ANALISI 1 1 SEDICESIMA - DICIASETTESIMA LEZIONE Serie

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "ANALISI 1 1 SEDICESIMA - DICIASETTESIMA LEZIONE Serie"

Transcript

1 ANALISI 1 1 SEDICESIMA - DICIASETTESIMA LEZIONE Serie 1 prof. Claudio Saccon, Dipartimento di Matematica Applicata, Via F. Buonarroti 1/C saccon@mail.dm.unipi.it web: d6081/index.html Ricevimento: ogni lunedì, dalle 8.30 alle () March 14, / 34

2 Teorema (criterio della radice) Sia {a n } una successione di termini non negativi. Supponiamo che esista il limite: L = lim n n an ( 0) Se L < 1 allora la serie degli a n converge; Se L > 1 allora la serie degli a n diverge Teorema (criterio del rapporto) Sia {a n } una successione di termini (strettamente) positivi. Supponiamo che esista il limite: a n+1 L = lim ( 0) n a n Se L < 1 allora la serie degli a n converge; Se L > 1 allora la serie degli a n diverge () March 14, / 34

3 Se L = in uno dei due criteri precedenti, NON SI PUÒ DIR NULLA riguardo alla convergenza ESEMPIO Il criterio della radice si basa sul confronto con la serie geometrica DIM ne segue che se vale tale criterio la successione a n è MOLTO infinitesima (e la serie converge MOLTO rapidamente). Nella pratica questo non succede spessissimo (ma succede in alcuni casi importanti). Il criterio del rapporto implica il criterio della radice a causa del teorema di Cesaro DIM. Dunque valgono le stesse considerazione del caso precedente. () March 14, / 34

4 Altre serie notevoli La somma delle seguenti serie si trova utilizzando gli sviluppi di Taylor. x n n! = ex per ogni x reale; x2n ( 1) n (2n)! = cos(x) per ogni x reale; ( 1) n x 2n+1 = sin(x) per ogni x reale; (2n + 1)! ( ) α x n = (1 + x) α se 1 < x < 1; n n=1 n+1 xn ( 1) n = ln(1 + x) se 1 < x < 1; ALCUNE VERIFICHE Notiamo che per le x buone vale il criterio della radice ottima convergenza!! () March 14, / 34

5 Le serie della pagina precedente suggeriscono il seguente problema: Problema Data una funzione f infinitamente derivabile e un punto x 0 è possibile trovare il polinomio di Taylor di ordine n per n qualunque: P n (x) = n k=0 Ci si può chiedere se, fissato x x 0 si abbia f (k) (x 0 ) (x x 0 ) k. k! lim P n(x) = f (x). n Questo problema È COMPLETAMENTE DIVERSO da quello che abbiamo affrontato in precedenza, in cui fissato n ci si chiedeva cosa accade per x x 0. Per quanto visto prima la risposta dipende da f e da x: se f (x) = e x, x 0 = 0 tutte le x reali vanno bene; se f (x) = (1 + x) α, x 0 = 0 solo le x in ] 1,1[ vanno bene; si può fare l esempio di una f per cui solo x = x 0 va bene!!! () March 14, / 34

6 Serie a segno variabile Sia {a n } una successione e supponiamo di non avere nessuna informazione sul segno dei suoi termini. Per studiare la serie degli a n abbiamo a disposizione due strumenti: Teorema (Criterio della convergenza assoluta) Se a n < +, allora la serie a n converge. Teorema (Criterio di Leibniz per le serie a segni alterni) Supponiamo che a n = ( 1) n a n dove a n 0 (serie a segni alterni). Se {a n } è decrescente e infinitesima, cioè se a n+1 a n n, lim n a n = 0 Allora la serie a n = ( 1) n a n è convergente. () March 14, / 34

7 Convergenza assoluta Il primo dei criteri precedenti suggerisce la seguente definizione. Definizione Data una successione {a n } diciamo che la serie degli a n è assolutamente convergente se la serie dei moduli di a n converge: a n converge assolutamente con questa terminologia il criterio diventa: a n converge assolutamente a n converge a n converge DIM. Il viceversa NON è vero. La convergenza assoluta è una proprietà PIÙ FORTE della convergenza (lo vediamo dopo). () March 14, / 34

8 Criterio di Leibniz Teorema Se {a n } è decrescente e infinitesima, allora ( 1) n a n converge. DIM. Osservazione la proprietà che {a n } sia decrescente non si può togliere; la proprietà che la serie sia a segni alterni non si può togliere; ESEMPI le ipotesi del criterio di Leibniz implicano la convergenza della serie ma non ne implicano la convergenza assoluta. Per esempio la serie armonica a segni alterni: ( 1) n 1 n=1 n converge per Leibniz, ma non converge assolutamente dato che ( 1) n 1 n = +. Questo esempio mostra anche che la convergenza non implica la convergenza assoluta. () March 14, / 34 n=1

9 Proprietà commutativa Sia σ : N N una applicazione bigettiva tra i numeri interi (una permutazione degli interi ). Diremo che {σ n } è un riarrangiamento degli indici. Definizione Se {a n } è una successione. chiamiamo riordinamento di {a n } mediante σ la successione { a σ(n) } Teorema (proprietà commutativa delle serie) 1 Se a n 0 per ogni n, allora (ammettendo anche valore +) a σ(n) = 2 La stessa proprietà è vera (ora solo tra valori finiti) se la serie degli a n è assolutamente convergente (che equivale a dire che la serie degli a σ(n) è assolutamente convergente). a n. () March 14, / 34

10 La proprietà commutativa è FALSA se la serie non è assolutamente convergente. Proprietà Se la serie degli a n non converge assolutamente, cioè se: a + n = +, a n = +, allora per qualunque numero reale esteso s esiste un riordinamento di {a n }, chiamiamolo { a σ(n) }, tale che a σ(n) = s IDEA DI DIM. Dunque la proprietà della convergenza assoluta è necessaria per una proprietà che è naturale nel caso delle somme finite. () March 14, / 34

11 Definizione Sia {a n } una successione di numeri reali e sia {σ n } una successione strettamente crescente di interi tale che σ 0 = 0. Poniamo b n := σ n+1 1 a k k=σ n Diremo che {b n } è ottenuta da {a n } associando i termini mediante {σ n }. a a σ1 1 +a σ1 + + a σ2 1 +a σ2 + + a σ3 1 + }{{}}{{}}{{} b 0 b 1 b 2 Osservazione Associando i termini una serie che non converge può diventare convergente. Per es. se a n = ( 1) n e σ n = 2n, allora b n = a 2n + a 2n+1 = 1 1 = 0. Quindi a n non esiste, b n = 0 () March 14, / 34

