La legge di Gauss. Il flusso elettrico

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "La legge di Gauss. Il flusso elettrico"

Transcript

1 La legge di Gauss La legge di Gauss mette in relazione il flusso elettrico Φ attraverso una superficie chiusa e la carica q %& dentro: Se più linee di flusso escono di quante ne entrano, contiene una carica netta positiva Se più linee di flusso entrano di quante ne escono, contiene una carica netta negativa q %& = ε ) Φ 133 Il flusso elettrico Corrisponde al prodotto della superficie A e la componente di E perpendicolare alla superficie: Φ =, E - da vettore superficie da : perpendicolare alla superficie per superficie gaussiana (chiusa): uscente E.g. : cilindro in campo uniforme lato sinistro: Φ 1 = EA cos 180 = EA lato cilindrico: Φ : = EA cos 90 = 0 lato destro: Φ < = EA cos 0 = EA totale: Φ = Φ 1 Φ : Φ < =

2 Campo elettrico di carica puntiforme Superficie Gaussiana (chiusa): sfera di raggio r intorno a carica q per simmetria, il campo E è uniforme e perpendicolare alla superficie Per il flusso troviamo Φ = AE cos 0 = 4πr A E Gauss: q %& = ε ) Φ q = ε ) 4πr A E q E = 4πε ) r A Così abbiamo ritrovato la legge di Coulomb! Applicando legge di Gauss su gusci sferici si dimostrano i due teoremi del guscio 135 Campo elettrico di carica lineare Bacchetta di lunghezza infinita Densità di carica lineare λ [C m] Racchiudiamo in superficie cilindrica di raggio r, altezza h. Per simmetria, il campo dev essere radiale e orientato verso l esterno Flusso: Φ = AE cos 0 = 2πrh - E -1 Carica interna: q %& = λh Gauss: q %& = ε ) Φ λh = ε ) - 2πrE - h E = λ 2πrε ) 136 2

3 Campo elettrico di carica superficiale Consideriamo lamina isolante Di dimensione infinita Densità di carica superficiale σ[c m A ] Superficie Gaussiana: cilindro con basi di area A Il lato cilindrico non contribuisce al flusso Φ angolo di 90 gradi tra campo e normale Per i lati, E parallelo a A Φ = EA EA = 2EA Gauss: q %& = ε ) Φ σ A = ε ) - 2EA E = L AM N 137 Campo elettrico tra due piastre Una piastra con carica superficiale σ Un altra con carica superficiale σ Il campo finale corrisponde alla somma (principio di sovrapposizione) Risulta che il campo finale si cancella tranne nello spazio tra le due piastre dove E = L L = L AM N AM N M N Si è creato un campo uniforme

4 Potenziale elettrico La forza elettrica è conservativa il lavoro compiuto è indipendente dal cammino Carica q ) ha una energia potenziale elettrica U rispetto ad un punto di riferimento (normalmente ) Definiamo il potenziale elettrico: = R S N Unità di misura: olt () : 1 = 1J / 1C spostare una carica di 1 Coulomb attraverso una differenza di potenziale di 1 impiega un lavoro di 1 Joule 139 Accelerazione di elettroni Esempio: elettrone accelerato attraverso differenza di potenziale di 1000 Conservazione di energia: energia elettrica trasformata in energia cinetica E T, = E T, e 1 2 mv A = e 1 2 mv A eδ = Z A mva v = A[\] = A-Z,^ Z)`ab c-z)))] = T d,z Z)`ea fg 1,88 10 h m s = 18800km/s 140 4

5 Campo elettrico e potenziale Dal campo elettrico E, si può calcolare la differenza di potenziale tra due punti Una carica esplorativa q ) sente una forza F = q ) E Lavoro dl svolto dal campo per uno piccolo spostamento ds : dl = F - ds Per spostamento da i a f : L = q ) E - ds Lavoro svolto dal campo diminuisce l energia potenziale: ΔU = U U = L q ) q ) = q ) E - ds Δ = = E - ds 141 Campo elettrico e potenziale La differenza di potenziale tra due punti corrisponde a (meno) l integrale del campo elettrico lungo il cammino che li collega: = E - ds forza conservatrice, dunque valida per qualsiasi cammino! Per campo costante = E - s = Es cos θ Per due piastre di distanza d abbiamo Δ = Ed Tra due piastre distante d con differenza di potenziale Δ il campo elettrico ha intensità E = Δ/d e ciascuna piastra ha carica superficiale σ = ε ) E = ε ) \] r 142-5

6 Potenziale di una carica puntiforme Campo elettrico: E = S r stm N u v Poniamo = 0 a distanza infinita Per spostamento da R a : y z S y stm N z R = E - ds 0 R = r {A dr = q r {Z z y = q 4πε ) 4πε ) R = q 4πε ) R 143 6

Definizione di Flusso

Definizione di Flusso Definizione di Flusso Il flusso aumenta se il campo elettrico aumenta!! Δφ E ΔA EΔAcosθ E Il flusso è la quantità di materia che passa attraverso una superficie nell unità di tempo. Se si parla di campo

Dettagli

Flusso Elettrico Legge di Gauss: Motivazione & Definizione Legge di Coulomb come conseguenza della legge di Gauss Cariche sui Conduttori

Flusso Elettrico Legge di Gauss: Motivazione & Definizione Legge di Coulomb come conseguenza della legge di Gauss Cariche sui Conduttori Legge di Gauss Flusso Elettrico Legge di Gauss: Motivazione & Definizione Legge di Coulomb come conseguenza della legge di Gauss Cariche sui Conduttori La legge di Gauss mette in relazione i campi su una

