Cenni di logica matematica e di teoria degli insiemi. CORSI INTRODUTTIVI Dipartimento di Ingegneria di Perugia a.a. 2016/2017 Paola Rubbioni

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Cenni di logica matematica e di teoria degli insiemi. CORSI INTRODUTTIVI Dipartimento di Ingegneria di Perugia a.a. 2016/2017 Paola Rubbioni"

Transcript

1 Cenni di logica matematica e di teoria degli insiemi CORSI INTRODUTTIVI Dipartimento di Ingegneria di Perugia a.a. 2016/2017 Paola Rubbioni 1

2 1 Logica matematica Corsi Introduttivi - a.a. 2016/ Serve ad inquadrare in schemi rigorosi gli strumenti ed i metodi di ragionamento della matematica In matematica si definiscono gli oggetti, se ne definiscono le proprietà, si fanno deduzioni logiche Il complesso di espressioni delle quali si possa dire se sono Vere o False costituisce un SISTEMA LOGICO Atomo: oggetto del sistema logico; si indica con a, b, x,...; possono essere numeri, frasi,... Esempio: x = [popolazione di Roma]; a = [oggi piove] Proposizione: frase di cui si possa dire se V oppure F Esempi: [11 è dispari] V ; [13 è pari] F ; [30 è divisibile per 2] V. Predicato: proposizione contenente una variabile e che quindi può essere V o F a seconda del valore della variabile Esempi: p(x) = [x è un quadrato perfetto] V se x = 4, 9, 16,... mentre è F se x = 2, 3, 5,...; p(x) = [x è un numero pari] è V se... mentre è F se... Proposizioni e predicati si possono legare tra loro con i : negazione Esempio: P = [il numero 6 è primo]; CONNETTIVI LOGICI P = [non è vero che il numero 6 è primo] = [il numero 6 non è primo] : congiunzione (et) Esempio: P = [oggi piove]; Q = [porto l ombrello] P Q = [oggi piove e porto l ombrello] : disgiunzione (vel) Esempio: P = [oggi piove]; Q = [porto l ombrello] P Q = [oggi piove o porto l ombrello] TABELLE DI VERITA

3 Corsi Introduttivi - a.a. 2016/ P P ( P ) V F V F V F ; P Q P Q P Q V V V V F F F F V F F V F V F V Esempio: P = [il numero 6 è primo] F ; Q = [il numero 5 è primo] V P Q = [sia il numero 6 che il numero 5 sono primi] F P Q = [o il numero 6 è primo o il numero 5 è primo] V dunque P Q (P Q) (P Q) P Q P Q V V F F F F F F V V V V V F V F V F F V V F V F Leggi di De Morgan (P Q) = P Q (P Q) = P Q Esempio: (P Q) = [non è vero che 6 e 5 sono entrambi primi] P Q = [non è vero che il numero 6 è primo oppure non è vero che il numero 5 è primo] IMPLICAZIONE ED EQUIVALENZA : implica A B si legge: [se A è vera, allora B è vera] [A è condizione sufficiente per B] [B è condizione necessaria per A] : equivale A B si legge: [A e B sono equivalenti] [A è condizione necessaria e sufficiente per B (e viceversa)] (A B) (B A) Formulazione astratta-logica degli enunciati dei teoremi

4 Corsi Introduttivi - a.a. 2016/ Teorema: CN perché un parallelogramma sia un quadrato è che abbia le diagonali uguali = [P è un quadrato P ha le diagonali uguali] = [se un parallelogramma è un quadrato, allora ha le diagonali uguali] }{{}}{{} ipotesi tesi = [CS perché un parallelogramma abbia le diagonali uguali è che sia un quadrato] La CN non è anche CS, ovvero [P ha le diagonali uguali P è un quadrato]; controes: rettangolo Teorema: CS perché un numero sia pari è che sia divisibile per 2 = [x è divisibile per 2 x è pari] = [se x è divisibile per 2 allora x è pari] }{{}}{{} ipotesi tesi In questo caso è vero anche il viceversa, cioè la CS è anche necessaria, quindi le due proposizioni sono equivalenti, ovvero [x è divisibile per 2 x è pari] Osservazione: [A B] equivale a [ B A] Esempio: A = [n è divisibile per 9]; B = [n è divisibile per 3] A B = [se n è divisibile per 9, allora n è divisibile per 3] B A = [se n non è divisibile per 3, allora n non è divisibile per 9] Att.!! situazione diversa da B A = [che n sia divisibile per 3 non implica che n sia divisibile per 9]; questa infatti nel caso in questione è falsa: controes: n = 6 è divisibile per 3 ma non per 9. Esempio: A = [x > 9]; B = [x > 5] A B significa [se x > 9 allora x > 5]; o equivalentemente [CS perché x > 5 è che x > 9]; o equivalentemente [CN perché x > 9 è che x > 5]; per l osservazione precedente questo equivale a B A, che significa [se non è x > 5 allora non è x > 9]. Anche qui si ha che non è vero che B A, il quale significa [x > 5 non implica x > 9]; controes: x = 7 : esiste : per ogni QUANTIFICATORI esistenziale ed universale NEGARE I PREDICATI x P (x) = [per ogni valore della variabile accade che la proprietà P (x) è vera] x : Q(x) = [esiste almeno un valore della variabile per cui la proprietà Q(x) è vera]

5 Corsi Introduttivi - a.a. 2016/ Vediamo come si nega. Esempio: [Non è vero che ogni studente ha una penna] = [almeno uno studente non ha una penna] dunque [ ( x P (x))] equivale a [ x : P (x)] In generale: Esempio: un insieme C è convesso se A, B in C AB contenuto in C; un insieme C non è convesso se A, B in C : AB non è contenuto in C Esempi: ; : ; poi si nega la proprietà 1. Negare che [ogni studente è biondo e con gli occhi azzurri]. In simboli, devo negare che [ x P (x) Q(x)], quindi la negazione è [ x : (P (x) Q(x))] }{{} De Morgan [ x : P (x) Q(x)], quindi [c è almeno uno studente che o non è biondo o non ha gli occhi azzurri]. 2. Negare la frase [ x R y R : xy = 1]. [ x R : ( y R : xy = 1)] [ x R : y R xy 1)]. 3. Negare la frase [La mamma cucina e parla al telefono]. frase: [C T ]; negata (per De Morgan) è [ C T ] ovvero [la mamma o non cucina o non parla al telefono]. 4. Negare la frase [Tutte le sere leggo a letto]. frase: [ S L]; negata è [ S : L], ovvero [c è almeno una sera in cui non leggo a letto].