12 Proprietà associativa Di nuovo le cose vanno nel modo giusto se gli a n sono positivi o se la serie è assolutamente convergente. Teorema (Proprietà associativa delle serie) Sia {a n } una successione e supponiamo che {b n } sia ottenuta da {a n } associando i termini. Se a n 0 per ogni n allora: a n = b n (eventualmente con valori infiniti). L eguaglianza è vera anche se la serie degli a n è assolutamente convergente (e in questo caso i valori sono finiti). () March 14, / 34

13 Serie prodotto Definizione (Prodotto di Cauchy tra due serie) Siano {a n } e {b n } due successioni. definiamo per ogni n c n := n k=0 a k b n k La serie dei c n è detta prodotto di Cauchy tra la serie degli a n e quella dei b n. a 0 b 4 a 1 b 4 a 2 b 4 a 3 b 4 a 4 b 4 a 0 b 3 a 1 b 3 a 2 b 3 a 3 b 3 a 4 b 3 a 0 b 2 a 1 b 2 a 2 b 2 a 3 b 2 a 4 b 2 a 0 b 1 a 1 b 1 a 2 b 1 a 3 b 1 a 4 b 1 a 0 b 0 a 1 b 0 a 2 b 0 a 3 b 0 a 4 b 0 c 0 c 1 c 2 c 3 c 4 () March 14, / 34

14 Teorema (sul prodotto alla Cauchy tra due serie) Siano {a n } e {b n } due successioni e sia {c n } il loro prodotto di Cauchy. Allora se a n 0 e b n 0 si ha c n = ( )( ) a n n n (eventulamente con valori infiniti). La stessa eguaglianza vale se la serie degli a n e quella dei b n sono assolutamente convererenti (e in questo caso i termini dell eguaglianza sono valori finiti). DIM () March 14, / 34

15 Esempio Avremmo potuto DEFINIRE la funzione esponenziale e x mediante la serie e x := Per questo basta far vedere che tale serie converge assolutamente per qualunque valore del parametro x cosa che segue subito dal criterio del rapporto: x n+1 (n + 1)! x n = x n n! Se seguissimo questa strada (che per molti versi è piuttosto comoda) dovremmo ricavare tutte le proprietà di x e x dalla definizione sopra. Per esempio la proprietà e x e y = e x+y si deduce dal teorema sul prodotto di Cauchy VERIFICA. x n n! () March 14, / 34

16 Serie di potenze Definizione Chiamiamo serie di potenze, o serie di Taylor, una serie del tipo a n (x x 0 ) n dove sono assegnate (a k ) una succesione di numeri reali e un numero reale x 0 R, mentre x varierà in (opportuni sottoinsiemi di) R. Per semplicità consideriamo sempre x 0 = 0, dato che il caso con x 0 0 è perfettamente analogo. Studieremo dunque per quali x ha senso considerare f (x) = a n x n cio per quali x la serie scritta destra converge, definendo così una funzione f (x), e che proprietà ha la f cos costruita. () March 14, / 34

17 Teorema (Intervallo di convergenza) Supponiamo che esista (in generale l [0, +]). Poniamo allora: n l := lim an. n + se l = 0, 1 R := se l ]0,[, l 0 se l = +. per ogni x con x < R la serie a n x n converge assolutamente ( e quindi converge); per ogni x con x > R la serie non converge. DIM Si noti che non si dice nulla (e la situazione è diversa caso per caso) di cosa succeda nei punti x = ± R. () March 14, / 34

18 Definizione (Raggio convergenza) Data la successione (a n ) in R chiamiamo raggio di convergenza della serie a n x n il numero R (in [0,+]) ottenuto nel teorema precedente. Risulta quindi definita la funzione f (x) = a n x n per ogni x in ] R, R[. Tale intervallo aperto viene detto intervallo di convergenza per la serie (se R = 0 tale intervallo vuoto, se R = + l intervallo di convergenza coincide con R). Osservazione Il raggio di convergenza stato definito solo se esiste il limite di n an in realtà si potrebbe vedere che c sempre un numero R con le propriet dette sopra (usando il massimo limite invece del limite) e quindi il raggio di convergenza si può definire sempre. () March 14, / 34

19 Teorema (Regolatità delle serie di potenze) Sia {a n } una successione e supponiamo che il raggio di convergenza R della serie di potenze associata agli a n sia positivo: R > 0. Indichiamo f (x) := a n x n R < x < R. Allora la funzione f è continua ed è infinitamente derivabile in ] R, R[; inoltre si può derivare sotto il segno di serie: f (k) (x) = n=k a n n(n 1) (n k + 1)x n k R < x < R. La formula scritta sopra ha senso in quanto la serie delle derivate è anch essa una serie di potenze e ha lo stesso raggio di convergenza della serie di partenza. () March 14, / 34

20 Esempio f (x) = Si vede subito che il raggio è uno. Inoltre: f (x) = ( 1) n x 2n ( x 2 ) n = x 2 1 < x < 1 (serie geometrica!!!). La cosa può sembrare strana, visto che f (x) non ha nessuna singolarità né in 1 né in 1. In reltà la prospettiva giusta da cui affrontare le serie di potenze sarebbe nei numeri complessi. Si potrebbe dimostrare che la regione di convergenza è un disco di raggio R (quello di prima). In questo caso R = 1 e la funzione ha due singolarità in z = ±i. f (z) = z 2 z < 1 () March 14, / 34

Proprietà commutativa e associativa per le serie

Proprietà commutativa e associativa per le serie Analisi Matematica 1 Trentaseiesima Trentasettesimalezione Proprietà commutativa e associativa per le serie Prodotto Serie di alla potenze Cauchy prof. Claudio Saccon Dipartimento di Matematica Applicata,

Dettagli

Analisi di Fourier e alcune equazioni della fisica matematica 1. TERZA LEZIONE Serie di funzioni Serie di potenze

Analisi di Fourier e alcune equazioni della fisica matematica 1. TERZA LEZIONE Serie di funzioni Serie di potenze Analisi di Fourier e alcune equazioni della fisica matematica 1 TERZA LEZIONE Serie di funzioni Serie di potenze 1 prof. Claudio Saccon, Dipartimento di Matematica Applicata, Via F. Buonarroti 1/C email:

Dettagli

Complementi di Matematica Quarta lezione

Complementi di Matematica Quarta lezione Complementi di Matematica Quarta lezione prof. Claudio Saccon Dipartimento di Matematica Applicata, Via F. Buonarroti 1/C email: saccon@mail.dm.unipi.it web: http://www2.ing.unipi.it/ d6081/index.html

Dettagli

Analisi Matematica 1 Trentaduesima lezione. Serie

Analisi Matematica 1 Trentaduesima lezione. Serie Analisi Matematica 1 Trentaduesima lezione Serie prof. Claudio Saccon Dipartimento di Matematica Applicata, Via F. Buonarroti 1/C email: saccon@mail.dm.unipi.it web: http://saccon.blog.dma.unipi.it Ricevimento:

Dettagli

1 prof. Claudio Saccon, Dipartimento di Matematica Applicata, () December 30, / 26