Dettagli

CAPITOLO 3 TEOREMA DI GAUSS

CAPITOLO 3 TEOREMA DI GAUSS CAPITOLO 3 3.1 Il concetto di flusso Una formulazione equivalente alla legge di Coulomb è quella stabilita dal teorema di Gauss, che trae vantaggio dalle situazioni nelle quali vi è una simmetria nella

Dettagli

Definizione di Flusso

Definizione di Flusso Definizione di Flusso Il flusso aumenta se il campo elettrico aumenta!! Δφ E ΔA EΔAcosθ E Il flusso è la quantità di materia che passa attraverso una superficie nell unità di tempo. Se si parla di campo

Dettagli

Lezione 13 - La legge di Gauss

Lezione 13 - La legge di Gauss Lezione 13 - La legge di Gauss Armati dei concetti fin qui introdotti possiamo enunciare la legge di Gauss o anche Φ = q interna r E da r sup. Gaussiana = q interna illustrazione tratta da: Halliday-Resnick-Walker,

Dettagli

CAPITOLO 3 LA LEGGE DI GAUSS

CAPITOLO 3 LA LEGGE DI GAUSS CAPITOLO 3 LA LEGGE DI GAUSS Elisabetta Bissaldi (Politecnico di Bari) - A.A. 2018-2019 2 Premessa TEOREMA DI GAUSS Formulazione equivalente alla legge di Coulomb Trae vantaggio dalle situazioni nelle

Dettagli

Applicazioni del teorema di Gauss

Applicazioni del teorema di Gauss Prof. A.Guarrera Liceo Scientifico Galilei - Catania Applicazioni del teorema di Gauss Campo elettrostatico di una distribuzione di carica uniforme e filiforme (filo carico) di densità lineare di carica.

Dettagli

Applicazioni del Teorema di Gauss

Applicazioni del Teorema di Gauss Applicazioni del Teorema di Gauss Simone Alghisi Liceo Scientifico Luzzago Ottobre 2011 Simone Alghisi Liceo Scientifico Luzzago Applicazioni del Teorema di Gauss Ottobre 2011 1 / 8 Definizione Dato un

Dettagli

1) ELETTROSTATICA NEL VUOTO

1) ELETTROSTATICA NEL VUOTO 1) LTTROSTATICA NL VUOTO se le cariche non sono puntiformi d() = 1 ρ r. dτ 4πϵ, ( r ) r 7 3 454 6 la lezione precedente distribuzione di carica carica puntiforme (volumetto infinitesimo) ρ(r )= d(r )/dt

Dettagli

CAPITOLO 3 LA LEGGE DI GAUSS

CAPITOLO 3 LA LEGGE DI GAUSS CAPITOLO 3 LA LEGGE DI GAUSS Elisabetta Bissaldi (Politecnico di Bari) - A.A. 2017-2018 2 Premesse TEOREMA DI GAUSS Formulazione equivalente alla legge di Coulomb Trae vantaggio dalle situazioni nelle

Dettagli

approfondimento Struttura atomica e conservazione della carica nei fenomeni elettrici

approfondimento Struttura atomica e conservazione della carica nei fenomeni elettrici approfondimento Struttura atomica e conservazione della carica nei fenomeni elettrici Flusso del campo elettrico e legge di Gauss: Il campo elettrico generato da distribuzioni di carica a simmetria sferica

Dettagli

Tesina di Fisica Generale II

Tesina di Fisica Generale II Tesina di Fisica Generale II Corso di laurea di scienza e ingegneria dei materiali 1 gruppo Coordinatore Scotti di Uccio Umberto Tesina svolta da: nnalisa Volpe N50000281 Catello Staiano N50000285 Raffaele

Dettagli

All interno di una sfera di raggio R posta nel vuoto esiste una densità di carica ρ = ρ 0 distanza dal centro della sfera e ρ 0.

All interno di una sfera di raggio R posta nel vuoto esiste una densità di carica ρ = ρ 0 distanza dal centro della sfera e ρ 0. Esercizio 1 All interno di una sfera di raggio posta nel vuoto esiste una densità di carica ρ = ρ r 2 distanza dal centro della sfera e ρ. Determinare: 1. La carica totale della sfera 2. Il campo elettrico

Dettagli

Flusso di un campo a.raverso una superficie

Flusso di un campo a.raverso una superficie LEGGE DI GAUSS Flusso di un campo a.raverso una superficie Consideriamo il volume di un fluido che passa a.raverso una superficie nell unità di tempo: Possiamo estendere questa definizione di flusso a

Dettagli

PROPRIETÀ DEL CAMPO ELETTROSTATICO. G. Pugliese 1

PROPRIETÀ DEL CAMPO ELETTROSTATICO. G. Pugliese 1 PROPRIETÀ DEL CAMPO ELETTROTATICO G. Pugliese 1 Flusso di un vettore Il flusso di un liuido o d aria (la portata), è la uantità di liuido che passa in un determinato tempo attraverso una sezione del tubo.