6 Corsi Introduttivi - a.a. 2016/ Numeri N numeri naturali: 0, 1, 2, 3, 4,... (N, +) (G1) elemento neutro: 0 (G2) proprietà associativa: (n + m) + p = n + (m + p) (C) proprietà commutativa: n + m = m + n Ma NON esiste in N l opposto, cioè l elemento che sommato ad un numero fornisca l elemento neutro. (Z, +) numeri interi (G1) elemento neutro: 0 (G2) proprietà associativa: (n + m) + p = n + (m + p) (G3) opposto: n m : n + m = 0; l elemento opposto di n si indica con il simbolo n; (C) proprietà commutativa: n + m = m + n. (Z, +) è un gruppo abeliano o commutativo (Z, +, ) (G1) elemento neutro: 1 (G2) proprietà associativa: (n m) p = n (m p) (C) proprietà commutativa: n m = m n (D) proprietà distributiva: n (m + p) = n m + n p. Ma NON esiste in N l inverso, cioè l elemento che moltiplicato per un numero intero fornisca l elemento neutro. (Q, +, ) numeri razionali (G1) elemento neutro: 1 (G2) proprietà associativa: (n m) p = n (m p) (G3) opposto: p 0 q : p q = 1; l elemento opposto di p si indica con il simbolo 1 p ; (C) proprietà commutativa: n m = m n (D) proprietà distributiva: n (m + p) = n m + n p. Q escluso 0 è un gruppo rispetto al prodotto. (R, +, ) numeri reali (G1) elemento neutro: 1 (G2) proprietà associativa: (n m) p = n (m p) (G3) opposto: p 0 q : p q = 1; l elemento opposto di p si indica con il simbolo 1 p ;

7 Corsi Introduttivi - a.a. 2016/ (C) proprietà commutativa: n m = m n (D) proprietà distributiva: n (m + p) = n m + n p. I numeri reali nascono per risolvere problemi di incommensurabilità (lato e diagonale del quadrato) o di esaustione (lnghezza della circonferenza). Osserviamo che: q Q si può scrivere in infiniti modi: 0, 75 = = 3 4 0, 6 = 6 9 = = 2 3 = 4 6 = 2 3 costruisco la frazione di un decimale periodico: x = 0, 6 = 0, =...(decimale esatto) =...(decimale periodico) 10x = 6, = 6 + 0, = 6 + x 9x = 6 x = 6 9 ; costruisco la frazione di un decimale periodico: x = 0, 12 = 0, x = 12, = x(10 2 1) = 12 x = ; costruisco un numero irrazionale, cioè di R \ Q: = , = = , 12 = 12 + x 0, In R sussiste una relazione d ordine totale, cioè valgono le seguenti proprietà: riflessiva: x R x x antisimmetrica: x, y R : x y y x x = y transitiva: x, y, z R : x y y z x z tricotomia (?): x, y R x y y x

8 3 Teoria degli insiemi Corsi Introduttivi - a.a. 2016/ Parole chiave: insieme (A); elemento (a); appartenenza ( ) Descrizione per tabulazione: A = {1, 2, 5} (ordine irrilevante) Descrizione per proprietà: A = {studenti aventi nome con iniziale A} Insiemi numerici N={0, 1, 2,...} Z={..., 2, 1, 0, 1, 2,...} Q= { a b : a, b Z, b 0} R={tutti i decimali periodici e non periodici, limitati e non limitati} Possiamo allora dare la definizione di intervallo: dati a, b R, si pone e analogamente [a, b] = {x R : a x b} [a, b[= {x R : a x < b}; ]a, b] = {x R : a < x b}; ]a, b[= {x R : a < x < b}. RELAZIONI TRA INSIEMI A B = A è contenuto in B; A è sottoinsieme di B; vuol dire che x A x B, cioè ogni elemento di A è anche elemento di B Esempio: A = {1, 2} B = {1, 2, 7} Esempio: A = {studenti aventi nome con iniziale A} B = {studenti} Esempio: N Z Q R. A B = A non è contenuto in B; A non è sottoinsieme di B; vuol dire che x A : x B, cioè esiste almeno un elemento di A che non appartiene a B Esempio: A = {studenti oggi in aula}; B = {studenti domani in aula}

9 Corsi Introduttivi - a.a. 2016/ Esempio: A = {studenti oggi in aula}; B = {studenti oggi a medicina} A = B = A B B A; vuol dire che ( x A x B) ( x B x A) Esempio: A = {persone presenti in aula} B = {persone entrate in aula e non ancora uscite} A B = A B B A Osservazione 3.1 Non scambiare con! La prima è relazione tra elementi, la seconda tra insiemi: sono livelli diversi della realtà. Osservazione 3.2 Un insieme può essere un elemento in un insieme di insiemi. Esempio: (0, 0) r = {(x, y) R 2 : y = x} F = {y = mx : m R}. Insiemi degeneri = insieme vuoto P(A) = insieme delle parti Esempio: A = {1, 2, 3} P(A) = {, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, A} OPERAZIONI tra insiemi in X insieme universo A B = {x X : x A x B} intersezione

10 Corsi Introduttivi - a.a. 2016/ A B A e A B B A B A B = A due insiemi sono disgiunti se A B = A B = {x X : x A x B} unione A A B e B A B A B A B = B A C = {x X : (x A)} = {x X : x A} complementare A \ B = {x X : x A x B} = {x X : x A} {x X : x B} = A B C differenza

11 Corsi Introduttivi - a.a. 2016/ A B = {(x, y) X X : x A, x B} prodotto cartesiano le coppie sono ordinate: A B B A Esempio: A = {1, 2}, B = {2, 3} A B = {(1, 2), (1, 3), (2, 2), (2, 3)}, B A = {(2, 1), (2, 2), (3, 1), (3, 2)} PIANO CARTESIANO [0, 1] [ 1, 1] [0, 1] ] 1, 1[ ]0, 1] [ 1, 1]... Proprietà Leggi di De Morgan (A B) C = A C B C (A B) C = A C B C

12 Corsi Introduttivi - a.a. 2016/ Proviamo la prima. Dobbiamo dimostrare la doppia inclusione. : Ip: x (A B) C ; Ts: x A C B C x (A B) C x A B (x A B) (x A x B) }{{} (x A) (x B) x A x B De Morgan : Ip: x A C B C ; Ts: x (A B) C x A C x B C x A C B C x A C B C x A x B (x A) (x B) }{{} De Morgan (x A x B) (x A B) x A B Proprietà dell intersezione A B = B A commutativa x (A B) C A (B C) = (A B) C associativa A A = A idempotenza Proprietà dell unione A B = B A commutativa A (B C) = (A B) C associativa A A = A idempotenza Esercizio 3.1 Provare la proprietà distributiva dell intersezione sull unione, cioè che A (B C) = (A B) (A C). Svolgimento: x A (B C) x A (x B x C) (x A x B) (x A x C) x (A B) x (A C) x (A B) (A C)

13 Corsi Introduttivi - a.a. 2016/ Esercizi Provare la proprietà distributiva dell unione sull intersezione, cioè che A (B C) = (A B) (A C) 2. Provare che A (A B) = A 3. Provare che A C (A B) = A C B 4. Provare che A B = A (B \ A) 5. Provare che A \ (B C) = (A \ B) (A \ C)

INSIEMI. DEF. Un INSIEME è una qualsiasi collezione di oggetti.