1 prof. Claudio Saccon, Dipartimento di Matematica Applicata, () December 30, / 26 ANALISI 1 1 UNDICESIMA LEZIONE DODICESIMA LEZIONE TREDICESIMA LEZIONE Derivata - definizione e teoremi di calcolo delle derivate Massimi e minimi relativi e teorema di Fermat Teorema di Lagrange Monotonia

Dettagli

Laurea in Informatica e Tecnologie per la Produzione del Software Corso di Analisi Matematica Serie numeriche

Laurea in Informatica e Tecnologie per la Produzione del Software Corso di Analisi Matematica Serie numeriche Laurea in Informatica e Tecnologie per la Produzione del Software Corso di Analisi Matematica Serie numeriche Docente: Anna Valeria Germinario Università di Bari A.V.Germinario (Università di Bari) Analisi

Dettagli

Serie Borlini Alex

Serie Borlini Alex Serie numerica >> Prefazione Progressione lista ordinata e finita di elementi. Successione lista ordinata e infinita di elementi (numeri reali chiamati termini), {a n }=a 1, a 2, a 3 Successione di Fibonacci:

Dettagli

ANALISI 1 1 QUINTA LEZIONE

ANALISI 1 1 QUINTA LEZIONE ANALISI 1 1 QUINTA LEZIONE 1 prof. Claudio Saccon, Dipartimento di Matematica Applicata, Via F. Buonarroti 1/C email: saccon@mail.dm.unipi.it web: http://www2.ing.unipi.it/ d6081/index.html Ricevimento:

Dettagli

SERIE NUMERICHE. c Paola Gervasio - Analisi Matematica 1 - A.A. 2018/19 Serie numeriche cap5c.pdf 1

SERIE NUMERICHE. c Paola Gervasio - Analisi Matematica 1 - A.A. 2018/19 Serie numeriche cap5c.pdf 1 SERIE NUMERICHE c Paola Gervasio - Analisi Matematica - A.A. 208/9 Serie numeriche cap5c.pdf Serie numerica Definizione. Sia a k : N R una successione definita per k k 0. La sommatoria (di infiniti addendi)

Dettagli

ANALISI 1 1 QUATTORDICESIMA LEZIONE Significato geometrico della derivata seconda Convessità

ANALISI 1 1 QUATTORDICESIMA LEZIONE Significato geometrico della derivata seconda Convessità ANALISI 1 1 QUATTORDICESIMA LEZIONE Significato geometrico della derivata seconda Convessità 1 prof. Claudio Saccon, Dipartimento di Matematica Applicata, Via F. Buonarroti 1/C email: saccon@mail.dm.unipi.it

Dettagli

Analisi Matematica 1 Tredicesima lezione

Analisi Matematica 1 Tredicesima lezione Analisi Matematica 1 Tredicesima lezione prof. Claudio Saccon Dipartimento di Matematica Applicata, Via F. Buonarroti 1/C email: saccon@mail.dm.unipi.it web: http://www2.ing.unipi.it/ d6081/index.html

Dettagli

1 Successioni di funzioni

1 Successioni di funzioni Analisi Matematica 2 Successioni di funzioni CORSO DI STUDI IN SMID CORSO DI ANALISI MATEMATICA 2 CAPITOLO 6 SERIE DI POTENZE Supponiamo di associare ad ogni n N (rispettivamente ad ogni n p, per qualche

Dettagli

ANALISI 1 1 QUARTA LEZIONE

ANALISI 1 1 QUARTA LEZIONE ANALISI 1 1 QUARTA LEZIONE 1 prof. Claudio Saccon, Dipartimento di Matematica Applicata, Via F. Buonarroti 1/C email: saccon@mail.dm.unipi.it web: http://www2.ing.unipi.it/ d6081/index.html Ricevimento:

Dettagli

ANALISI 1 1 SETTIMA / OTTAVA LEZIONE Confronto tra infinitesimi e infiniti Sottosuccessioni Limiti notevoli Limiti di funzioni

ANALISI 1 1 SETTIMA / OTTAVA LEZIONE Confronto tra infinitesimi e infiniti Sottosuccessioni Limiti notevoli Limiti di funzioni ANALISI 1 1 SETTIMA / OTTAVA LEZIONE Confronto tra infinitesimi e infiniti Sottosuccessioni Limiti notevoli Limiti di funzioni 1 prof. Claudio Saccon, Dipartimento di Matematica Applicata, Via F. Buonarroti

Dettagli

Serie Numeriche. Docente:Alessandra Cutrì

Serie Numeriche. Docente:Alessandra Cutrì Serie Numeriche Docente:Alessandra Cutrì Definizione di Serie Somma formale di un numero infinito di addendi. È un operazione che è in stretta relazione con quella di integrale improprio. data un successione

Dettagli

Laurea in Informatica e Tecnologie per la Produzione del Software Corso di Analisi Matematica Successioni e loro limiti

Laurea in Informatica e Tecnologie per la Produzione del Software Corso di Analisi Matematica Successioni e loro limiti Laurea in Informatica e Tecnologie per la Produzione del Software Corso di Analisi Matematica Successioni e loro limiti Docente: Anna Valeria Germinario Università di Bari A.V.Germinario (Università di

Dettagli

Nel capitolo precedente abbiamo visto che sotto opportune condizioni su una funzione f : I! R si ha lo sviluppo di Taylor

Nel capitolo precedente abbiamo visto che sotto opportune condizioni su una funzione f : I! R si ha lo sviluppo di Taylor Capitolo 6 Serie numeriche Nel capitolo precedente abbiamo visto che sotto opportune condizioni su una funzione f : I! R si ha lo sviluppo di Taylor f(x) = nx k=0 f (k) (x 0 ) (x x 0 ) k + o((x x 0 ) n

Dettagli

SUCCESSIONI E SERIE NUMERICHE E DI FUNZIONI

SUCCESSIONI E SERIE NUMERICHE E DI FUNZIONI SERIE NUMERICHE Si consideri una successione di elementi. Si definisce serie associata ad la somma Per ogni indice della successione, si definisce successione delle somme parziali associata a la somma

Dettagli

Esercitazione di Analisi Matematica I Esercizi e soluzioni 19/04/2013 TOPOLOGIA

Esercitazione di Analisi Matematica I Esercizi e soluzioni 19/04/2013 TOPOLOGIA Esercitazione di Analisi Matematica I Esercizi e soluzioni 9/04/203 TOPOLOGIA Mostrare che uno spazio infinito con la metrica discreta non può essere compatto Soluzione: Per la metrica discreta d : X X

Dettagli

Analisi Matematica 1. Serie numeriche. (Parte 2) Dott. Ezio Di Costanzo.

