Conduttori e dielettrici

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Conduttori e dielettrici"

Transcript

1 Conduttori e dielettrici a.a Testo di riferimento: Elementi di Fisica, Mazzoldi, Nigro, Voci 23 Aprile 2018, Bari

2 Dal programma o 2.0 CFU Conduttori e Dielettrici Corpi conduttori in equilibrio elettrostatico. Conduttore cavo e schermo elettrostatico. Capacità conduttori isolati. Induzione completa fra 2 conduttori: condensatori. Sistemi di condensatori in serie e parallelo. Energia del campo elettrostatico. Dielettrici. Costante dielettrica. Polarizzazione. Equazioni generali dell elettrostatica in presenza di dielettrici. Corrente elettrica: Conduzione elettrica. Corrente elettrica e corrente elettrica stazionaria. Densità di corrente j. Legge di Ohm e concetto di resistenza elettrica. Potenza elettrica ed effetto Joule. Modello classico della conduzione elettrica. Forze elettromotrici. Sistemi di resistori in serie e parallelo. Corrente di Spostamento. Cenno sulle leggi di Kirchhoff per le reti elettriche. 31/01/18 Giuseppe E. Bruno 2

3 Conduttori o Un conduttore presenta al suo interno carica libera di muoversi o Il corpo conduttore può essere elettricamente neutro n carica netta nulla n ma ugualmente al suo interno vi sono cariche (positive e negative) libere di muoversi o il corpo conduttore può presentare un eccesso di carica positiva o negativa n es. processo di carica per induzione già visto nella prima lezione 31/01/18 Giuseppe E. Bruno 3

4 Conduttori all equilibrio o Consideriamo corpi all equilibrio elettrostatico. o È facile provare le seguenti proprietà: n all interno di un corpo conduttore il campo elettrico è nullo: E=0 o corollario: tutti i punti del conduttore sono allo stesso potenziale n all interno del conduttore non vi è carica in eccesso (ρ=0) n carica in eccesso può trovarsi solo sulla superfice esterna del conduttore n il campo elettrico è perpendicolare alla superfice del conduttore n l intensità del campo elettrico sulla suerficie vale E=σ/ε 0 31/01/18 Giuseppe E. Bruno 4

5 Campo elettrico di un conduttore all equilibrio 31/01/18 Giuseppe E. Bruno 5

6 Campo elettrico di un conduttore all equilibrio 31/01/18 Giuseppe E. Bruno 6

7 Esempio 4.1 o due sfere conduttrici poste a grande distanza ma collegate tra loro n determinare come si ripartisce la carica in eccesso 31/01/18 Giuseppe E. Bruno 7

8 Conduttore cavo o Nella superfice interna della cavità non vi è carica n dal teorema di Gauss o ne vi può essere un eccesso da una parte della superficie interna ed un difetto dall altra n circuitazione di E è nulla à E= 0 all interno 31/01/18 Giuseppe E. Bruno 8

9 Conduttore cavo o Anche all interno della cavità il potenziale è lo stesso di quello che si ha nell interno del corpo conduttore n Il conduttore può essere ad un potenziale di 10 V o 10 5 V rispetto al potenziale di terra, ma la differenza di potenziale tra due punti interni (anche nella cavità) resta nulla 31/01/18 Giuseppe E. Bruno 9

10 Conduttore cavo con all interno un conduttore carico o Sulla superficie interna del conduttore cavo si presenta una carica uguale ed opposta a quella del conduttore interno n sulla superficie esterna del conduttore cavo si presenta la stessa carica del conduttore interno o fenomeno dell induzione elettrostatica completa o Il conduttore cavo costituisce uno schermo elettrostatico perfetto tra spazio interno e spazio esterno 31/01/18 Giuseppe E. Bruno 10

11 Verifica dello schermaggio Lo schermaggio avviene anche rispetto all esterno 31/01/18 Giuseppe E. Bruno 11

12 Condensatori o Condensatore: un sistema di conduttori tra cui vi è induzione completa o Es. Condensatore sferico All interno della cavità: E(r) = V int V est = C = q ΔV = 4πε 0 q 1 1 4πε 0 R int R int R est R est R int R est 1 4πε 0 r 2 C = q ΔV Capacità del condensatore [C]=C/V=F (Farad) La capacità dipende solo dalle proprietà geometriche del condensatore 31/01/18 Giuseppe E. Bruno 12

13 Capacità dei condensatori o Condensatore sferico: C = 4πε 0 R int R est R est R int se facciamo tendere R est all infinito: C = 4πε 0 R int che può essere intesa come la capicità di una sfera isolata (le linee di E si chiudono all infinito) 31/01/18 Giuseppe E. Bruno 13