Dettagli

Facoltà di Ingegneria 1 a prova in itinere di Fisica II 15-Aprile Compito A

Facoltà di Ingegneria 1 a prova in itinere di Fisica II 15-Aprile Compito A Facoltà di Ingegneria a prova in itinere di Fisica II 5-Aprile-3 - Compito A Esercizio n. Un filo isolante di lunghezza è piegato ad arco di circonferenza di raggio (vedi figura). Su di esso è depositata

Dettagli

Applicazioni del teorema di Gauss

Applicazioni del teorema di Gauss prof. Alessandro ALTERIO (FISICA) 5ªD (P.N.I.) liceo scientifico Marconi di Grosseto pagina 1 di 8 Applicazioni del teorema di Gauss Campo elettrostatico di una distribuzione di carica uniforme e filiforme

Dettagli

POTENZIALE V T O R I ELETTRICO g. bonomi fisica sperimentale (mecc., elettrom.) Introduzione

POTENZIALE V T O R I ELETTRICO g. bonomi fisica sperimentale (mecc., elettrom.) Introduzione Introduzione Mentre era su una piattaforma panoramica questa ragazza si accorse che i suoi capelli le si rizzavano in testa. Suo fratello, divertito, le scattò questa foto. Cinque minuti dopo un fulmine

Dettagli

Dipolo Elettrico: due cariche (puntiformi) +q e q (stesso modulo, segno opposto) a distanza a. Momento di Dipolo, P: Vettore di modulo

Dipolo Elettrico: due cariche (puntiformi) +q e q (stesso modulo, segno opposto) a distanza a. Momento di Dipolo, P: Vettore di modulo Il Dipolo Elettrico Dipolo Elettrico: due cariche (puntiformi) q e q (stesso modulo, segno opposto) a distanza a. Momento di Dipolo, P: Vettore di modulo qa che va da qq a q Dato un punto P molto distante

Dettagli

Facoltà di Ingegneria Prova scritta di Fisica II - 23 Settembre Compito A Esercizio n.1 O Esercizio n. 2 O

Facoltà di Ingegneria Prova scritta di Fisica II - 23 Settembre Compito A Esercizio n.1 O Esercizio n. 2 O Facoltà di Ingegneria Prova scritta di Fisica II - 3 Settembre 003 - Compito A Esercizio n.1 Quattro cariche di uguale valore q, due positive e due negative, sono poste nei vertici di un quadrato di lato

Dettagli

IL CAMPO ELETTRICO Problemi di Fisica ELETTROMAGNETISMO Il campo elettrico

IL CAMPO ELETTRICO Problemi di Fisica ELETTROMAGNETISMO Il campo elettrico Problemi di Fisica LTTROMAGNTISMO Il campo elettrico Data la distribuzione di carica rappresentata in figura, calcolare il campo elettrico prodotto nell origine degli assi cartesiani. I dati sono: -e +e

Dettagli

Facoltà di Ingegneria Prova scritta di Fisica II - VO 15-Aprile-2003

Facoltà di Ingegneria Prova scritta di Fisica II - VO 15-Aprile-2003 Facoltà di Ingegneria Prova scritta di Fisica II - VO 5-Aprile-003 Esercizio n. Un campo magnetico B è perpendicolare al piano individuato da due fili paralleli, cilindrici e conduttori, distanti l uno

Dettagli

Prova Scritta di Fisica Corso di Studi in Ingegneria Civile, Università della Calabria, 1 Luglio 2014

Prova Scritta di Fisica Corso di Studi in Ingegneria Civile, Università della Calabria, 1 Luglio 2014 Prova Scritta di Fisica Corso di Studi in Ingegneria Civile, Università della Calabria, 1 Luglio 014 Esercizio 1: Una molla ideale è utilizzata per frenare un blocco di massa 50 kg che striscia su un piano

Dettagli

Dotto Formazione a tutto tondo Rapid Training 2018 Corso di Fisica Argomento 12 Elettricità: forza e campo elettrico

Dotto Formazione a tutto tondo Rapid Training 2018 Corso di Fisica Argomento 12 Elettricità: forza e campo elettrico Dotto Formazione a tutto tondo Rapid Training 2018 Corso di Fisica Argomento 12 Elettricità: forza e campo elettrico 2 La carica elettrica La carica elettrica è una proprietà della materia. si è stabilito

Dettagli

Elettrostatica si elettrizzano per strofinio forza attrattiva repulsiva trasferimento di carica elettrica si caricano

Elettrostatica si elettrizzano per strofinio forza attrattiva repulsiva trasferimento di carica elettrica si caricano Elettrostatica Alcune sostanze (ambra, vetro, materie plastiche, ) si elettrizzano per strofinio, cioè strofinate con un panno acuistano la capacità di attrarre corpi leggeri. Due oggetti elettrizzati

Dettagli

CAMPO ELETTRICO. F r e = q E r. Newton ;

CAMPO ELETTRICO. F r e = q E r. Newton ; 1 CAMPO ELETTRICO Si definisce campo elettrico (o elettrostatico) una qualunque regione dello spazio nella quale si manifestano azioni su cariche elettriche. 1. DESCRIZIONE DEL CAMPO Per descrivere un

Dettagli

si elettrizzano per strofinio forza attrattiva repulsiva trasferimento di carica elettrica si caricano

si elettrizzano per strofinio forza attrattiva repulsiva trasferimento di carica elettrica si caricano Elettrostatica Alcune sostanze (ambra, vetro, materie plastiche, ) si elettrizzano per strofinio, cioè strofinate con un panno acuistano la capacità di attrarre corpi leggeri. Due oggetti elettrizzati

Dettagli

Interazioni fondamentali (origine. delle forze) Elettromagnetica : lungo raggio lega elettroni e protoni per. per formare i nuclei. molecole,, etc.