Analisi Matematica 1. Serie numeriche. (Parte 2) Dott. Ezio Di Costanzo. Facoltà di Ingegneria Civile e Industriale Analisi Matematica 1 Serie numeriche (Parte 2) Dott. Ezio Di Costanzo ezio.dicostanzo@sbai.uniroma1.it Definizione Data la serie + n=0 a n si definisce resto

Dettagli

Serie a termini di segno non costante

Serie a termini di segno non costante Serie a termini di segno non costante Definizione (Convergenza semplice e assoluta) Se una serie converge, cioè la sua somma esiste ed è finita, si dice anche che la serie converge semplicemente: an =

Dettagli

Pag. 151 Dimostrazioni dei criteri per lo studio della convergenza di serie numeriche

Pag. 151 Dimostrazioni dei criteri per lo studio della convergenza di serie numeriche C.7 Serie Pag. 151 Dimostrazioni dei criteri per lo studio della convergenza di serie numeriche Teorema 5.29 (Criterio del confronto) Siano e due serie numeriche a termini positivi e si abbia 0, per ogni

Dettagli

SERIE NUMERICHE FAUSTO FERRARI

SERIE NUMERICHE FAUSTO FERRARI SERIE NUMERICHE FAUSTO FERRARI Materiale propedeutico alle lezioni di Analisi Matematica per i corsi di Laurea in Ingegneria Energetica e Meccanica N-Z dell Università di Bologna. Anno Accademico 2003/2004.

Dettagli

Raccolta degli Scritti d Esame di ANALISI MATEMATICA U.D. 2 assegnati nei Corsi di Laurea di Fisica, Fisica Applicata, Matematica

Raccolta degli Scritti d Esame di ANALISI MATEMATICA U.D. 2 assegnati nei Corsi di Laurea di Fisica, Fisica Applicata, Matematica DIPARTIMENTO DI MATEMATICA Università degli Studi di Trento Via Sommarive - Povo (TRENTO) Raccolta degli Scritti d Esame di ANALISI MATEMATICA U.D. 2 assegnati nei Corsi di Laurea di Fisica, Fisica Applicata,

Dettagli

Corso di Analisi Matematica 1 - professore Alberto Valli

Corso di Analisi Matematica 1 - professore Alberto Valli Università di Trento - Corso di Laurea in Ingegneria Civile e Ingegneria per l Ambiente e il Territorio - 08/9 Corso di Analisi Matematica - professore Alberto Valli 9 foglio di esercizi - novembre 08

Dettagli

e 2x2 1 (x 2 + 2x 2) ln x

e 2x2 1 (x 2 + 2x 2) ln x Corso di laurea in Ingegneria delle Costruzioni A.A. 2016-17 Analisi Matematica - Esercitazione del 04-01-2017 Ripasso di alcuni argomenti in programma Gli esercizi sono divisi in più pagine, per separare

Dettagli

Successioni numeriche

Successioni numeriche Successioni numeriche Hynek Kovarik Università di Brescia Analisi Matematica 1 Hynek Kovarik (Università di Brescia) Successioni Analisi Matematica 1 1 / 48 Definizione Una successione a valori reali è

Dettagli

Corso di Analisi Matematica Successioni e loro limiti

Corso di Analisi Matematica Successioni e loro limiti Corso di Analisi Matematica Successioni e loro limiti Laurea in Informatica e Comunicazione Digitale A.A. 2013/2014 Università di Bari ICD (Bari) Analisi Matematica 1 / 30 1 Definizione di successione

Dettagli

Analisi di Fourier e alcune equazioni della fisica matematica 1

Analisi di Fourier e alcune equazioni della fisica matematica 1 Analisi di Fourier e alcune equazioni della fisica matematica 1 QUARTA LEZIONE Risoluzione di equzioni differenziali lineari mediante le serie di potenze. Le funzioni di Bessel. 1 prof. Claudio Saccon,

Dettagli

k=0 a k k=0 a k, quando si voglia precisare qual è l indice iniziale: si possono infatti considerare anche serie del tipo k=1 a k, k=50 a k,

k=0 a k k=0 a k, quando si voglia precisare qual è l indice iniziale: si possono infatti considerare anche serie del tipo k=1 a k, k=50 a k, 2.2 Serie Le serie numeriche sono semplicemente successioni reali o complesse di tipo particolare, che però, per la loro importanza pratica e teorica, meritano una trattazione a parte. Data una successione

Dettagli

Istituzioni di Matematiche quarta parte

Istituzioni di Matematiche quarta parte Istituzioni di Matematiche quarta parte anno acc. 2012/2013 Univ. degli Studi di Milano Cristina Turrini (Univ. degli Studi di Milano) Istituzioni di Matematiche 1 / 22 index Derivate 1 Derivate 2 Teoremi

Dettagli

Se la serie converge in C, il limite a cui tende si chiama somma della serie.

Se la serie converge in C, il limite a cui tende si chiama somma della serie. E-school di Arrigo Amadori Analisi I Serie di potenze 01 Introduzione. Le serie di potenze sono molto importanti perché costituiscono il punto di partenza per approssimare una funzione qualunque. Sono

Dettagli

Analisi Matematica A e B Soluzioni Prova scritta n. 3

Analisi Matematica A e B Soluzioni Prova scritta n. 3 Analisi Matematica A e B Soluzioni Prova scritta n. Corso di laurea in Fisica, 207-208 9 luglio 208. Si consideri per α =, 2, 5, 8 la seguente funzione funzione F α : R\{0} R F α () = sin t dt. t α 6 Dire

Dettagli

Analisi Matematica. Serie numeriche, serie di potenze, serie di Taylor

Analisi Matematica. Serie numeriche, serie di potenze, serie di Taylor a.a. 2014/2015 Laurea triennale in Informatica Analisi Matematica Serie numeriche, serie di potenze, serie di Taylor Avvertenza Questi sono appunti informali delle lezioni, che vengono resi disponibili

Dettagli

SERIE NUMERICHE FAUSTO FERRARI

SERIE NUMERICHE FAUSTO FERRARI SERIE NUMERICHE FAUSTO FERRARI Materiale propedeutico alle lezioni di Complementi di Analisi Matematica ed Elementi di Calcolo delle probabilità per il corso di Laurea in Ingegneria per la parte di Elementi

Dettagli

Politecnico di Milano Corso di Analisi e Geometria 1. Federico Lastaria Formule di Taylor Ottobre 2012

Politecnico di Milano Corso di Analisi e Geometria 1. Federico Lastaria Formule di Taylor Ottobre 2012 Politecnico di Milano Corso di Analisi e Geometria 1 Federico Lastaria federico.lastaria@polimi.it Formule di Taylor Ottobre 2012 Indice 1 Formule di Taylor 1 1.1 Il polinomio di Taylor...............................