14 Capacità dei condensatori o Condensatore piano: n si può ricavare direttamente n ma anche come caso limite del condensatore sferico: o d=r est -R int << R int R est = R C = 4πε 0 R int R est R est R int C = 4πε 0 R 2 d = ε 0 A d A è la superficie del condensatore piano d è la distanza tra le armature 31/01/18 Giuseppe E. Bruno 14

15 Capacità dei condensatori o Condensatore cilindrico (es. 4.3) λ E(r) = u r 2πε 0 r λ = q d V 1 V 2 = R E(r) d r 2 = λ R 1 2πε 0 R 2 dr = λ ln R 2 R 1 r 2πε 0 R 1 C = q ΔV = q = 2πε d 0 V 1 V 2 ln R 2 capacità per unità di lunghezza: R 1 C d = C d = 2πε 0 ln R 2 R 1 31/01/18 Giuseppe E. Bruno 15

16 Condensatore piano o nella notazione usata sul Mazzoldi E = σ ε 0 ux V 1 V 2 = Eh = σ ε 0 h = σσ ε 0 Σ h = q ε 0 Σ h C = q / (V 1 V 2 ) C = ε 0 Σ h 31/01/18 Giuseppe E. Bruno 16

17 Condensatori reali o sono di dimensione finita n difficile da realizzare quello sferico n spesso cilindrico o piano o vi sono effetti di bordo 31/01/18 Giuseppe E. Bruno 17

18 Condensatori in parallelo q 1 =C 1 V q 2 =C 2 V q=q 1 +q 2 =(C 1 +C 2 )V C eq =C 1 +C 2 Se ho n condensatori: C eq =C 1 +C 2 +.+C n 31/01/18 Giuseppe E. Bruno 18

19 Condensatori in serie V C V B = q C 1 V B V A = q C 2 ΔV = V C V A = q + q = q = q C 1 C 2 C 1 C 2 1 C eq = 1 C C 2 C eq = C 1C 2 C 1 + C 2 C eq Se ho n condensatori: 1/C eq =1/C 1 +1/C /C n 31/01/18 Giuseppe E. Bruno 19

20 Energia del campo elettrostatico o Consideriamo il processo di carica del condensatore. Durante la carica, quando ancora la diff. di potenziale non ha raggiunto il valore finale V, ma è V, il lavoro necessario per portare l ulteriore carica dq è dw=v dq =q /C dq Il lavoro complessivo per effettuare la separazione di cariche è: W = dw = 0 q q' C dq' = q2 Lavoro effettuato contro la forza elettrostatica che si oppone ad un ulteriore accumulo di carica 2C U e = 1 2 q 2 C = 1 2 CV 2 = 1 2 qv 31/01/18 Giuseppe E. Bruno 20

21 Energia del campo elettrostatico o L energia accumulata può essere pensata come dovuta alle cariche elettriche o ma può anche essere intesa come associata alla presenza del campo elettrico (elettrostatico in tal caso) U e = 1 2 CV 2 = 1 2 ε 0 Σ h E 2 h 2 = 1 2 ε 0 E 2 Σh = 1 2 ε 0 E 2 τ densità di energia elettrostatica: u e = U e τ = 1 2 ε 0 E 2 [u e ]=J/m 3 31/01/18 Giuseppe E. Bruno 21

22 Energia del campo elettrostatico densità di energia associata al campo elettrico: u e = U e τ = 1 2 ε 0 E 2 [u e ]=J/m 3 In un volume finito: U e = du e = dτ = dxdydz 1 2 ε 0E 2 dτ 31/01/18 Giuseppe E. Bruno 22

23 Pressione elettrostatica o Esempio /01/18 Giuseppe E. Bruno 23

24 Dielettrici o isolanti o costante dielettrica o costante dielettrica relativa o suscettività dielettrica o polarizzazione dei dielettrici 31/01/18 Giuseppe E. Bruno 24

25 o Introduciamo prima una lastra conduttrice all interno di un condensatore n la d.d.p. diminuisce V=E 0 (h-s) < V 0 31/01/18 Giuseppe E. Bruno 25

26 o Anche quando introduciamo un materiale isolante (dielettrico), la d.d.p. diminuisce n l effetto è minore rispetto al caso del conduttore o il campo all interno del dielettrico diminuisce, ma non si annulla completamente (come nel conduttore) o all aumentare dello spessore della lastra diminuisce linearmente la d.d.p. o V min =V k quando il condensatore è interamente riempito Costante dielettrica relativa: k=v 0 /V k Costante dielettrica: ε=kε 0 31/01/18 Giuseppe E. Bruno 26