Interazioni fondamentali (origine. delle forze) Elettromagnetica : lungo raggio lega elettroni e protoni per. per formare i nuclei. molecole,, etc. Interazioni fondamentali (origine delle forze) orte : corto raggio ~10-14 m lega i protoni ed i neutroni per formare i nuclei Elettromagnetica : lungo raggio lega elettroni e protoni per formare atomi,

Dettagli

Il Corso di Fisica per Scienze Biologiche

Il Corso di Fisica per Scienze Biologiche Il Corso di Fisica per Scienze Biologiche Ø Prof. Attilio Santocchia Ø Ufficio presso il Dipartimento di Fisica (Quinto Piano) Tel. 075-585 708 Ø E-mail: attilio.santocchia@pg.infn.it Ø Web: http://www.fisica.unipg.it/~attilio.santocchia

Dettagli

Elettromagnetismo (1/6) Cariche, forze e campi Lezione 19, 10/12/2018, JW , 23.7

Elettromagnetismo (1/6) Cariche, forze e campi Lezione 19, 10/12/2018, JW , 23.7 Elettromagnetismo (1/6) Cariche, forze e campi Lezione 19, 10/12/2018, JW 23.1-23.5, 23.7 1 1. L'elettricità statica Le prime osservazioni sugli effetti della carica elettrica furono quelle sull elettricità

Dettagli

Cap 3- Legge di Gauss. 3.1-Concetto di flusso Flusso del campo elettrico. Cap 3- Legge di Gauss

Cap 3- Legge di Gauss. 3.1-Concetto di flusso Flusso del campo elettrico. Cap 3- Legge di Gauss Cap 3- Legge di Gauss Cap 3- Legge di Gauss Una formulazione equivalente alla legge di Coulomb è quella stabilita dal teorema di Gauss, che trae vantaggio dalle situazioni nelle quali vi è una simmetria

Dettagli

= E qz = 0. 1 d 3 = N

= E qz = 0. 1 d 3 = N Prova scritta d esame di Elettromagnetismo 7 ebbraio 212 Proff.. Lacava,. Ricci, D. Trevese Elettromagnetismo 1 o 12 crediti: esercizi 1, 2, 4 tempo 3 h; Elettromagnetismo 5 crediti: esercizi 3, 4 tempo

Dettagli

1 Cap 3- Legge di Gauss Concetto di flusso Flusso del campo elettrico

1 Cap 3- Legge di Gauss Concetto di flusso Flusso del campo elettrico 3 3.1- FLUSSO DEL CAMPO ELETTRICO 1 Cap 3- Legge di Gauss Una formulazione equivalente alla legge di Coulomb è quella stabilita dal teorema di Gauss, che trae vantaggio dalle situazioni nelle quali vi

Dettagli

E costituito da due conduttori isolati di varie forme che vengono chiamati piatti o armature del condensatore.

E costituito da due conduttori isolati di varie forme che vengono chiamati piatti o armature del condensatore. Condensatori Il condensatore elettrico (o capacitore) è un dispositivo estremamente utile in elettronica e nei circuiti elettrici, poiché consente di immagazzinare e rilasciare energia elettrica in modo

Dettagli

Fisica Generale II (prima parte)

Fisica Generale II (prima parte) Corso di Laurea in Ing. Medica Fisica Generale II (prima parte) Cognome Nome n. matricola Voto 4.2.2011 Esercizio n.1 Determinare il campo elettrico in modulo direzione e verso generato nel punto O dalle

Dettagli

ElettroMagnetismo IL CAMPO ELETTRICO

ElettroMagnetismo IL CAMPO ELETTRICO FISICA ElettroMagnetismo IL CAMPO ELETTRICO Autore: prof. Pappalardo Vincenzo docente di Matematica e Fisica CONCETTO DI CAMPO ELETTRICO La forza che si esercita tra due corpi carichi, così come quella

Dettagli

CONDUTTORI V T T O R I E DIELETTRICI g. bonomi fisica sperimentale (mecc., elettrom.) Introduzione

CONDUTTORI V T T O R I E DIELETTRICI g. bonomi fisica sperimentale (mecc., elettrom.) Introduzione Introduzione La fibrillazione è una contrazione disordinata del muscolo cardiaco. Un forte shock elettrico può ripristinare la normale contrazione. Per questo è necessario applicare al muscolo una corrente

Dettagli

Primo Parziale Fisica Generale T-B

Primo Parziale Fisica Generale T-B Primo Parziale Fisica Generale T-B (CdL Ingegneria Civile e Informatica [A-K]) Prof. M. Sioli 23/11/2012 Soluzioni Compito B Esercizi Ex. 1 Tre cariche puntiformi sono disposte ai vertici di un uadrato

Dettagli

UNIVERSITA DEGLI STUDI DI GENOVA SCUOLA POLITECNICA FISICA GENERALE I

UNIVERSITA DEGLI STUDI DI GENOVA SCUOLA POLITECNICA FISICA GENERALE I FISICA GENERALE I - Sede di Spezia Prova A del 11/01/2016 ME 1 Un ragno di massa m R = 5.0 g usa il proprio filo come una liana (lunghezza L =10 cm). Partendo da fermo con il filo inclinato di un angolo

Dettagli

df = I dl B df = dq v B

df = I dl B df = dq v B Forza Magnetica su un conduttore Forza magnetica agente su un filo percorso da corrente Consideriamo un filo percorso da una corrente in presenza di un campo magnetico. Agirà una forza su ciascuna delle

Dettagli

All interno di una sfera di raggio R posta nel vuoto esiste una densità di carica ρ = ρ 0 distanza dal centro della sfera e ρ 0.