INSIEMI. DEF. Un INSIEME è una qualsiasi collezione di oggetti. INSIEMI DEF. Un INSIEME è una qualsiasi collezione di oggetti. Esso è ben definito quando è chiaro se un oggetto appartiene o non appartiene all insieme stesso. Esempio. E possibile definire l insieme

Dettagli

ESEMPIO Un esempio di insieme vuoto è l insieme dei numeri reali di quadrato 4. B A

ESEMPIO Un esempio di insieme vuoto è l insieme dei numeri reali di quadrato 4. B A TEORI DEGLI INSIEMI GENERLIT Un insieme è un ente costituito da oggetti. Il concetto di insieme e di oggetto si assumono come primitivi. Se un oggetto a fa parte di un insieme si dice che esso è un suo

Dettagli

Che cos è un insieme? Come si individua un insieme? 1. Scrivendone esplicitamente gli elementi: C = {2, 4, 6, 8, 10,...}.

Che cos è un insieme? Come si individua un insieme? 1. Scrivendone esplicitamente gli elementi: C = {2, 4, 6, 8, 10,...}. Teoria degli insiemi Che cos è un insieme? Come si individua un insieme? 1. Scrivendone esplicitamente gli elementi: A = {a, b, c} B = {1, 2} C = {2, 4, 6, 8, 10,...}. 2. Enunciando una proprietà che è

Dettagli

Elementi di Logica Teoria degli insiemi

Elementi di Logica Teoria degli insiemi Precorso di Analisi Matematica Facoltà d'ingegneria Università del Salento Elementi di Logica Teoria degli insiemi Proff. A. Albanese E. Mangino Dipartimento di Matematica e Fisica E. De Giorgi - Università

Dettagli

LIBRO ADOTTATO. A. FACCHINI: ALGEBRA E MATEMATICA DISCRETA, ed. ZANICHELLI LIBRI CONSIGLIATI

LIBRO ADOTTATO. A. FACCHINI: ALGEBRA E MATEMATICA DISCRETA, ed. ZANICHELLI LIBRI CONSIGLIATI LIBRO ADOTTATO A. FACCHINI: ALGEBRA E MATEMATICA DISCRETA, ed. ZANICHELLI LIBRI CONSIGLIATI G.M. PIACENTINI CATTANEO: MATEMATICA DISCRETA, ed. ZANICHELLI C. COSTANTINO, P. LONGOBARDI, M. MAJ, C. NICOTERA:

Dettagli

DISPENSE SU TEORIA DEGLI INSIEMI E NUMERI

DISPENSE SU TEORIA DEGLI INSIEMI E NUMERI FACOLTA' DI ECONOMIA UNIVERSITA DELLA CALABRIA Corso di Modelli Matematici per l Azienda a.a. 2011-2012 DISPENSE SU TEORIA DEGLI INSIEMI E NUMERI Prof. Fabio Lamantia INSIEMI INSIEME= gruppo di oggetti

Dettagli

Indice. 1 Cenni di logica. 2 Elementi di teoria degli insiemi. 3 Relazioni e funzioni. 4 Strutture algebriche

Indice. 1 Cenni di logica. 2 Elementi di teoria degli insiemi. 3 Relazioni e funzioni. 4 Strutture algebriche Indice 1 Cenni di logica 2 Elementi di teoria degli insiemi 3 Relazioni e funzioni 4 Strutture algebriche Silvia Pianta - Laura Montagnoli Geometria I - Prerequisiti - UCSC A.A. 2015/2016 1 / 36 1. Cenni

Dettagli

Elementi di logica. SCOPO: introdurre nozioni di logica & vocabolario per una corretta interpretazione delle dimostrazioni.

Elementi di logica. SCOPO: introdurre nozioni di logica & vocabolario per una corretta interpretazione delle dimostrazioni. Elementi di logica SCOPO: introdurre nozioni di logica & vocabolario per una corretta interpretazione delle dimostrazioni. Quantificatori: elementi fondamentali del linguaggio matematico. quantificatore

Dettagli

Logica degli enunciati; Operazioni con le proposizioni; Proprietà delle operazioni logiche; Tautologie; Regole di deduzione; Logica dei predicati;

Logica degli enunciati; Operazioni con le proposizioni; Proprietà delle operazioni logiche; Tautologie; Regole di deduzione; Logica dei predicati; Logica degli enunciati; Operazioni con le proposizioni; Proprietà delle operazioni logiche; Tautologie; Regole di deduzione; Logica dei predicati; Implicazione logica. Equivalenza logica; Condizione necessaria,

Dettagli

Precorsi di matematica

Precorsi di matematica Precorsi di matematica Francesco Dinuzzo 12 settembre 2005 1 Insiemi Il concetto di base nella matematica moderna è l insieme. Un insieme è una collezione di elementi. Gli elementi di un insieme vengono

Dettagli

Richiami di logica matematica

Richiami di logica matematica Richiami di logica matematica Gli oggetti elementari dei discorsi matematici sono le proposizioni logiche = enunciati di cui si possa stabilire inequivocabilmente se sono veri o falsi. Sono proposizioni

Dettagli

Corso di Analisi Matematica I numeri reali

Corso di Analisi Matematica I numeri reali Corso di Analisi Matematica I numeri reali Laurea in Informatica e Comunicazione Digitale A.A. 2013/2014 Università di Bari ICD (Bari) Analisi Matematica 1 / 57 1 Insiemi e logica 2 Campi ordinati 3 Estremo

Dettagli

Cenni di logica. Hynek Kovarik. Università di Brescia. Analisi Matematica A

Cenni di logica. Hynek Kovarik. Università di Brescia. Analisi Matematica A Cenni di logica Hynek Kovarik Università di Brescia Analisi Matematica A Hynek Kovarik (Università di Brescia) Cenni di logica Analisi Matematica A 1 / 21 Scopo: introdurre nozioni di logica & terminologia

Dettagli

04 - Logica delle dimostrazioni

04 - Logica delle dimostrazioni Università degli Studi di Palermo Facoltà di Economia CdS Sviluppo Economico e Cooperazione Internazionale Appunti del corso di Matematica 04 - Logica delle dimostrazioni Anno Accademico 013/014 D. Provenzano,

Dettagli

Insiemi, Numeri, Terminologia. Prof. Simone Sbaraglia

Insiemi, Numeri, Terminologia. Prof. Simone Sbaraglia Insiemi, Numeri, Terminologia Prof. Simone Sbaraglia Corso Rapido di Logica Matematica La logica formale definisce le regole cui deve obbedire qualsiasi teoria deduttiva. Una proposizione e` una affermazione

Dettagli

1 Relazioni. Definizione Una relazione R su un insieme A si dice relazione d ordine se gode delle proprietà 1), 3), 4).

1 Relazioni. Definizione Una relazione R su un insieme A si dice relazione d ordine se gode delle proprietà 1), 3), 4). 1 Relazioni 1. definizione di relazione; 2. definizione di relazione di equivalenza; 3. definizione di relazione d ordine Definizione Una corrispondenza tra due insiemi A e B è un sottoinsieme R del prodotto

Dettagli

Nozioni introduttive e notazioni

Nozioni introduttive e notazioni Nozioni introduttive e notazioni 1.1 Insiemi La teoria degli insiemi è alla base di tutta la matematica, in quanto ne fornisce il linguaggio base e le notazioni. Definiamo un insieme come una collezione

Dettagli

Richiami teorici ed esercizi di Logica

Richiami teorici ed esercizi di Logica Facoltà di ingegneria Università della Calabria Corsi di Potenziamento Matematica e Logica A. A. 2008-2009 Richiami teorici ed esercizi di Logica Proposizioni logiche: Ogni espressione matematica alla

Dettagli

Matematica per le scienze sociali Elementi di base. Francesco Lagona

Matematica per le scienze sociali Elementi di base. Francesco Lagona Matematica per le scienze sociali Elementi di base Francesco Lagona University of Roma Tre F. Lagona (francesco.lagona@uniroma3.it) 1 / 24 Outline 1 Struttura del corso 2 Algebra booleana 3 Algebra degli

Dettagli

Verifica per la classe prima COGNOME... NOME... Classe... Data...