Dettagli

Principali differenze tra la ristampa 2014 e l edizione 2008

Principali differenze tra la ristampa 2014 e l edizione 2008 Principali differenze tra la ristampa 214 e l edizione 28 Di seguito sono riportate le principali modifiche apportate al testo dell edizione 28 con la ristampa riveduta e corretta del 214. Si avverte il

Dettagli

Esponenziale complesso

Esponenziale complesso Esponenziale complesso Paola Rubbioni Analisi Matematica II - CdL in Ingegneria Informatica ed Elettronica a.a. 2016/2017 1 Serie nel campo complesso Per fornire il concetto di serie nel campo complesso

Dettagli

ANALISI MATEMATICA 1 ESERCIZI ASSEGNATI IN AULA O A CASA Corso di Laurea in Matematica aa 2003/04 01/03/04

ANALISI MATEMATICA 1 ESERCIZI ASSEGNATI IN AULA O A CASA Corso di Laurea in Matematica aa 2003/04 01/03/04 ANALISI MATEMATICA ESERCIZI ASSEGNATI IN AULA O A CASA Corso di Laurea in Matematica aa 2003/04 0/03/04 Esercizio. Calcolare la somma della serie ( 2 k ). 3 k 2 k Esercizio 2. Scrivere sotto forma di frazione

Dettagli

Funzione derivabile. La derivata.

Funzione derivabile. La derivata. Funzione derivabile. La derivata. Dati: f I R funzione; I R intervallo aperto ; x 0 I. Definizione (Derivata come limite del rapporto incrementale) Se esiste finito (cioè, non + o ) il limite del rapporto

Dettagli

Analisi Matematica 1 (prof. G. Cupini) (CdS Astronomia - Univ. Bologna) REGISTRO DELLE LEZIONI A.A

Analisi Matematica 1 (prof. G. Cupini) (CdS Astronomia - Univ. Bologna) REGISTRO DELLE LEZIONI A.A Analisi Matematica 1 (prof. G. Cupini) (CdS Astronomia - Univ. Bologna) REGISTRO DELLE LEZIONI A.A.2015-2016 22 SETTEMBRE 2015 3 ore 14-17 Insiemi e operazioni tra insiemi. Numeri reali. Assiomi dei numeri

Dettagli

Successioni numeriche

Successioni numeriche Successioni numeriche Hynek Kovarik Università di Brescia Analisi A Hynek Kovarik (Università di Brescia) Successioni Analisi A 1 / 35 Definizione Una successione a valori reali è una funzione f : N R

Dettagli

Matematica A Corso di Laurea in Chimica. Prova scritta del Tema A

Matematica A Corso di Laurea in Chimica. Prova scritta del Tema A Matematica A Corso di Laurea in Chimica Prova scritta del 7..6 Tema A P) Data la funzione f(x) = ex+ x determinarne (a) campo di esistenza; (b) zeri e segno; (c) iti agli estremi del campo di esistenza

Dettagli

Analisi Matematica 1 Soluzioni prova scritta n. 1

Analisi Matematica 1 Soluzioni prova scritta n. 1 Analisi Matematica Soluzioni prova scritta n Corso di laurea in Matematica, aa 008-009 5 giugno 009 Sia a n la successione definita per ricorrenza: a n+ 3 a n a 3 n, a 3 a n+ 3 a n a 3 n, a 3 a n+ 3 a

Dettagli

Analisi Matematica 1

Analisi Matematica 1 Michele Campiti Prove scritte di Analisi Matematica 1 Ingegneria Industriale aa 2012 2013 y f 1 g 0 x La funzione seno e la funzione esponenziale Raccolta delle tracce di Analisi Matematica 1 per Ingegneria

Dettagli

A Analisi Matematica 1 (Corso di Laurea in Informatica e Bioinformatica) Simulazione compito d esame

A Analisi Matematica 1 (Corso di Laurea in Informatica e Bioinformatica) Simulazione compito d esame COGNOME NOME Matr. A Analisi Matematica (Corso di Laurea in Informatica e Bioinformatica) Firma dello studente Tempo: 3 ore. Prima parte: test a risposta multipla. Una ed una sola delle 4 affermazioni

Dettagli

Analisi Matematica II

Analisi Matematica II Analisi Matematica II Limiti e continuità in R N Claudio Saccon 1 1 Dipartimento di Matematica, Via F. Buonarroti 1/C,56127 PISA email: claudio.sacconchiocciolaunipi.it sito web: http://pagine.dm.unipi.it/csblog1

Dettagli

ANALISI 1 - Teoremi e dimostrazioni vari

ANALISI 1 - Teoremi e dimostrazioni vari ANALISI 1 - Teoremi e dimostrazioni vari Sommario Proprietà dell estremo superiore per R... 2 Definitivamente... 2 Successioni convergenti... 2 Successioni monotone... 2 Teorema di esistenza del limite

Dettagli

Limiti di successioni

Limiti di successioni Capitolo 5 Limiti di successioni 5.1 Successioni Quando l insieme di definizione di una funzione coincide con l insieme N costituito dagli infiniti numeri naturali 1, 2, 3,... talvolta si considera anche

Dettagli

Analisi Matematica II 6 aprile sin[π(x 2 + y 2 /5)] x 2 + y2

Analisi Matematica II 6 aprile sin[π(x 2 + y 2 /5)] x 2 + y2 Analisi Matematica II 6 aprile 07 Cognome: Nome: Matricola:. (0 punti) Si consideri la seguente corrispondenza tra R ed R f(x, y) = Determinare l insieme di definizione A R di f e sin[π(x + y /5)] x +

Dettagli

Il numero reale x 0 è detto centro della serie di potenze suddetta. Poichè si può sempre pensare di cambiare variabile tramite traslazione:

Il numero reale x 0 è detto centro della serie di potenze suddetta. Poichè si può sempre pensare di cambiare variabile tramite traslazione: 3.3 Serie di Potenze 3.3.1 Raggio di Convergenza Definiamo serie di potenze la serie di funzioni a n (x x 0 ) n = a 0 + a 1 (x x 0 ) + a 2 (x x 0 ) 2 +..., dove: 1) {a n } n N è una successione numerica

Dettagli

Seconda prova in itinere di Analisi Matematica 1 Ingegneria Elettronica. Politecnico di Milano. A.A. 2015/2016. Prof. M. Bramanti.