All interno di una sfera di raggio R posta nel vuoto esiste una densità di carica ρ = ρ 0 distanza dal centro della sfera e ρ 0. Esercizio 1 All interno di una sfera di raggio posta nel vuoto esiste una densità di carica ρ = ρ r distanza dal centro della sfera e ρ. Determinare: 1. La carica totale della sfera. Il campo elettrico

Dettagli

Capacità. Capacità elettrica Condensatore Condensatore = sistema per immagazzinare energia (elettrica)

Capacità. Capacità elettrica Condensatore Condensatore = sistema per immagazzinare energia (elettrica) Capacità Capacità elettrica Condensatore Condensatore = sistema per immagazzinare energia (elettrica) Definizione C Capacità Q V La capacità è una misura di quanta carica debba possedere un certo tipo

Dettagli

Elettromagnetismo (2/6) Il potenziale elettrico Lezione 20, 11/12/2018, JW

Elettromagnetismo (2/6) Il potenziale elettrico Lezione 20, 11/12/2018, JW Elettromagnetismo (2/6) Il potenziale elettrico Lezione 20, 11/12/2018, JW 24.1-24.5 1 1. L energia potenziale elettrica La forza elettrica è conservativa: di conseguenza deve essere associata a un energia

Dettagli

quindi risulta inferiore alla forza elettrostatica di tre ordini di grandezza.

quindi risulta inferiore alla forza elettrostatica di tre ordini di grandezza. CAPITOLO 3 IL CAMPO ELETTRICO 1 IL VETTORE CAMPO ELETTRICO 1 No, è una funzione scalare o vettoriale. L accelerazione ha direzione e verso uguali a quelli della forza elettrica, che ha la stessa direzione

Dettagli

1.2 Moto di cariche in campo elettrico

1.2 Moto di cariche in campo elettrico 1.2 Moto di cariche in campo elettrico Capitolo 1 Elettrostatica 1.2 Moto di cariche in campo elettrico Esercizio 11 Una carica puntiforme q = 2.0 10 7 C, massa m = 2 10 6 kg, viene attratta da una carica

Dettagli

Esercizi di Fisica II svolti in aula. Federico Di Paolo (22/02/2013)

Esercizi di Fisica II svolti in aula. Federico Di Paolo (22/02/2013) Esercizi di Fisica II svolti in aula Federico Di Paolo (22/02/203) Esercizio L elettrone e il protone hanno rispettivamente una massa di 9. 0 3 kg e, 67 0 27 kg. La loro carica elettrica è pari a.6 0 9

Dettagli

Lezione 12 - Azione a distanza

Lezione 12 - Azione a distanza Lezione 12 - Azione a distanza Immaginiamo di disporre di un corpo puntiforme con carica q 1 e di mettere nelle sue vicinanze un secondo corpo con carica q 2 In base alla legge di Coulomb possiamo affermare

Dettagli

Esame Scritto Fisica Generale T-B

Esame Scritto Fisica Generale T-B Esame Scritto Fisica Generale T-B (CdL Ingegneria Civile e Informatica [A-K]) Prof. M. Sioli V Appello - 22/7/213 Soluzioni Esercizi Ex. 1 Nel vuoto, nella regione di spazio delimitata dai piani x = e

Dettagli

Soluzioni. Perché un oggetto neutro diventi carico positivamente occorre:.

Soluzioni. Perché un oggetto neutro diventi carico positivamente occorre:. 01 02 Soluzioni Perché un oggetto neutro diventi carico positivamente occorre:. Una carica puntiforme isolata produce un campo elettrico di intensità E in un punto a 2 m di distanza. Un punto in cui il

Dettagli

Elettrostatica nel vuoto

Elettrostatica nel vuoto Elettrostatica nel vuoto Esercizio 1.1 Una particella avente carica q e velocità V 0 attraversa, perpendicolarmente alle linee di campo, una regione di lunghezza s in cui eè presente un campo elettrico

Dettagli

r= 2m σ = 9.1 mc/m 2 (a) Se s è la densità di carica superficiale, la carica totale sarà data dalla densità superficiale per l area della superficie:

r= 2m σ = 9.1 mc/m 2 (a) Se s è la densità di carica superficiale, la carica totale sarà data dalla densità superficiale per l area della superficie: 1) Una sfera condu/rice uniformemente carica avente raggio di 2 m ha una densità di carica superficiale di 9.1 mc/m 2. Si determini: (a) la carica totale della sfera; (b) il flusso ele/rico totale uscente

Dettagli

I prova di esonero del corso di Elettromagnetismo (a.a. 2009/2010) (Proff. F. Lacava, F. Ricci, D. Trevese) 23 aprile 2010

I prova di esonero del corso di Elettromagnetismo (a.a. 2009/2010) (Proff. F. Lacava, F. Ricci, D. Trevese) 23 aprile 2010 I prova di esonero del corso di Elettromagnetismo a.a. 2009/2010 Proff. F. Lacava, F. Ricci, D. Trevese 23 aprile 2010 Esercizio 1 Un dischetto sottile di raggio R, costituito da materiale isolante a densità

Dettagli

IL CAMPO ELETTRICO. Test

IL CAMPO ELETTRICO. Test Test 1 Quali delle seguenti affermazioni sul concetto di campo elettrico è corretta? A Il campo elettrico in un punto dello spazio ha sempre la stessa direzione e lo stesso verso della forza elettrica

Dettagli

Esercizi-Calcolo diretto di campo elettrico

Esercizi-Calcolo diretto di campo elettrico 1 CALCOLO DIRETTO CAMPO ELETTRICO Parte I Esercizi-Calcolo diretto di campo elettrico 1 Calcolo diretto campo elettrico Problema svolto 22.2 In figura vi sono due cariche q 1 = +8q e q 2 = 2q la prima

Dettagli

Formulario. Entrante Uscente. Vettori Angolo tra l'asse e il vettore 1. Cinematica Equazioni della cinematica. Moti Moto periodico

Formulario. Entrante Uscente. Vettori Angolo tra l'asse e il vettore 1. Cinematica Equazioni della cinematica. Moti Moto periodico Formulario Entrante Uscente Vettori Angolo tra l'asse e il vettore sin cos. 2. 0. 2. 0 Cinematica Equazioni della cinematica Modulo dell'accelerazione centripeta Modulo della velocità nel moto circolare

Dettagli

b. Per il teorema di Gauss, il flusso attraverso una superficie chiusa dipende solo dalle cariche in essa contenute, in questo caso q.