Verifica per la classe prima COGNOME... NOME... Classe... Data... Capitolo Gli insiemi Insiemi Insiemi Sottoinsiemi Operazioni.a Rappresentare per tabulazione e tramite l uso dei diagrammi di Eulero-Venn i seguenti insiemi dati per caratteristica: A {n n H 0 ; n 7} B

Dettagli

CORSO DI AZZERAMENTO DI MATEMATICA

CORSO DI AZZERAMENTO DI MATEMATICA CORSO DI AZZERAMENTO DI MATEMATICA 1 LE BASI FONDAMENTALI INSIEMI INSIEMI NUMERICI (naturali, interi, razionali e reali) CALCOLO LETTERALE RICHIAMI DI TRIGONOMETRIA I NUMERI COMPLESSI ELEMENTI DI GEOMETRIA

Dettagli

M.P. Cavaliere ELEMENTI DI MATEMATICA E LOGICA MATEMATICA DISCRETA INSIEMI

M.P. Cavaliere ELEMENTI DI MATEMATICA E LOGICA MATEMATICA DISCRETA INSIEMI M.P. Cavaliere ELEMENTI DI MATEMATICA E LOGICA MATEMATICA DISCRETA INSIEMI Assumiamo come primitivo il concetto di insieme e quello di appartenenza di un elemento a un insieme. La notazione x A indica

Dettagli

01 - Elementi di Teoria degli Insiemi

01 - Elementi di Teoria degli Insiemi Università degli Studi di Palermo Scuola Politecnica Dipartimento di Scienze Economiche, Aziendali e Statistiche Appunti del corso di Matematica 01 - Elementi di Teoria degli Insiemi Anno Accademico 2015/2016

Dettagli

In una palazzina abitata da 20 famiglie, 10 di esse hanno il cane, 2 non hanno n è cane n è gatto mentre 12 famiglie hanno il gatto.

In una palazzina abitata da 20 famiglie, 10 di esse hanno il cane, 2 non hanno n è cane n è gatto mentre 12 famiglie hanno il gatto. Attività In una palazzina abitata da 20 famiglie, 10 di esse hanno il cane, 2 non hanno n è cane n è gatto mentre 12 famiglie hanno il gatto. È possibile che si realizzi la situazione descritta? Motiviamo...

Dettagli

Definizione - Sottoinsieme Simbolo di Sottoinsieme Relazione di inclusione forte o stretta Simbolicamente: Sottoinsieme: Uguaglianza:

Definizione - Sottoinsieme Simbolo di Sottoinsieme Relazione di inclusione forte o stretta Simbolicamente: Sottoinsieme: Uguaglianza: Insiemi Concetto Primitivo Simboli di appartenenza e non appartenenza Insieme vuoto ø Rappresentazione: Elencazione Diagrammi di Eulero-Venn Mediante Proprietà Caratteristica a, b Definizione - Sottoinsieme

Dettagli

Prerequisiti Matematici

Prerequisiti Matematici Prerequisiti Matematici Richiami di teoria degli insiemi Relazioni d ordine, d equivalenza Richiami di logica Logica proposizionale, tabelle di verità, calcolo dei predicati Importante: Principio di Induzione

Dettagli

PROGRAMMA CONSUNTIVO

PROGRAMMA CONSUNTIVO PAGINA: 1 PROGRAMMA CONSUNTIVO A.S.2014-2015 SCUOLA Liceo Linguistico Manzoni DOCENTE: Marina Barbàra MATERIA: Matematica e Informatica Classe 1 Sezione A OBIETTIVI: le parti sottolineate sono da considerarsi

Dettagli

1. equivalenze e implicazioni logiche. Esercizio 1.2. Trovare le implicazioni che legano i seguenti enunciati (x, y R):

1. equivalenze e implicazioni logiche. Esercizio 1.2. Trovare le implicazioni che legano i seguenti enunciati (x, y R): . equivalenze e implicazioni logiche Esercizio.. Trovare le implicazioni che legano i seguenti enunciati (x, y R): () x < y, () x = y, () x y, () x y, () (x y) > 0. Osserviamo subito che (x y) > 0 equivale

Dettagli

Logica e teoria degli insiemi

Logica e teoria degli insiemi Introduzione Le ricerche booleane L insieme delle parti La logica è la disciplina che studia le regole del ragionamento, per poter costruire oggetti e relazioni di senso compiuto... Date delle frasi di

Dettagli

01 - Elementi di Teoria degli Insiemi

01 - Elementi di Teoria degli Insiemi Università degli Studi di Palermo Facoltà di Economia CdS Sviluppo Economico e Cooperazione Internazionale Appunti del corso di Matematica 01 - Elementi di Teoria degli Insiemi Anno Accademico 2013/2014

Dettagli

Lezioni di ISTITUZIONI di MATEMATICA (gruppo 3)

Lezioni di ISTITUZIONI di MATEMATICA (gruppo 3) Lezioni di ISTITUZIONI di MATEMATICA (gruppo 3) Nicola Durante 2011-12 Abstract 1 Insiemi numerici (Lezione del 5.10.11) 1.1 Cenni di teoria degli insiemi Richiamiamo brevemente alcuni simboli usati in

Dettagli

Elementi di logica. 1. Introduzione. 2. Operatori logici (connettivi)

Elementi di logica. 1. Introduzione. 2. Operatori logici (connettivi) Elementi di logica. Introduzione La logica elementare si interessa della verità di affermazioni complesse a partire dalla verità di quelle più semplici che le compongono. Si può parlare di verità/falsità

Dettagli

Programma di Matematica Classe 1^ C/L Anno scolastico 2014/2015

Programma di Matematica Classe 1^ C/L Anno scolastico 2014/2015 Programma di Matematica Classe 1^ C/L Anno scolastico 2014/2015 Capitolo 1- I numeri naturali e i numeri interi Che cosa sono i numeri naturali La rappresentazione dei numeri naturali Le quattro operazioni

Dettagli

ELEMENTI di TEORIA degli INSIEMI

ELEMENTI di TEORIA degli INSIEMI ELEMENTI di TEORI degli INSIEMI & 1. Nozioni fondamentali. ssumeremo come primitivi il concetto di insieme e di elementi di un insieme. Nel seguito gli insiemi saranno indicati con lettere maiuscole (,,C,...)