Seconda prova in itinere di Analisi Matematica 1 Ingegneria Elettronica. Politecnico di Milano. A.A. 2015/2016. Prof. M. Bramanti. Seconda prova in itinere di Analisi Matematica Ingegneria Elettronica. Politecnico di Milano Es. Punti A.A. 5/6. Prof. M. Bramanti Tema n 3 5 6 Tot. Cognome e nome (in stampatello) codice persona (o n

Dettagli

1 Funzioni reali di una variabile reale

1 Funzioni reali di una variabile reale 1 Funzioni reali di una variabile reale Qualche definizione e qualche esempio che risulteranno utili più avanti Durante tutto questo corso studieremo funzioni reali di una variabile reale, cioè Si ha f

Dettagli

Matematica II prof. C.Mascia

Matematica II prof. C.Mascia Corso di laurea in CHIMICA INDUSTRIALE Sapienza, Università di Roma Matematica II prof CMascia alcuni esercizi, parte, 7 marzo 25 Indice Testi degli esercizi 2 Svolgimento degli esercizi 4 Testi degli

Dettagli

CAPITOLO 9. Le serie di potenze

CAPITOLO 9. Le serie di potenze CAPITOLO 9 Le serie di potenze Ahlfors, pag. 33,..,45 Bozza da rivedere Le funzioni analitiche sono piú o meno polinomi in z, o i loro limiti, somme di serie di potenze in z. Prerequisiti fondamentali

Dettagli

Analisi Matematica 2. Michele Campiti. Prove scritte di. Ingegneria Industriale a.a

Analisi Matematica 2. Michele Campiti. Prove scritte di. Ingegneria Industriale a.a Michele Campiti Prove scritte di Analisi Matematica 2 Ingegneria Industriale a.a. 20 202 Grafico della funzione f(x, y) := sin(2x 2 y) cos(x 2y 2 ) in [ π/2, π/2] 2 Raccolta delle tracce di Analisi Matematica

Dettagli

Funzioni Monotone. una funzione f : A B. si dice

Funzioni Monotone. una funzione f : A B. si dice Funzioni Monotone una funzione f : A B si dice strettamente crescente: 1, 2 A, 1 < 2 f( 1 ) < f( 2 ). crescente: 1, 2 A, 1 < 2 f( 1 ) f( 2 ). strettamente decrescente: 1, 2 A, 1 < 2 f( 1 ) > f( 2 ). decrescente:

Dettagli

SOLUZIONI COMPITO del 1/02/2013 ANALISI MATEMATICA I - 9 CFU INGEGNERIA MECCANICA - INGEGNERIA ENERGETICA INGEGNERIA AMBIENTE e TERRITORIO TEMA A

SOLUZIONI COMPITO del 1/02/2013 ANALISI MATEMATICA I - 9 CFU INGEGNERIA MECCANICA - INGEGNERIA ENERGETICA INGEGNERIA AMBIENTE e TERRITORIO TEMA A SOLUZIONI COMPITO del /0/0 ANALISI MATEMATICA I - 9 CFU INGEGNERIA MECCANICA - INGEGNERIA ENERGETICA INGEGNERIA AMBIENTE e TERRITORIO TEMA A Esercizio Osserviamo che la serie proposta è a termini di segno

Dettagli

Analisi Matematica 1

Analisi Matematica 1 Michele Campiti Prove scritte di Analisi Matematica 1 Ingegneria Industriale a.a. 2011 2012 y f 1 g 0 x La funzione seno e la funzione esponenziale Raccolta delle tracce di Analisi Matematica 1 per Ingegneria

Dettagli

Definizione (Derivata come limite del rapporto incrementale) Se esiste finito (cioè, non + o ) il limite del rapporto incrementale

Definizione (Derivata come limite del rapporto incrementale) Se esiste finito (cioè, non + o ) il limite del rapporto incrementale Funzione derivabile. La derivata. Dati: f I R funzione; I R intervallo aperto ; x 0 I. Definizione (Derivata come ite del rapporto incrementale) Se esiste finito (cioè, non + o ) il ite del rapporto incrementale

Dettagli

PROVE SCRITTE DI ANALISI MATEMATICA I, ANNO 2015/16

PROVE SCRITTE DI ANALISI MATEMATICA I, ANNO 2015/16 PROVE SCRITTE DI ANALISI MATEMATICA I, ANNO 5/6 Prova scritta del //6 Si studi, al variare di x, il comportamento della serie n= n Ax n Ax, dove A denota il numero delle lettere del nome. Si studi la funzione

Dettagli

Successioni numeriche (II)

Successioni numeriche (II) Successioni numeriche (II) Hynek Kovarik Università di Brescia Analisi A Hynek Kovarik (Università di Brescia) Successioni (II) Analisi A 1 / 52 Forme indeterminate associate a funzioni razionali fratte:

Dettagli

17 - Serie di funzioni

17 - Serie di funzioni Università degli Studi di Palermo Facoltà di Economia CdS Statistica per l Analisi dei Dati Appunti del corso di Matematica 7 - Serie di funzioni Anno Accademico 203/204 M. Tumminello, V. Lacagnina, A.

Dettagli

Esonero di Analisi Matematica II (A)

Esonero di Analisi Matematica II (A) Esonero di Analisi Matematica II (A) Ingegneria Edile, 8 aprile 3. Studiare la convergenza del seguente integrale improprio: + x log 3 x (x ) 3 dx.. Studiare la convergenza puntuale ed uniforme della seguente

Dettagli

1. Mercoledì 07/03/2018, ore: 2(2) Introduzione e presentazione del corso. Richiami: i numeri naturali, interi, razionali e reali.

1. Mercoledì 07/03/2018, ore: 2(2) Introduzione e presentazione del corso. Richiami: i numeri naturali, interi, razionali e reali. Registro delle lezioni di MATEMATICA 2 Corso di Laurea in Chimica 6 CFU - A.A. 2017/2018 docente: Francesco Demontis ultimo aggiornamento: 7 giugno 2018 1. Mercoledì 07/03/2018, 9 11. ore: 2(2) Introduzione

Dettagli

ANALISI MATEMATICA I per Ingegneria Aerospaziale - A.A Diario delle lezioni. Mercoledì 2 ottobre 2013 (2 ore)

ANALISI MATEMATICA I per Ingegneria Aerospaziale - A.A Diario delle lezioni. Mercoledì 2 ottobre 2013 (2 ore) c Andrea Dall Aglio - Analisi Matematica: Diario delle lezioni - 8 novembre 0 ANALISI MATEMATICA I per Ingegneria Aerospaziale - A.A. 0-04 Diario delle lezioni Questo è un indice degli argomenti trattati

Dettagli

La formula di Taylor con resto di Peano. OSSERVAZIONE: se f è continua nel punto a possiamo scrivere (ricordando la definizione di o piccolo ) che

La formula di Taylor con resto di Peano. OSSERVAZIONE: se f è continua nel punto a possiamo scrivere (ricordando la definizione di o piccolo ) che 109 Lezioni 9-40 La formula di Taylor con resto di Peano OSSERVAZIONE: se f è continua nel punto a possiamo scrivere (ricordando la definizione di o piccolo ) che f(x) =f(a)+o(1) per x a; se f è derivabile

Dettagli

ANALISI VETTORIALE COMPITO IN CLASSE DEL 8/11/2013

ANALISI VETTORIALE COMPITO IN CLASSE DEL 8/11/2013 ANALISI VETTORIALE COMPITO IN CLASSE DEL 8//3 Premessa (Cfr. gli Appunti di Analisi Vettoriale / del Prof. Troianiello) Nello studio degli integrali impropri il primo approccio all utilizzo del criterio

Dettagli

Soluzione dei problemi assegnati

Soluzione dei problemi assegnati ANALISI MATEMATICA 3 Soluzione dei problemi assegnati anno accademico 2018/19 prof. Antonio Greco http://people.unica.it/antoniogreco Dipartimento di Matematica e Informatica Università di Cagliari 23-5-2019