27 Condensatore riempito di dielettrico Il campo elettrico si riduce in presenza di un dielettrico k=v 0 /V k >1 costante dielettrica relativa costante dielettrica assoluta ε=kε 0 E K =V k /h=v o /kh=e 0 /k=σ 0 /kε 0 χ=k-1 Suscettività elettrica E 0 -E K = =χ/1+χ E 0 E k = σ 0 ε 0 σ p = k 1 k σ 0 k 1 σ 0 = σ 0 k ε 0 ε 0 σ p ε 0 31/01/18 Giuseppe E. Bruno 27

28 Capacità di condensatore o Capacità di condensatore n C=kC 0 n Condensatore piano: C=εΣ/h o Energia e densità di energia elettrostatica U e = q2 2C = 1 2 εe 2 Σh = 1 2 εe 2 τ u e = U e τ = 1 2 εe 2 31/01/18 Giuseppe E. Bruno 28

29 Polarizzazione polarizzazione di un atomo: p a = Zex Alcune molecole hanno una polarizzazione naturale (es. acqua) 31/01/18 Giuseppe E. Bruno 29

30 polarizzazione Vettore polarizzazione: P = p τ = N τ < p >= n < p > [P]=C/m 2 dove: τ piccolo volume nell intorno di un punto O N= numero diatomi (o molecole) contenute nel volume τ p = N<p> momento di dipolo risultante E e P sono paralleli 31/01/18 Giuseppe E. Bruno 30

31 Polarizzazione o Si può dimostrare che: n in moltissimi materiali, la polarizzazione è proporzionale ad E P = ε 0 (k 1) E = ε 0 χ E n con un campo E esterno uniforme, all interno del dielettrico, la densità volumetrica di carica dovuta alla polarizzazione è nulla: ρ p =0 n con un campo elettrico non uniforme, si ha una densità volumetrica di carica, dovuta alla polarizzazione, non nulla: ρ p =-divp n Sulla superfice del dielettrico la densità superficiale di carica di polarizz. vale σ p = P u n 31/01/18 Giuseppe E. Bruno 31

32 Vettore induzione dielettrica o In presenza di un dielettrico, se vi sono le cariche di polarizzazione, l applicazione del teorema di Gauss non è più ovvio n bisogna considerare anche le cariche di polarizzazione o Si vuole definire un nuovo vettore D (al posto del vettore campo elettrico E) per il quale continui a valere la legge di Gauss n a secondo membro della legge di Gauss, per la carica contenuta nella superfice chiusa considerata, voglio dover considerare le sole cariche vere o per maggiore comodità inglobo nel nuovo vettore anche la costante dielettrica Il risultato sarà: S D ds u n = q vere tot,in 31/01/18 Giuseppe E. Bruno 32

33 Vettore induzione dielettrica o Consideriamo il caso semplice di un dielettrico contenuto in un condensatore piano, ed applichiamo la legge di Gauss ad una superfice chiusa (parallelepipedo) che contenga cariche vere e cariche di polarizzazione E ds u n ( ) " = 1 q vere pol S in + q in ε 0 ε 0 E ds un " = q vere + q pol S σ p = P u n q pol = Σσ P = Σ P u n = P Σ u n = ΣP " P ds u S n = ΣP q pol = P ds u n " S 31/01/18 Giuseppe E. Bruno 33

34 ε 0 Vettore induzione dielettrica E ds un " = q vere + q pol q pol = S " ε 0 E ds un = q vere S " ε 0 E ds un + S " S P ds u n P ds u n " = q vere S " ε 0 E ds un + P ds u S n = q vere ( ε 0 E + P ) ds u n " = q vere S " S P ds u n D = ε 0 E + P D ds un " = q vere S 31/01/18 Giuseppe E. Bruno 34

35 Vettore induzione dielettrica D = ε 0 E + P D ds un " = q vere S D è detto vettore induzione dielettrica soddisfa la legge di Gauss, in presenza di dielettrici, considerando le sole cariche vare Per i dielettrici lineari: P = ε 0 (k 1) E = ε 0 χ E D = ε 0 E +ε0 (k 1) E = ε 0 k E = ε E D = ε E 31/01/18 Giuseppe E. Bruno 35

Corrente elettrica. Testo di riferimento: Elementi di Fisica, Mazzoldi, Nigro, Voci. a.a Aprile 2018, Bari

Corrente elettrica. Testo di riferimento: Elementi di Fisica, Mazzoldi, Nigro, Voci. a.a Aprile 2018, Bari Corrente elettrica a.a. 2017-2018 Testo di riferimento: Elementi di Fisica, Mazzoldi, Nigro, Voci 23 Aprile 2018, Bari Dal programma o 2.0 CFU Conduttori e Dielettrici Corrente elettrica: Conduzione elettrica.