Dettagli

Elementi di Algebra e Logica Determinare la tavola della verità di ciascuna delle seguenti forme proposizionali:

Elementi di Algebra e Logica Determinare la tavola della verità di ciascuna delle seguenti forme proposizionali: Elementi di Algebra e Logica 2008. 8. Logica. 1. Determinare la tavola della verità di ciascuna delle seguenti forme proposizionali: (a) p ( q r); (b) p (q r); (c) (p q) ( p r); (d) (p q) ( p r); (e) (p

Dettagli

DEFINIZIONE DI INSIEME

DEFINIZIONE DI INSIEME ELEMENTI DI TEORIA DEGLI INSIEMI PROF.SSA ROSSELLA PISCOPO Indice 1 DEFINIZIONE DI INSIEME ------------------------------------------------------------------------------------------------ 3 2 METODI DI

Dettagli

DI CHE COSA SI OCCUPA LA LOGICA

DI CHE COSA SI OCCUPA LA LOGICA Di Emily Rinaldi DI CHE COSA SI OCCUPA LA LOGICA La logica si occupa dell esattezza dei ragionamenti Nei tempi antichi solo verbale. Nell epoca moderna la logica viene applicata per l ordinamento sistemazione

Dettagli

NOZIONI DI LOGICA PROPOSIZIONI.

NOZIONI DI LOGICA PROPOSIZIONI. NOZIONI DI LOGICA PROPOSIZIONI. Una proposizione è un affermazione che è vera o falsa, ma non può essere contemporaneamente vera e falsa. ESEMPI Sono proposizioni : 7 è maggiore di 2 Londra è la capitale

Dettagli

Un po di logica. Christian Ferrari. Laboratorio di matematica

Un po di logica. Christian Ferrari. Laboratorio di matematica Un po di logica Christian Ferrari Laboratorio di matematica 1 Introduzione La logica è la disciplina che studia le condizioni di correttezza del ragionamento. Il suo scopo è quindi quello di elaborare

Dettagli

Materiale didattico aggiuntivo - Analisi Matematica I CENNI DI LOGICA MATEMATICA. 1. Proposizioni. Valori logici. Connettivi logici. Tavole di verita.

Materiale didattico aggiuntivo - Analisi Matematica I CENNI DI LOGICA MATEMATICA. 1. Proposizioni. Valori logici. Connettivi logici. Tavole di verita. Materiale didattico aggiuntivo - Analisi Matematica I CENNI DI LOGICA MATEMATICA 1. Proposizioni. Valori logici. Connettivi logici. Tavole di verita. Intenderemo per PROPOSIZIONE (o ENUNCIATO) una qualunque

Dettagli

Università degli Studi di Cagliari Dipartimento di Ingegneria Elettrica ed Elettronica ALGEBRA BOOLEANA

Università degli Studi di Cagliari Dipartimento di Ingegneria Elettrica ed Elettronica ALGEBRA BOOLEANA Università degli Studi di Cagliari Dipartimento di Ingegneria Elettrica ed Elettronica ALGEBRA BOOLEANA Introduzione George Boole (1815-1864) nel 1854 elaborò una algebra basata su predicati logici. Valori

Dettagli

ESERCIZI DI ANALISI MATEMATICA 1 FOGLIO 1

ESERCIZI DI ANALISI MATEMATICA 1 FOGLIO 1 ESERCIZI DI ANALISI MATEMATICA 1 FOGLIO 1 Logica e connettivi logici Esercizio 0.1. Si costruiscano le tabelle di verità delle seguenti espressioni booleane; cioè, al variare dei valori di verit delle

Dettagli

Corso di Elementi di Informatica Anno accademico 2015/16

Corso di Elementi di Informatica Anno accademico 2015/16 Corso di Laurea triennale in Ingegneria Navale in condivisione con Corso di Laurea triennale in Ingegneria Chimica (matr. P-Z) Corso di Elementi di Informatica Anno accademico 2015/16 Docente: Ing. Alessandra

Dettagli

DAI NUMERI NATURALI AI NUMERI RAZIONALI

DAI NUMERI NATURALI AI NUMERI RAZIONALI DAI NUMERI NATURALI AI NUMERI RAZIONALI 1. L insieme dei numeri naturali Nel sistema assiomatico ZF, l Assioma dell infinito stabilisce che: Esiste un insieme A, i cui elementi sono insiemi e tale che

Dettagli

L'algebra Booleana. Generalità. Definizioni

L'algebra Booleana. Generalità. Definizioni L'algebra Booleana Generalità L algebra booleana è stata sviluppata da George Boole nel 1854, ed è diventata famosa intorno al 1938 poiché permette l analisi delle reti di commutazione, i cui soli stati

Dettagli

1 IL LINGUAGGIO MATEMATICO

1 IL LINGUAGGIO MATEMATICO 1 IL LINGUAGGIO MATEMATICO Il linguaggio matematico moderno è basato su due concetti fondamentali: la teoria degli insiemi e la logica delle proposizioni. La teoria degli insiemi ci assicura che gli oggetti

Dettagli

Teoria degli Insiemi

Teoria degli Insiemi Angelica Malaspina Dipartimento di Matematica, Informatica ed Economia Università degli Studi della Basilicata, Italy angelica.malaspina@unibas.it distributive distributive distributive Il concetto di

Dettagli

Concentriamo la nostra attenzione sull insieme dei numeri razionali Q. In Q sono definite

Concentriamo la nostra attenzione sull insieme dei numeri razionali Q. In Q sono definite Lezioni del 22 e 24 settembre. Numeri razionali. 1. Operazioni, ordinamento. Indichiamo con N, Z, Q gli insiemi dei numeri naturali, interi relativi, e razionali: N = {0, 1, 2,...} Z = {0, ±1, ±2,...}

Dettagli

GLI INSIEMI PROF. WALTER PUGLIESE

GLI INSIEMI PROF. WALTER PUGLIESE GLI INSIEMI PROF. WALTER PUGLIESE INSIEME DEFINIZIONE UN RAGGRUPPAMENTO DI OGGETTI RAPPRESENTA UN INSIEME IN SENSO MATEMATICO SE ESISTE UN CRITERIO OGGETTIVO CHE PERMETTE DI DECIDERE UNIVOCAMENTE SE UN

Dettagli

Richiami sugli insiemi numerici

Richiami sugli insiemi numerici Richiami sugli insiemi numerici denota l insieme vuoto cioè l insieme privo di elementi. N = {1, 2, 3,...} denota l insieme dei numeri naturali. Z = {..., 2, 1, 0, 1, 2,...} denota l insieme dei numeri

Dettagli

Anno Scolastico 2015/16 PROGRAMMAZIONE ANNUALE CLASSE PRIMA LICEO LINGUISTICO LICEO DELLE SCIENZE UMANE LICEO ECONOMICO-SOCIALE LICEO MUSICALE

Anno Scolastico 2015/16 PROGRAMMAZIONE ANNUALE CLASSE PRIMA LICEO LINGUISTICO LICEO DELLE SCIENZE UMANE LICEO ECONOMICO-SOCIALE LICEO MUSICALE LICEO LAURA BASSI - BOLOGNA Anno Scolastico 2015/16 PROGRAMMAZIONE ANNUALE CLASSE PRIMA LICEO LINGUISTICO LICEO DELLE SCIENZE UMANE LICEO ECONOMICO-SOCIALE LICEO MUSICALE MATEMATICA ARGOMENTI: GLI INSIEMI