b. Per il teorema di Gauss, il flusso attraverso una superficie chiusa dipende solo dalle cariche in essa contenute, in questo caso q. QUESITI 1 Quesito Lo schema A è impossibile perché per ogni punto dello spazio passa una sola linea di forza. Lo schema C è impossibile perché una linea di forza dev essere orientata come il campo elettrico

Dettagli

Soluzione Compitino Fisica Generale I Ing. Elettronica e Telecomunicazioni 01 Giugno 2018

Soluzione Compitino Fisica Generale I Ing. Elettronica e Telecomunicazioni 01 Giugno 2018 oluzione Compitino Fisica Generale I Ing. Elettronica e Telecomunicazioni 01 Giugno 2018 Esercizio 1 1) Le rotazioni attorno ad un asse ortogonale ai piani e le traslazioni in una direzione parallela ai

Dettagli

Teorema di Gauss per il campo elettrico E

Teorema di Gauss per il campo elettrico E Teorema di Gauss per il campo elettrico E Dove vogliamo arrivare? Vogliamo arrivare al teorema di Gauss per il campo elettrico E : Φ E = q ε 0 Che dice fondamentalmente questo: il flusso attraverso una

Dettagli

Magnetismo. La carica elettrica

Magnetismo. La carica elettrica Introduzione L elettromagnetismo descrive tanti fenomeni: Cariche elettriche Correnti elettriche Magnetismo Onde elettromagnetiche 121 La carica elettrica Due bacchette di vetro strofinate con seta si

Dettagli

FORMULARIO DI FISICA 3 MOTO OSCILLATORIO

FORMULARIO DI FISICA 3 MOTO OSCILLATORIO FORMULARIO DI FISICA 3 MOTO OSCILLATORIO Corpo attaccato ad una molla che compie delle oscillazioni Calcolare la costante elastica della molla 2 2 1 2 2 ω: frequenza angolare (Pulsazione) ; T: Periodo

Dettagli

Prova scritta del corso di Fisica e Fisica 2 con soluzioni

Prova scritta del corso di Fisica e Fisica 2 con soluzioni Prova scritta del corso di Fisica e Fisica 2 con soluzioni Prof. F. Ricci-Tersenghi 15/04/2014 Quesiti 1. Un corpo di massa m = 1 kg è appoggiato su di un piano scabro inclinato di θ = 20 o rispetto all

Dettagli

Potenziale elettrostatico

Potenziale elettrostatico Doppio strato piano Potenziale elettrostatico Consideriamo il lavoro compiuto dalla forza elettrica quando una particella di prova di carica q viene spostata in un campo elettrico E. Possiamo definire

Dettagli

Esercizi-Calcolo diretto di campo elettrico

Esercizi-Calcolo diretto di campo elettrico 1 CALCOLO DIRETTO CAMPO ELETTRICO Parte I Esercizi-Calcolo diretto di campo elettrico 1 Calcolo diretto campo elettrico Problema svolto 22.2 In figura vi sono due cariche q 1 = +8q e q 2 = 2q la prima

Dettagli

CAPITOLO 2 POTENZIALE ELETTROSTATICO

CAPITOLO 2 POTENZIALE ELETTROSTATICO CAPITOLO 2 POTENZIALE ELETTROSTATICO Elisabetta Bissaldi (Politecnico di Bari) - A.A. 2018-2019 2 Lavoro, tensione e f.e.m. Consideriamo gli aspetti di LAVORO ed ENERGIA connessi ai campi elettrici. In

Dettagli

1) ELETTROSTATICA NEL VUOTO riassunto Gauss

1) ELETTROSTATICA NEL VUOTO riassunto Gauss 1) ELETTROSTATICA NEL VUOTO riassunto Gauss - flusso di un vettore attraverso una superficie: ϕ(v) 6 = 8 v n9 ds 6 - teorema di Gauss: ϕ(e) 6 = 8 E n9 ds =??FG q? 6 ε =>?@AB I utile solo se per motivi

Dettagli

Nome: Cognome: Matricola:

Nome: Cognome: Matricola: Esercizio 1: Una particella ++ si trova in quiete ad una distanza d = 100 µm da un piano metallico verticale mantenuto a potenziale nullo. i. Calcolare le componenti del campo E in un generico punto P

Dettagli

ELETTROSTATICA. D = ρ (2) a cui possono essere associate, in caso di mezzo isotropo e lineare, le equazioni di materiale: = ε E, (3)

ELETTROSTATICA. D = ρ (2) a cui possono essere associate, in caso di mezzo isotropo e lineare, le equazioni di materiale: = ε E, (3) ELETTROSTATICA Si parla di elettrostatica quando, in ogni punto dello spazio ed in ogni istante risultano nulle tutte le derivate temporali che compaiono nelle equazioni generali dell elettromagnetismo,

Dettagli

1) ELETTROSTATICA NEL VUOTO

1) ELETTROSTATICA NEL VUOTO ) ELETTROSTATICA NEL VUOTO la lezione precedente forza elettrostatica fra cariche puntiformi ferme nel vuoto: legge di Coulomb la carica è uantizzata e la materia è macroscopicamente neutra si può trasferire

Dettagli

Lezione 5: Elettrostatica. Seminario didattico

Lezione 5: Elettrostatica. Seminario didattico Lezione 5: Elettrostatica Seminario didattico Esercizio n 1 Ai vertici di un quadrato di lato 2 l sono poste 4 cariche uguali Q. Determinare : a) Il campo elettrico in un punto P dell'asse; b) il campo

Dettagli

CAPITOLO 1 ELETTROSTATICA

CAPITOLO 1 ELETTROSTATICA CAPITOLO 1 1.1 Introduzione Nell elettromagnetismo studieremo fenomeni elettrici e magnetici che rappresentano un altra interazione fondamentale della natura (dopo quella gravitazionale che abbiamo visto