Dettagli

CAPITOLO 4 CONDUTTORI DIELETTRICI ENERGIA ELETTROSTATICA

CAPITOLO 4 CONDUTTORI DIELETTRICI ENERGIA ELETTROSTATICA CAPITOLO 4 CONDUTTORI DIELETTRICI ENERGIA ELETTROSTATICA Elisabetta Bissaldi (Politecnico di Bari) 2 Conduttori in equilibrio MATERIALI CONDUTTORI Le cariche al loro interno sono relativamente libere di

Dettagli

Capacità. Capacità elettrica Condensatore Condensatore = sistema per immagazzinare energia (elettrica)

Capacità. Capacità elettrica Condensatore Condensatore = sistema per immagazzinare energia (elettrica) Capacità Capacità elettrica Condensatore Condensatore = sistema per immagazzinare energia (elettrica) Definizione C Capacità Q V La capacità è una misura di quanta carica debba possedere un certo tipo

Dettagli

CAPITOLO 4 CONDUTTORI DIELETTRICI ENERGIA ELETTROSTATICA

CAPITOLO 4 CONDUTTORI DIELETTRICI ENERGIA ELETTROSTATICA CAPITOLO 4 CONDUTTORI DIELETTRICI ENERGIA ELETTROSTATICA Elisabetta Bissaldi (Politecnico di Bari) - A.A. 2018-19 2 Conduttori in equilibrio MATERIALI CONDUTTORI Le cariche al loro interno sono relativamente

Dettagli

Dielettrici (Isolanti)

Dielettrici (Isolanti) Dielettrici (Isolanti) N.B. nelle operazioni che svolgeremo avremo a che fare con condensatori carichi. Si può operare in due diverse condizioni: 1) a carica costante: condensatore caricato e poi scollegato

Dettagli

Formulario Elettromagnetismo

Formulario Elettromagnetismo Formulario Elettromagnetismo. Elettrostatica Legge di Coulomb: F = q q 2 u 4 0 r 2 Forza elettrostatica tra due cariche puntiformi; ε 0 = costante dielettrica del vuoto; q = cariche (in C); r = distanza

Dettagli

CAPITOLO 4 CONDUTTORI E CONDENSATORI

CAPITOLO 4 CONDUTTORI E CONDENSATORI CAPITOLO 4 CONDUTTORI E 4.1 Conduttore carico e isolato I conduttori sono caratterizzati dal fatto che le cariche al loro interno sono relativamente libere di muoversi. L applicazione di un campo elettrico

Dettagli

Dielettrici V = V 0. E = V h = V 0 kh = E 0

Dielettrici V = V 0. E = V h = V 0 kh = E 0 Dielettrici Dielettrico: materiale non conduttore (gomma, vetro, carta paraffinata) Al contrario dei conduttori anche in presenza di un campo elettrico esterno in essi non si genera un movimento di cariche.

Dettagli

Facoltà di Ingegneria 1 a prova in itinere di Fisica II 15-Aprile Compito A

Facoltà di Ingegneria 1 a prova in itinere di Fisica II 15-Aprile Compito A Facoltà di Ingegneria a prova in itinere di Fisica II 5-Aprile-3 - Compito A Esercizio n. Un filo isolante di lunghezza è piegato ad arco di circonferenza di raggio (vedi figura). Su di esso è depositata

Dettagli

Capacità ele+rica. Condensatori

Capacità ele+rica. Condensatori Capacità ele+rica Condensatori Condensatori Il condensatore è il sistema più semplice per immagazzinare energia elettrostatica. Consideriamo due piani metallici separati da un isolante. La relazione che

Dettagli

Esercizi di Elettricità

Esercizi di Elettricità Università di Cagliari Laurea Triennale in Biologia Corso di Fisica Esercizi di Elettricità 1. Quattro cariche puntiformi uguali Q = 160 nc sono poste sui vertici di un quadrato di lato a. Quale carica

Dettagli

Primo Parziale Fisica Generale T-B

Primo Parziale Fisica Generale T-B Primo Parziale Fisica Generale T-B (CdL Ingegneria Civile e Informatica [A-K]) Prof. M. Sioli 23/11/2012 Soluzioni Compito B Esercizi Ex. 1 Tre cariche puntiformi sono disposte ai vertici di un uadrato