Dettagli

Luca Costabile Esercizi di Logica Matematica Dispensa Calcolo Proposizionale 1

Luca Costabile Esercizi di Logica Matematica Dispensa Calcolo Proposizionale 1 Luca Costabile Esercizi di Logica Matematica Dispensa Calcolo Proposizionale 1 Esercizio 1.12 Per dimostrare che per ogni funzione esiste una formula in cui compaiono le variabili tale che la corrispondente

Dettagli

LICEO SCIENTIFICO STATALE L. da VINCI Reggio Calabria. PROGRAMMA DI MATEMATICA svolto nella classe 1^ E Anno Scolastico 2013/2014

LICEO SCIENTIFICO STATALE L. da VINCI Reggio Calabria. PROGRAMMA DI MATEMATICA svolto nella classe 1^ E Anno Scolastico 2013/2014 LICEO SCIENTIFICO STATALE L. da VINCI Reggio Calabria PROGRAMMA DI MATEMATICA svolto nella classe 1^ E Anno Scolastico 2013/2014 I NUMERI NATURALI La rappresentazione dei numeri naturali. Le quattro operazioni.

Dettagli

Ricordando che: = si ha:

Ricordando che: = si ha: Logica matematica Esempi 1. Stailisci il grado di verità delle seguenti proposizioni logiche: :" è h 2 è " :"5 è 2 3 è 6" :" è h : è è " :" h h " :" h è " :" è, è " F 2. Data la proposizione p:" " la sua

Dettagli

Cenni di logica matematica Dott.ssa Sandra Lucente 1

Cenni di logica matematica Dott.ssa Sandra Lucente 1 Cenni di logica matematica Dott.ssa Sandra Lucente 1 Il linguaggio della logica matematica integra e traduce il linguaggio comune sostituendolo quando questo presenta ambiguità. Procediamo come quando

Dettagli

Precorso di Matematica. Parte I : Fondamenti di Matematica

Precorso di Matematica. Parte I : Fondamenti di Matematica Facoltà di Ingegneria Precorso di Matematica Parte I : Fondamenti di Matematica 1. Teoria degli insiemi e cenni di logica Il concetto di insieme costituisce l elemento fondante di gran parte delle esposizioni

Dettagli

Le variabili logiche possono essere combinate per mezzo di operatori detti connettivi logici. I principali sono:

Le variabili logiche possono essere combinate per mezzo di operatori detti connettivi logici. I principali sono: Variabili logiche Una variabile logica (o booleana) è una variable che può assumere solo uno di due valori: Connettivi logici True (vero identificato con 1) False (falso identificato con 0) Le variabili

Dettagli

I.S.I.S. F. De Sanctis Sez. ass. Liceo Classico

I.S.I.S. F. De Sanctis Sez. ass. Liceo Classico Anno Scolastico 2012/13 Disciplina: Matematica Classe: I Liceo classico (nuovo ordinamento) Docente: prof. Roberto Capone ALGEBRA I.S.I.S. F. De Sanctis Sez. ass. Liceo Classico Specifica dettagliata degli

Dettagli

Analisi Matematica 1 A.A. 2015/16

Analisi Matematica 1 A.A. 2015/16 Analisi Matematica 1 A.A. 2015/16 Ingegneria Informatica Ingegneria Elettronica e delle Telecomunicazioni Paola Gervasio orario di ricevimento: MER. 11:30-12:30, VEN 10:30 11:30 Edificio di via Valotti,

Dettagli

Assumiamo come primitivi i concetti di insieme, elemento e appartenenza.

Assumiamo come primitivi i concetti di insieme, elemento e appartenenza. Gli insiemi Insieme, elemento, appartenenza. Assumiamo come primitivi i concetti di insieme, elemento e appartenenza. I concetti primitivi sono quelli dei quali, constatata l impossibilità di fornirne

Dettagli

Matematica. Corso integrato di. per le scienze naturali ed applicate. Materiale integrativo. Paolo Baiti 1 Lorenzo Freddi 1

Matematica. Corso integrato di. per le scienze naturali ed applicate. Materiale integrativo. Paolo Baiti 1 Lorenzo Freddi 1 Corso integrato di Matematica per le scienze naturali ed applicate Materiale integrativo Paolo Baiti 1 Lorenzo Freddi 1 1 Dipartimento di Matematica e Informatica, Università di Udine, via delle Scienze

Dettagli

MATEMATICA DI BASE 1

MATEMATICA DI BASE 1 MATEMATICA DI BASE 1 Francesco Oliveri Dipartimento di Matematica, Università di Messina 30 Agosto 2010 MATEMATICA DI BASE MODULO 1 Insiemi Logica Numeri Insiemi Intuitivamente, con il termine insieme

Dettagli

Propedeutico di matematica Centro Multimediale Montiferru. Lezione 1. Gli insiemi

Propedeutico di matematica Centro Multimediale Montiferru. Lezione 1. Gli insiemi Lezione 1 Gli insiemi Definizione: Un insieme è una collezione di oggetti aventi certe caratteristiche in comune. Gli oggetti si definiscono elementi dell insieme. Esempi: Insieme delle lettere dell alfabeto,

Dettagli

LEZIONE N 3 METODI E TECNOLOGIE PER L INSEGNAMENTO DELLA MATEMATICA

LEZIONE N 3 METODI E TECNOLOGIE PER L INSEGNAMENTO DELLA MATEMATICA LEZIONE N 3 METODI E TECNOLOGIE PER L INSEGNAMENTO DELLA MATEMATICA GLI INSIEMI NUMERICI N Numeri naturali Z : Numeri interi Q : Numeri razionali R : Numeri reali Q A meno di isomorfismi!!! R 5 π 2 3 11

Dettagli

C.L. Informatica, M-Z Bari, 12 Gennaio 2016 Traccia: 1

C.L. Informatica, M-Z Bari, 12 Gennaio 2016 Traccia: 1 Bari, 2 Gennaio 206 Traccia: Esercizio. Scrivere la definizione di funzione suriettiva. Dimostrare che la composizione di due funzioni suriettive è una funzione suriettiva. Esercizio 2. () Stabilire se

Dettagli

Algebra di Boole. Andrea Passerini Informatica. Algebra di Boole

Algebra di Boole. Andrea Passerini Informatica. Algebra di Boole Andrea Passerini passerini@disi.unitn.it Informatica Variabili logiche Una variabile logica (o booleana) è una variable che può assumere solo uno di due valori: True (vero identificato con 1) False (falso

Dettagli

0 Insiemi, funzioni, numeri

0 Insiemi, funzioni, numeri Giulio Cesare Barozzi, Giovanni Dore, Enrico Obrecht Elementi di analisi matematica - Volume 1 Zanichelli 0 Insiemi, funzioni, numeri Esercizi 0.1. Il linguaggio degli insiemi 0.1.1. Esercizio Poniamo

Dettagli

istituto superiore g. terragni olgiate comasco

istituto superiore g. terragni olgiate comasco Disciplina 1 MATEMATICA Classe I A Indirizzo Liceo Scientifico Anno scolastico 2015-2016 Docente Cecilia Moschioni TESTI IN ADOZIONE Bergamini, Trifone, Barozzi, Matematica multimediale.blu vol.1, Zanichelli

Dettagli

1. Teoria degli insiemi

1. Teoria degli insiemi 1. Teoria degli insiemi Introduzione Il concetto di insieme è un concetto primitivo: possiamo dire che un insieme è una collezione di elementi. Indicheremo gli insiemi con lettere maiuscole A,B,... e gli

Dettagli

4 0 = 4 2 = 4 4 = 4 6 = 0.