Dettagli

Elettrostatica. Tutorato #8

Elettrostatica. Tutorato #8 Tutorato #8 Elettrostatica La Carica Elettrica Tutta la materia a noi nota è costituita da atomi. Un atomo è costituito da un nucleo molto denso in massa, e con carica positiva, e circondato da una nube

Dettagli

Elettromagnetismo. Marcello Borromeo corso di Fisica per Farmacia - Anno Accademico

Elettromagnetismo. Marcello Borromeo corso di Fisica per Farmacia - Anno Accademico Elettromagnetismo Fenomeni osservati fino dall antichità sull ambra (electron) e su materiali provenienti da una cava vicinio alla città di Magnesia Studia le forze che tengono insieme gli atomi Protoni

Dettagli

Prova Parziale 5. La forza di Coulomb è: una forza conservativa. una forza radiale. una forza a distanza. tutte le le risposte precedenti.

Prova Parziale 5. La forza di Coulomb è: una forza conservativa. una forza radiale. una forza a distanza. tutte le le risposte precedenti. La forza di Coulomb è: una forza conservativa. una forza radiale. una forza a distanza. tutte le le risposte precedenti. 1 / 52 La forza di Coulomb è: una forza conservativa. una forza radiale. una forza

Dettagli

UNIVERSITA degli STUDI del SANNIO

UNIVERSITA degli STUDI del SANNIO UNIVERSITA degli STUDI del SANNIO FACOLTA di INGEGNERIA CORSO di LAUREA in INGEGNERIA TRACCE DI FISICA II (aggiornato al luglio 9) Calcolare, per una sfera di raggio R, l energia del campo elettrostatico

Dettagli

1 Prove esami Fisica II

1 Prove esami Fisica II 1 Prove esami Fisica II Prova - 19-11-2002 Lo studente risponda alle seguenti domande: 1) Scrivere il teorema di Gauss (2 punti). 2) Scrivere, per un conduttore percorso da corrente, il legame tra la resistenza

Dettagli

Alcune applicazioni del teorema di Gauss

Alcune applicazioni del teorema di Gauss Alcune applicazioni del teorema di Gauss Diamo innanzitutto la definizione di flusso del vettore v attraverso la superficie S. Per cominciare col caso più semplice, consideriamo un fluido (per esempio,

Dettagli

Elettromagnetismo. Marcello Borromeo corso di Fisica per Farmacia - Anno Accademico

Elettromagnetismo. Marcello Borromeo corso di Fisica per Farmacia - Anno Accademico Elettromagnetismo È lo studio deli fenomeni collegati alle cariche elettriche in quiete o in movimento Alcuni fenomeni sono stati osservati fin dall antichità sull ambra (electron) e su materiali provenienti

Dettagli

FISICA (modulo 1) PROVA SCRITTA 07/07/2014. ESERCIZI (Motivare sempre i vari passaggi nelle soluzioni)

FISICA (modulo 1) PROVA SCRITTA 07/07/2014. ESERCIZI (Motivare sempre i vari passaggi nelle soluzioni) FISICA (modulo 1) PROVA SCRITTA 07/07/2014 ESERCIZI (Motivare sempre i vari passaggi nelle soluzioni) E1. Un blocco di legno di massa M = 1 kg è appeso ad un filo di lunghezza l = 50 cm. Contro il blocco

Dettagli

Conservazione dell energia

Conservazione dell energia Conservazione dell energia gisce solo la gravità, trascuriamo l attrito er calcolare la velocità nel punto per mezzo del II principio della dinamica, oltre a conoscere la velocità iniziale v, è anche necessario

Dettagli

Esercizi di Elettricità

Esercizi di Elettricità Università di Cagliari Laurea Triennale in Biologia Corso di Fisica Esercizi di Elettricità 1. Quattro cariche puntiformi uguali Q = 160 nc sono poste sui vertici di un quadrato di lato a. Quale carica

Dettagli

Flusso di un campo vettoriale

Flusso di un campo vettoriale Flusso di un campo vettoriale Il concetto è stato originariamente introdotto nella teoria dei fluidi, dove il flusso è legato alla quantità di fluido che passa attraverso una data superficie geometrica,

Dettagli

Esercizi di elettrostatica (prima parte)

Esercizi di elettrostatica (prima parte) Esercizi di elettrostatica (prima parte) Esercizi di elettrostatica: forza di coulomb, campo elettrico. 1. Date tre cariche elettriche puntiformi identiche ( Q ) poste ai vertici di un triangolo equilatero

Dettagli

Esercizi di elettrostatica (prima parte)

Esercizi di elettrostatica (prima parte) Esercizi di elettrostatica (prima parte) Esercizi di elettrostatica: forza di coulomb, campo elettrico. 1. Date tre cariche elettriche puntiformi identiche ( Q ) poste ai vertici di un triangolo equilatero

Dettagli

Fondamenti di Fisica necessari per i corsi di informatica ed elettronica

Fondamenti di Fisica necessari per i corsi di informatica ed elettronica Fondamenti di Fisica necessari per i corsi di informatica ed elettronica Ricordiamo che: La velocità è data dal percorso fatto nel tempo. Esempio: una velocità di 30Km/ora indica che in un ora si percorrono

Dettagli

Elettromagnetismo. Prof. Francesco Ragusa Università degli Studi di Milano. Lezione n

Elettromagnetismo. Prof. Francesco Ragusa Università degli Studi di Milano. Lezione n Elettromagnetismo Prof. Francesco Ragusa Università degli Studi di Milano Lezione n. 5 13.10.2017 Legge di Gauss Angolo solido Applicazioni della legge di Gauss Anno Accademico 2017/2018 La Legge di Gauss

Dettagli

σ int =. σ est = Invece, se il guscio è collegato a massa, la superficie esterna si scarica e la densità di carica σ est è nulla. E =.