Dettagli

Analisi di Fourier e alcune equazioni della fisica matematica 1. SESTA e SETTIMA Lezione Serie di Fourier

Analisi di Fourier e alcune equazioni della fisica matematica 1. SESTA e SETTIMA Lezione Serie di Fourier Analisi di Fourier e alcune equazioni della fisica matematica 1 SESTA e SETTIMA Lezione Serie di Fourier 1 prof. Claudio Saccon, Dipartimento di Matematica Applicata, Via F. Buonarroti 1/C email: saccon@mail.dm.unipi.it

Dettagli

Limiti di funzioni di una variabile

Limiti di funzioni di una variabile Capitolo 6 Limiti di funzioni di una variabile 6.1 Limiti all infinito La definizione di ite data per le successioni si può immediatamente trasportare al caso di una funzione definita in un qualunque insieme

Dettagli

Soluzione esercizi 28 ottobre 2011

Soluzione esercizi 28 ottobre 2011 ANALISI Soluzione esercizi 8 ottobre 0 4.. Esercizio. Siano α e β due numeri reali tali che la loro somma e la loro differenza siano razionali: provare che allora essi sono entrambi razionali. Il teorema

Dettagli

NOTE DI ALGEBRA LINEARE v = a 1 v a n v n, w = b 1 v b n v n

NOTE DI ALGEBRA LINEARE v = a 1 v a n v n, w = b 1 v b n v n NOTE DI ALGEBRA LINEARE 2- MM 9 NOVEMBRE 2 Combinazioni lineari e generatori Sia K un campo e V uno spazio vettoriale su K Siano v,, v n vettori in V Definizione Un vettore v V si dice combinazione lineare

Dettagli

Argomenti della Lezione

Argomenti della Lezione 23.. Esperimenti. ANALISI Argomenti della Lezione 23. Formula di Taylor 25 novembre 20 Il caso della funzione e x I polinomi di Taylor associati a e x e alla scelta di x 0 = 0 sono da cui T m (x) = + x

Dettagli

A.A. 2016/17 - Analisi Matematica 1

A.A. 2016/17 - Analisi Matematica 1 A.A. 2016/17 - Analisi Matematica 1 Argomenti svolti, libro di testo di riferimento: P. Marcellini, C. Sbordone: Elementi Calcolo. Liguori Editore. O. Bernardi: Temi d esame senza tema. Ed. Libreria Progetto.

Dettagli

Analisi Matematica I per Ingegneria Gestionale, a.a Scritto del secondo appello, 5 febbraio 2018 Testi 1

Analisi Matematica I per Ingegneria Gestionale, a.a Scritto del secondo appello, 5 febbraio 2018 Testi 1 Analisi Matematica I per Ingegneria Gestionale, a.a. 7-8 Scritto del secondo appello, 5 febbraio 8 Testi Prima parte, gruppo.. Trovare r > e α [ π, π] per cui vale l identità 3 sin 3 cos = r sin( + α)..

Dettagli

Esercizi di Analisi Matematica

Esercizi di Analisi Matematica Università degli Studi di Udine Anno Accademico 00/ Facoltà di Scienze Matematiche Fisiche e Naturali Corso di Laurea in Informatica e TWM Esercizi di Analisi Matematica Esercizi sul primo semestre del

Dettagli

Programma del corso di Analisi Matematica 1 Corso di Laurea in Matematica Prof. A. Garroni - Canale Dl-Pa

Programma del corso di Analisi Matematica 1 Corso di Laurea in Matematica Prof. A. Garroni - Canale Dl-Pa Programma del corso di Analisi Matematica 1 Corso di Laurea in Matematica Prof. A. Garroni - Canale Dl-Pa 1. Elementi di spazi metrici e di topologia 1.1 Completezza di R. Richiami: Estremo superiore,

Dettagli

14 Spazi metrici completi

14 Spazi metrici completi 54 2006-apr-26 Geometria e Topologia I 14 Spazi metrici completi (14.1) Definizione. Una successione {x n } n in uno spazio metrico si dice di Cauchy se per ogni ɛ > 0 esiste un intero N = N(ɛ) per cui

Dettagli

Risoluzione del compito n. 1 (Gennaio 2018)

Risoluzione del compito n. 1 (Gennaio 2018) Risoluzione del compito n. (Gennaio 208 PROBLEMA Calcolate 3(2 i 2 i(5i 6 4+2i 2 5(3 + i. Determinate le soluzioni z C dell equazione z 2 + z = + i. Osserviamo che (2 i 2 = 4 4i = 3 4i e che 4+2i 2 = 6+4

Dettagli

PROGRAMMA. Capitolo 1 : Concetti di base: numeri reali, funzioni, funzioni reali di variabile reale.

PROGRAMMA. Capitolo 1 : Concetti di base: numeri reali, funzioni, funzioni reali di variabile reale. PROGRAMMA Capitolo 1 : Concetti di base: numeri reali, funzioni, funzioni reali di variabile reale. Gli insiemi numerici oggetto del corso: numeri naturali, interi relativi, razionali. Operazioni sui numeri

Dettagli

Analisi II, a.a Soluzioni 1. j j + 1 ; ( 1)j

Analisi II, a.a Soluzioni 1. j j + 1 ; ( 1)j Analisi II, a.a. 7-8 Soluzioni Calcolare le seguenti distanze e norme: (i d (x, y dove x = {x j } e y = {y j } sono le successioni di l definite da x j = ( j, y j = j/(j + ; (ii d (f, g dove f, g sono

Dettagli

Massimo e minimo limite di successioni

Massimo e minimo limite di successioni Massimo e minimo limite di successioni 1 Premesse Definizione 1.1. Definiamo R esteso l insieme R = R { } {+ }. In R si estende l ordinamento tra numeri reali ponendo < a < +, a R. In base a tale definizione,

Dettagli

Serie di Fourier. Tra queste funzioni definiamo un prodotto scalare nel seguente modo: date f, g V poniamo f (x) g (x) dx. f (x) [g (x) + h (x)] dx

Serie di Fourier. Tra queste funzioni definiamo un prodotto scalare nel seguente modo: date f, g V poniamo f (x) g (x) dx. f (x) [g (x) + h (x)] dx Serie di Fourier Indichiamo con V l insieme delle funzioni f : R R che siano periodiche di periodo π, si abbia cioè f ( + π) = f (), e che risultino integrabili nell intervallo [, π]. Tra queste funzioni

Dettagli

Serie di funzioni: esercizi svolti

Serie di funzioni: esercizi svolti Serie di funzioni: esercizi svolti Gli esercizi contrassegnati con il simbolo * presentano un grado di difficoltà maggiore. Esercizio. seguenti serie di funzioni: Studiare la convergenza normale, uniforme,

Dettagli

1. Mercoledì 07/03/2018, ore: 2(2) Introduzione e presentazione del corso. Richiami: i numeri naturali, interi, razionali e reali.