4 0 = 4 2 = 4 4 = 4 6 = 0. Elementi di Algebra e Logica 2008. Esercizi 4. Gruppi, anelli e campi. 1. Determinare la tabella additiva e la tabella moltiplicativa di Z 6. (a) Verificare dalla tabella moltiplicativa di Z 6 che esistono

Dettagli

3. Logica. Obiettivi di apprendimento: Relazioni, dati e previsioni 6T, 7T, 8T, 10Q. La logica nel linguaggio comune...

3. Logica. Obiettivi di apprendimento: Relazioni, dati e previsioni 6T, 7T, 8T, 10Q. La logica nel linguaggio comune... Capitolo 3. Logica 3. Logica Obiettivi di apprendimento: Relazioni, dati e previsioni 6T, 7T, 8T, 10Q. La logica nel linguaggio comune... sei una persona priva di logica è logico comportarsi cosí fai l

Dettagli

IL LINGUAGGIO MATEMATICO

IL LINGUAGGIO MATEMATICO 1 Lezioni 1-2 Connettivi logici IL LINGUAGGIO MATEMATICO (non); (e); (oppure); = (se...allora/...implica...); (...se e solo se...) Quantificatori (per ogni);... :... (esiste...tale che...) Proposizioni

Dettagli

CONVITTO NAZIONALE CARLO ALBERTO Scuole annesse: Primaria Secondaria I grado Liceo Scientifico

CONVITTO NAZIONALE CARLO ALBERTO Scuole annesse: Primaria Secondaria I grado Liceo Scientifico CONVITTO NAZIONALE CARLO ALBERTO Scuole annesse: Primaria Secondaria I grado Liceo Scientifico Baluardo Partigiani n 6 28100 - Novara Tel. 0321/620047 - Fax. 0321/620622 Email: novc010008@istruzione.it

Dettagli

Gli insiemi N, Z e Q. I numeri naturali

Gli insiemi N, Z e Q. I numeri naturali Università Roma Tre L. Chierchia 1 Gli insiemi N, Z e Q Il sistema dei numeri reali (R, +,, ) può essere definito tramite sedici assiomi: quindici assiomi algebrici (si veda ad esempio 2.3 in [Giusti,

Dettagli

9.4 Esercizi. Sezione 9.4. Esercizi 253

9.4 Esercizi. Sezione 9.4. Esercizi 253 Sezione 9.. Esercizi 5 9. Esercizi 9..1 Esercizi dei singoli paragrafi 9.1 - Espressioni letterali e valori numerici 9.1. Esprimi con una formula l area della superficie della zona colorata della figura

Dettagli

Nozioni di logica matematica

Nozioni di logica matematica MINISTERO DELL ISTRUZIONE, DELL UNIVERSITA E DELLA RICERCA LICEO STATALE P. E. IMBRIANI Linguistico - Scientifico - Scientifico delle Scienze Applicate Via S. Pescatori, 155 83100 Avellino Tel. (2 linee)

Dettagli

ISTITUTO D ISTRUZIONE SUPERIORE POLO - LICEO ARTISTICO - VENEZIA PROGRAMMA SVOLTO

ISTITUTO D ISTRUZIONE SUPERIORE POLO - LICEO ARTISTICO - VENEZIA PROGRAMMA SVOLTO ISTITUTO D ISTRUZIONE SUPERIORE POLO - LICEO ARTISTICO - VENEZIA A.S.: 0/05 Classe Sezione Indirizzo: IV B Classico Disciplina: MATEMATICA E INFORMATICA ( h) Docente: Fabiola Frezza PROGRAMMA SVOLTO MODULO/UNITÀ

Dettagli

2. I numeri reali e le funzioni di variabile reale

2. I numeri reali e le funzioni di variabile reale . I numeri reali e le funzioni di variabile reale Introduzione Il metodo comunemente usato in Matematica consiste nel precisare senza ambiguità i presupposti, da non cambiare durante l elaborazione dei

Dettagli

Matematica e-learning - Corso Zero di Matematica. Gli Insiemi. Prof. Erasmo Modica A.A.

Matematica e-learning - Corso Zero di Matematica. Gli Insiemi. Prof. Erasmo Modica  A.A. Matematica e-learning - Gli Insiemi Prof. Erasmo Modica http://www.galois.it erasmo@galois.it A.A. 2009/2010 1 Simboli Matematici Poiché in queste pagine verranno utilizzati differenti simboli matematici,

Dettagli

I TEST DI LOGICA. Alberto Zanardo Dipartimento di Matematica Università di Padova. Liceo Giorgione, Castelfranco Veneto 5 aprile 2016

I TEST DI LOGICA. Alberto Zanardo Dipartimento di Matematica Università di Padova. Liceo Giorgione, Castelfranco Veneto 5 aprile 2016 I TEST DI LOGICA Alberto Zanardo Dipartimento di Matematica Università di Padova Liceo Giorgione, Castelfranco Veneto 5 aprile 2016 1 RUOLO DEI TEST Valutazione di: Conoscenze di base (syllabus) Capacità

Dettagli

RELAZIONI, FUNZIONI, INSIEMI NUMERICI. 1. Relazioni. Siano X e Y due insiemi non vuoti. Si definisce il prodotto cartesiano

RELAZIONI, FUNZIONI, INSIEMI NUMERICI. 1. Relazioni. Siano X e Y due insiemi non vuoti. Si definisce il prodotto cartesiano RELAZIONI, FUNZIONI, INSIEMI NUMERICI C. FRANCHI 1. Relazioni Siano X e Y due insiemi non vuoti. Si definisce il prodotto cartesiano X Y := {(x, y) x X, y Y } dove con (x, y) si intende la coppia ordinata

Dettagli

Programma di matematica classe I sez. E a.s

Programma di matematica classe I sez. E a.s Programma di matematica classe I sez. E a.s. 2015-2016 Testi in adozione: Leonardo Sasso vol.1- Ed. Petrini La matematica a colori Edizione blu per il primo biennio MODULO A: I numeri naturali e i numeri

Dettagli

Università degli Studi di Roma Tor Vergata. Principio di induzione matematica

Università degli Studi di Roma Tor Vergata. Principio di induzione matematica Università degli Studi di Roma Tor Vergata. Principio di induzione matematica Il Principio di induzione matematica è una tecnica di dimostrazione che permette la dimostrazione simultanea di infinite affermazioni.