σ int =. σ est = Invece, se il guscio è collegato a massa, la superficie esterna si scarica e la densità di carica σ est è nulla. E =. Esercizio 1 a) Poiché la carica è interamente contenuta all interno di una cavità circondata da materiale conduttore, si ha il fenomeno dell induzione totale. Quindi sulla superficie interna della sfera

Dettagli

Conduttori e dielettrici

Conduttori e dielettrici Conduttori e dielettrici a.a. 2017-2018 Testo di riferimento: Elementi di Fisica, Mazzoldi, Nigro, Voci 23 Aprile 2018, Bari Dal programma o 2.0 CFU Conduttori e Dielettrici Corpi conduttori in equilibrio

Dettagli

Esame Scritto Fisica Generale T-B/T-2

Esame Scritto Fisica Generale T-B/T-2 Esame Scritto Fisica Generale T-B/T- (CdL Ingegneria Civile e Informatica [A-K] Prof. M. Sioli II Appello A.A. 013-01 - 9/01/01 Soluzioni Esercizi Ex. 1 Sulla superficie della Terra, in condizioni di bel

Dettagli

S.Barbarino - Esercizi svolti di Fisica generale II. Esercizi svolti di Fisica generale II - Anno 1997

S.Barbarino - Esercizi svolti di Fisica generale II. Esercizi svolti di Fisica generale II - Anno 1997 SBarbarino - Esercizi svolti di Fisica generale II Esercizi svolti di Fisica generale II - nno 997 97-) Esercizio n del /3/997 Calcolare il lavoro necessario per trasportare un elettrone dal punto (,,)

Dettagli

FISICA GENERALE II prova scritta del 19/05/2014

FISICA GENERALE II prova scritta del 19/05/2014 FIICA GENEALE II prova scritta del 9/5/4 Problema Una densità di carica lineare uniforme λ, nota, è distribuita su un filo rettilineo indefinito. Una distribuzione di carica superficiale uniforme σ, ignota,

Dettagli

Esercitazione N 2 -Elettrostatica-

Esercitazione N 2 -Elettrostatica- Esercitazione N 2 -Elettrostatica- Esercizi sul Potenziale Elettrostatico 1. Una carica puntiforme del valore di 2 x 10-6 C è posizionata nell origine di un sistema di riferimento. Calcolare il valore

Dettagli

E INT = 0 1) la carica ceduta al conduttore deve essere localizzata sulla sua superficie INT =

E INT = 0 1) la carica ceduta al conduttore deve essere localizzata sulla sua superficie INT = Conduttori in euilibrio in un campo elettrostatico Conduttori materiali solidi, liuidi o gassosi in cui sono presenti cariche che possono muoversi liberamente (cariche mobili) Conduttori solidi metalli,

Dettagli

Tutorato di Fisica 2 Anno Accademico 2010/2011

Tutorato di Fisica 2 Anno Accademico 2010/2011 Matteo Luca Ruggiero DIFIS@Politecnico di Torino Tutorato di Fisica 2 Anno Accademico 2010/2011 () 2 1.1 Una carica q è posta nell origine di un riferimento cartesiano. (1) Determinare le componenti del

Dettagli

Esercizi di Fisica LB: elettrostatica-esercizi svolti

Esercizi di Fisica LB: elettrostatica-esercizi svolti Esercizio 1 Esercizi di Fisica LB: elettrostatica-esercizi svolti Esercitazioni di Fisica LB per ingegneri - A.A. 2003-2004 Si immagini che il nucleo di un atomo di idrogeno si possa approssimare come

Dettagli

Il campo magnetico. Non esiste la carica magnetica (monopoli magnetici) Due modi per creare campi magnetici: elettromagnete:

Il campo magnetico. Non esiste la carica magnetica (monopoli magnetici) Due modi per creare campi magnetici: elettromagnete: Il campo magnetico Non esiste la carica magnetica (monopoli magnetici) Due modi per creare campi magnetici: elettromagnete: correnti elettrici creano campo magnetici magneti permanenti (calamiti) ogni

Dettagli

Dinamica Rotazionale

Dinamica Rotazionale Dinamica Rotazionale Richiamo: cinematica rotazionale, velocità e accelerazione angolare Energia cinetica rotazionale: momento d inerzia Equazione del moto rotatorio: momento angolare e delle forze Leggi

Dettagli

Unità 2. Il campo elettrico e il potenziale

Unità 2. Il campo elettrico e il potenziale Unità 2 Il campo elettrico e il potenziale 1. Il vettore campo elettrico La forza tra due corpi carichi, come quella gravitazionale, è una forza a distanza: agisce senza contatto. Una carica Q 1 in un

Dettagli

CAPACITÀ, CONDENSATORI, ENERGIA

CAPACITÀ, CONDENSATORI, ENERGIA Fisica generale II, a.a. 3/4 CAPACITÀ, CONDENSATORI, ENERGIA B.. Se un protone (carica e) ha raggio r =.( 5 ) m, la sua energia elettrostatica è pari a circa ( MeV=.6( 3 )J). (A).6 MeV (B).6 MeV (C). MeV

Dettagli

IL POTENZIALE ELETTRICO

IL POTENZIALE ELETTRICO CAPITOLO 31 IL POTENZIALE ELETTRICO 1 LʼENERGIA POTENZIALE ELETTRICA 1 Dipende dalla scelta per la condizione di zero dell energia potenziale. L energia potenziale del sistema è data dalla somma delle

Dettagli