1. Mercoledì 07/03/2018, ore: 2(2) Introduzione e presentazione del corso. Richiami: i numeri naturali, interi, razionali e reali. Registro delle lezioni di MATEMATICA 2 Corso di Laurea in Chimica 6 CFU - A.A. 2017/2018 docente: Francesco Demontis ultimo aggiornamento: 28 maggio 2018 1. Mercoledì 07/03/2018, 9 11. ore: 2(2) Introduzione

Dettagli

1. Scrivere il termine generale a n delle seguenti successioni e calcolare lim n a n:

1. Scrivere il termine generale a n delle seguenti successioni e calcolare lim n a n: Serie numeriche.6 Esercizi. Scrivere il termine generale a n delle seguenti successioni e calcolare a n: a),, 4, 4 5,... b), 9, 4 7, 5 8,... c) 0,,,, 4,.... Studiare il comportamento delle seguenti successioni

Dettagli

M174sett.tex. 4a settimana Inizio 22/10/2007. Terzo limite fondamentale (sul libro, p. 113, è chiamato secondo ) lim x 1 x 0 x

M174sett.tex. 4a settimana Inizio 22/10/2007. Terzo limite fondamentale (sul libro, p. 113, è chiamato secondo ) lim x 1 x 0 x M74sett.te 4a settimana Inizio 22/0/2007 Terzo ite fondamentale (sul libro, p. 3, è chiamato secondo ) e 0 =. La tangente al grafico nel punto (0,0) risulta y = (vedremo poi perché). Ricordare che e è

Dettagli

Istituzioni di Matematiche terza parte

Istituzioni di Matematiche terza parte Istituzioni di Matematiche terza parte anno acc. 2011/2012 Univ. degli Studi di Milano Cristina Turrini (Univ. degli Studi di Milano) Istituzioni di Matematiche 1 / 35 index Il concetto di limite 1 Il

Dettagli

Corso di laurea: Ingegneria Civile Programma di Fondamenti di Analisi Matematica I a.a. 2011/2012 Docenti: Fabio Paronetto e Fabio Ancona

Corso di laurea: Ingegneria Civile Programma di Fondamenti di Analisi Matematica I a.a. 2011/2012 Docenti: Fabio Paronetto e Fabio Ancona Corso di laurea: Ingegneria Civile Programma di Fondamenti di Analisi Matematica I a.a. 2011/2012 Docenti: Fabio Paronetto e Fabio Ancona Gli argomenti denotati con un asterisco tra parentesi sono stati

Dettagli

Università degli Studi della Calabria Facoltà di Ingegneria. 17 luglio 2012

Università degli Studi della Calabria Facoltà di Ingegneria. 17 luglio 2012 Università degli Studi della Calabria Facoltà di Ingegneria Correzione della Seconda Prova Scritta di nalisi Matematica 7 luglio cura dei Prof. B. Sciunzi e L. Montoro. Seconda Prova Scritta di nalisi

Dettagli

a j n + convergente divergente irregolare.

a j n + convergente divergente irregolare. Serie numeriche Definizione Data una successione reale {a j } + successione delle somme parziali n esime come: n s n a j, jj il cui limite, per n + : jj R, si definisce la s lim s n n + jj a j è detto

Dettagli

Corso di Analisi Matematica. Polinomi e serie di Taylor

Corso di Analisi Matematica. Polinomi e serie di Taylor a.a. 2011/12 Laurea triennale in Informatica Corso di Analisi Matematica Polinomi e serie di Taylor Avvertenza Questi sono appunti informali delle lezioni, che vengono resi disponibili per comodità degli

Dettagli

Prove scritte di Analisi I - Informatica

Prove scritte di Analisi I - Informatica Prove scritte di Analisi I - Informatica Prova scritta del 3 gennaio Esercizio Stabilire il comportamento delle seguenti serie: n= n + 3 sin n, n= ( ) n n + 3 sin n, n= (n)! (n!), n= n + n 9 n + n. Esercizio

Dettagli

Dispense del corso di Analisi II

Dispense del corso di Analisi II Dispense del corso di Analisi II versione preliminare Paolo Tilli Dipartimento di Matematica Politecnico di Torino email: paolo.tilli@polito.it 2 dicembre 2004 Capitolo 2 Serie di potenze 2. Introduzione

Dettagli

Tutorato di Complementi di Analisi Matematica e Statistica Parte di Analisi 6 e 10 aprile 2017

Tutorato di Complementi di Analisi Matematica e Statistica Parte di Analisi 6 e 10 aprile 2017 Tutorato di Complementi di Analisi Matematica e Statistica Parte di Analisi 6 e 10 aprile 2017 Esercizi: serie di potenze e serie di Taylor 1 Date le serie di potenze a.) n=2 ln(n) n 3 (x 5)n b.) n=2 ln(n)

Dettagli

Appunti di ANALISI MATEMATICA II Corso di Laurea Triennale in Matematica

Appunti di ANALISI MATEMATICA II Corso di Laurea Triennale in Matematica Appunti di ANALISI MATEMATICA II Corso di Laurea Triennale in Matematica Umberto Massari Anno accademico 3-4 SUCCESSIONI E SERIE DI FUNZIONI. Successioni di funzioni: convergenza puntuale ed uniforme Sia

Dettagli

Nota: A meno che non sia specificato diversamente, si intende che i teoremi, lemmi, proposizioni sotto menzionati siano stati dimostrati a lezione.

Nota: A meno che non sia specificato diversamente, si intende che i teoremi, lemmi, proposizioni sotto menzionati siano stati dimostrati a lezione. Programma di Analisi Matematica 1 (Canale ICM) svolto per lezioni - A. Languasco - C. Vagnoni 1 Nota: A meno che non sia specificato diversamente, si intende che i teoremi, lemmi, proposizioni sotto menzionati

Dettagli

Corso di Analisi Matematica. Calcolo differenziale

Corso di Analisi Matematica. Calcolo differenziale a.a. 2013/14 Laurea triennale in Informatica Corso di Analisi Matematica Calcolo differenziale Avvertenza Questi sono appunti informali delle lezioni, che vengono resi disponibili per comodità degli studenti.

Dettagli

DIARIO DELLE LEZIONI DI ANALISI MATEMATICA II Corso di laurea in Ingegneria Gestionale Canale PZ Secondo codocente: Dott. Salvatore Fragapane

DIARIO DELLE LEZIONI DI ANALISI MATEMATICA II Corso di laurea in Ingegneria Gestionale Canale PZ Secondo codocente: Dott. Salvatore Fragapane DIARIO DELLE LEZIONI DI ANALISI MATEMATICA II Corso di laurea in Ingegneria Gestionale Canale PZ Secondo codocente: Dott. Salvatore Fragapane Lezione 1-04/10/2016 - Serie Numeriche (1): definizione e successione

Dettagli