Sistemi irriducibili di operatori in uno spazio di Hilbert Un insieme o sistema di operatori {A, B,...} in uno spazio di Hilbert H si

Dettagli

Corso di Laurea in Matematica Geometria 2. Foglio di esercizi n. 1 a.a Soluzioni

Corso di Laurea in Matematica Geometria 2. Foglio di esercizi n. 1 a.a Soluzioni Corso di Laurea in Matematica Geometria 2 Foglio di esercizi n. 1 a.a. 2015-16 Soluzioni Gli esercizi sono presi dal libro di Manetti. Per svolgere questi esercizi, studiare con cura i paragrafi 3.1, 3.2,

Dettagli

Definizione di anello

Definizione di anello Definizione di anello Definizione Sia A un insieme dotato di due leggi di composizione interne + e. Si dice che la struttura algebrica (A, +, ) è un anello se: Definizione di anello Definizione Sia A un

Dettagli

Alcuni equivalenti dell Assioma della Scelta

Alcuni equivalenti dell Assioma della Scelta Alcuni equivalenti dell Assioma della Scelta Giugno 2010 Gabriele Gullà Sommario Dimostreremo l equivalenza fra l assioma della scelta ed altri enunciati della matematica piú o meno noti. Enunciati: 1)

Dettagli

Esercizi di Algebra Commutativa Moduli 1 Tracce delle soluzioni

Esercizi di Algebra Commutativa Moduli 1 Tracce delle soluzioni Esercizi di Algebra Commutativa Moduli 1 Tracce delle soluzioni 1. Sia A un anello A 0. Provare che: A n A m m = n. Soluzione. Sia m A un ideale massimale. Sia m m = ma m e m n = ma n. Se ϕ : A m A n e

Dettagli

Cenni di logica matematica e di teoria degli insiemi. CORSI INTRODUTTIVI Dipartimento di Ingegneria di Perugia a.a. 2016/2017 Paola Rubbioni

Cenni di logica matematica e di teoria degli insiemi. CORSI INTRODUTTIVI Dipartimento di Ingegneria di Perugia a.a. 2016/2017 Paola Rubbioni Cenni di logica matematica e di teoria degli insiemi CORSI INTRODUTTIVI Dipartimento di Ingegneria di Perugia a.a. 2016/2017 Paola Rubbioni 1 1 Logica matematica Corsi Introduttivi - a.a. 2016/2017 2 Serve

Dettagli

Teorema di Hahn-Banach

Teorema di Hahn-Banach Teorema di Hahn-Banach Alessandra Albanese e Sara Lamboglia 12.03.2012 1 Teorema di Hahn-Banach Teorema 1.1 (Hahn-Banach). Se M é un sottospazio di uno spazio vettoriale normato X e f é un funzionale lineare

Dettagli

Ordinali e cardinali Teoria assiomatica non formalizzata degli insiemi a cura di Franco Montagna

Ordinali e cardinali Teoria assiomatica non formalizzata degli insiemi a cura di Franco Montagna Ordinali e cardinali Teoria assiomatica non formalizzata degli insiemi a cura di Franco Montagna Avvertenza. Queste note costituiscono il contenuto di una breve lezione sugli insiemi e in particolare su

Dettagli

Elementi di Algebra e di Matematica Discreta Strutture algebriche: gruppi

Elementi di Algebra e di Matematica Discreta Strutture algebriche: gruppi Elementi di Algebra e di Matematica Discreta Strutture algebriche: gruppi Cristina Turrini UNIMI - 2015/2016 Cristina Turrini (UNIMI - 2015/2016) Elementi di Algebra e di Matematica Discreta 1 / 34 index

Dettagli