Dettagli

LA NOZIONE DI INSIEME, PRIME OPERAZIONI TRA INSIEMI, ELEMENTI BASILARI DI LOGICA

LA NOZIONE DI INSIEME, PRIME OPERAZIONI TRA INSIEMI, ELEMENTI BASILARI DI LOGICA LA NOZIONE DI INSIEME, PRIME OPERAZIONI TRA INSIEMI, ELEMENTI BASILARI DI LOGICA L impostazione logico-deduttiva propria della matematica affida un importanza basilare alle definizioni. La ricerca, poi,

Dettagli

GLI INSIEMI. Laboratorio per apprendimenti logico - matematici. Dispensa a cura del prof. Domenico Perrone Maggio 2005

GLI INSIEMI. Laboratorio per apprendimenti logico - matematici. Dispensa a cura del prof. Domenico Perrone Maggio 2005 GLI INSIEMI Laboratorio per apprendimenti logico - matematici Dispensa a cura del prof. Domenico Perrone Maggio 2005 1 I problemi Perché gli Insiemi? Cos è un insieme? Cantor, Frege, Russell Quale ruolo

Dettagli

LICEO CLASSICO-SCIENTIFICO EUCLIDE CAGLIARI PROGRAMMA DIDATTICO

LICEO CLASSICO-SCIENTIFICO EUCLIDE CAGLIARI PROGRAMMA DIDATTICO LICEO CLASSICO-SCIENTIFICO EUCLIDE CAGLIARI Materia: Matematica Anno scolastico: 010 011 Classe: 1 A Insegnante: Maria Maddalena Alimonda PROGRAMMA DIDATTICO NUMERI NATURALI E NUMERI INTERI Operazioni

Dettagli

Introduzione alla TEORIA DEI NUMERI

Introduzione alla TEORIA DEI NUMERI Renato Migliorato Introduzione alla teoria dei numeri Introduzione alla TEORIA DEI NUMERI Avvertenza: questo è l inizio di un testo pensato come supporto al corso di Matematiche Complementari I ed ancora

Dettagli

Gli insiemi e le relazioni. Elementi di logica

Gli insiemi e le relazioni. Elementi di logica capitolo 1 Gli insiemi e le relazioni. Elementi di logica INSIEMI 1. Introduzione 1 2. Sottoinsiemi 3 3. Operazioni tra insiemi 5 Unione:, 5 Intersezione:, 5 Differenza: \, 5 Insieme complementare: A B,

Dettagli

Liceo Scientifico G. Galilei Siena Anno scolastico PROGRAMMA SVOLTO MATEMATICA INSEGNANTE: De Nicola Maria CLASSE I C

Liceo Scientifico G. Galilei Siena Anno scolastico PROGRAMMA SVOLTO MATEMATICA INSEGNANTE: De Nicola Maria CLASSE I C Liceo Scientifico G. Galilei Siena Anno scolastico 2015-16 PROGRAMMA SVOLTO MATEMATICA INSEGNANTE: De Nicola Maria ALGEBRA I numeri CLASSE I C I numeri naturali: definizione, ordinamento e rappresentazione

Dettagli

Fondamenti della Matematica aa Prof. Tovena Proposizioni e tavole di verità

Fondamenti della Matematica aa Prof. Tovena Proposizioni e tavole di verità Proposizioni e tavole di verità Una proposizione è un enunciato (dichiarazione, frase) che può essere vero o può essere falso, ma non può essere contemporaneamente sia vero che falso. Essere vera o falsa

Dettagli

INSIEMI E RELAZIONI. 1. Insiemi e operazioni su di essi

INSIEMI E RELAZIONI. 1. Insiemi e operazioni su di essi INSIEMI E RELAZIONI 1. Insiemi e operazioni su di essi Il concetto di insieme è primitivo ed è sinonimo di classe, totalità. Sia A un insieme di elementi qualunque. Per indicare che a è un elemento di

Dettagli

METODI MATEMATICI PER L INFORMATICA

METODI MATEMATICI PER L INFORMATICA METODI MATEMATICI PER L INFORMATICA Tutorato Lezione 2 17/03/2016 Corso per matricole congrue a 1 Docente: Margherita Napoli Tutor: Amedeo Leo Applicazioni della logica proposizionale La logica ha una

Dettagli

Richiami di teoria degli insiemi

Richiami di teoria degli insiemi Appartenenza Se A è un insieme con la notazione a A indichiamo che l elemento a appartiene ad A, con a A che non appartiene Spesso con la notazione {x x } dove con x si intende una certa proprietà per

Dettagli

LA LOGICA ESERCIZI. Indica quali, fra le seguenti frasi, sono proposizioni logiche e attribuisci a queste ultime il relativo valore di verità.

LA LOGICA ESERCIZI. Indica quali, fra le seguenti frasi, sono proposizioni logiche e attribuisci a queste ultime il relativo valore di verità. LA LOGICA 1. Le proposizioni logiche ESERCIZI Indica quali, fra le seguenti frasi, sono proposizioni logiche e attribuisci a queste ultime il relativo valore di verità. 1 A «1 1 è uguale a 5»; «Non si

Dettagli

Gli insiemi. Che cosa è un insieme? Come si indica un insieme?

Gli insiemi. Che cosa è un insieme? Come si indica un insieme? Gli insiemi Che cosa è un insieme? In matematica si definisce insieme un raggruppamento per cui è possibile stabilire senza ambiguità se un elemento vi appartiene o no. Sono insiemi: i giorni della settimana

Dettagli

Operatori di relazione

Operatori di relazione Condizioni Negli algoritmi compaiono passi decisionali che contengono una proposizione (o predicato) dal cui valore di verità dipende la sequenza dinamica Chiamiamo condizioni tali proposizioni Nei casi

Dettagli

ALGEBRA DEGLI INSIEMI

ALGEBRA DEGLI INSIEMI ALGEBRA DEGLI INSIEMI INSIEME: concetto primitivo (indicato con una lettera maiuscola dell alfabeto latino: A, B, ) alcuni esempi: oggetti contenuti in una scatola tutti i numeri multipli di 3 [fig. 2.I.1]

Dettagli

Gli insiemi numerici

Gli insiemi numerici Gli insiemi numerici L insieme N Insieme dei numeri naturali N = {0; 1; 2; 3; 4; } Sono i numeri che si usano per contare È un insieme infinito (ogni numero naturale ha un successivo) È un insieme ordinato,

Dettagli

I.2 Logica. Elisabetta Ronchieri. Ottobre 13, Università di Ferrara Dipartimento di Economia e Management. Insegnamento di Informatica

I.2 Logica. Elisabetta Ronchieri. Ottobre 13, Università di Ferrara Dipartimento di Economia e Management. Insegnamento di Informatica I.2 Logica Università di Ferrara Dipartimento di Economia e Management Insegnamento di Informatica Ottobre 13, 2015 Argomenti Logica 1 Logica 2 3 Logica Si occupa dello studio delle strutture e delle regole

Dettagli

Prof. Roberto Capone. Nozioni di logica matematica

Prof. Roberto Capone. Nozioni di logica matematica Prof. Roberto Capone Nozioni di logica matematica Premesse In matematica non è ammesso un linguaggio ambiguo. Le parole chiave di questo linguaggio sono soltanto sette: Connettivi Non E O Se. allora Se

Dettagli