Dettagli

Formulario. (ε = ε 0 nel vuoto, ε 0 ε r nei mezzi; µ = µ 0 nel vuoto, µ 0 µ r nei mezzi) Forza di Coulomb: F = k Q 1Q 2 r 2 = 1 Q 1 Q 2

Formulario. (ε = ε 0 nel vuoto, ε 0 ε r nei mezzi; µ = µ 0 nel vuoto, µ 0 µ r nei mezzi) Forza di Coulomb: F = k Q 1Q 2 r 2 = 1 Q 1 Q 2 Formulario (ε = ε 0 nel vuoto, ε 0 ε r nei mezzi; µ = µ 0 nel vuoto, µ 0 µ r nei mezzi) Forza di Coulomb: F = k Q Q 2 r 2 = Q Q 2 4πε r 2 Campo elettrico: E F q Campo coulombiano generato da una carica

Dettagli

approfondimento Struttura atomica e conservazione della carica nei fenomeni elettrici

approfondimento Struttura atomica e conservazione della carica nei fenomeni elettrici approfondimento Struttura atomica e conservazione della carica nei fenomeni elettrici Flusso del campo elettrico e legge di Gauss: Il campo elettrico generato da distribuzioni di carica a simmetria sferica

Dettagli

CONDUTTORI DIELETTRICI. G. Pugliese 1

CONDUTTORI DIELETTRICI. G. Pugliese 1 CONDUTTOI E DIELETTICI G. Pugliese I conduttori Conduttori materiali solidi, liuidi o gassosi in cui sono presenti cariche che possono muoversi liberamente (cariche mobili) Conduttori solidi (ad es. i

Dettagli

Argomenti per esame orale di Fisica Generale (Elettromagnetismo) 9 CFU A.A. 2012/2013

Argomenti per esame orale di Fisica Generale (Elettromagnetismo) 9 CFU A.A. 2012/2013 Argomenti per esame orale di Fisica Generale (Elettromagnetismo) 9 CFU A.A. 2012/2013 1. Il campo elettrico e legge di Coulomb: esempio del calcolo generato da alcune semplici distribuzioni. 2. Il campo

Dettagli

Conduttori e condensatori 1

Conduttori e condensatori 1 Induzione elettrica onduttori e condensatori Su un conduttore (neutro) in un campo elettrico esterno si induce una distribuzione di cariche che produce al suo interno un campo elettrico uguale e opposto

Dettagli

Cosa differenzia un conduttore da un dielettrico? Come si comporta un conduttore? Come si utilizza un conduttore?

Cosa differenzia un conduttore da un dielettrico? Come si comporta un conduttore? Come si utilizza un conduttore? 1 Cosa differenzia un conduttore da un dielettrico? A livello macroscopico A livello microscopico Come si comporta un conduttore? In elettrostatica In presenza di cariche in moto (correnti)... Come si

Dettagli

Capacità. Capacità elettrica Condensatore Condensatore = sistema per immagazzinare energia (elettrica) Fisica II CdL Chimica

Capacità. Capacità elettrica Condensatore Condensatore = sistema per immagazzinare energia (elettrica) Fisica II CdL Chimica Capacità Capacità elettrica Condensatore Condensatore = sistema per immagazzinare energia (elettrica) Definizione Capacità La capacità è una misura di quanta carica debba possedere un certo tipo di condensatore

Dettagli

ELETTRICITÀ. In natura esistono due tipi di elettricità: positiva e negativa.

ELETTRICITÀ. In natura esistono due tipi di elettricità: positiva e negativa. ELETTRICITÀ Quando alcuni corpi (vetro, ambra, ecc.) sono strofinati con un panno di lana, essi acquistano una carica elettrica netta, cioè acquistano la proprietà di attrarre o di respingere altri corpi

Dettagli

Soluzioni del compitino del 21 Maggio 2008

Soluzioni del compitino del 21 Maggio 2008 Università degli Studi di Firenze Facoltà di Ingegneria CdL Ing. Industriale Fisica generale II a.a. 2007/2008 Prato, 21 Maggio 2008 Prima prova: Elettrostatica e Correnti stazionarie 1) Un filo sottile

Dettagli

Quando si chiude l interruttore nel punto A, il condensatore inizia a caricarsi seguendo la legge

Quando si chiude l interruttore nel punto A, il condensatore inizia a caricarsi seguendo la legge Esercizio 1 Il circuito in figura è costituito da un generatore di f.e.m Ɛ=10 V, una resistenza R= 10 kω e tre condensatori C 1 = 10 pf, C 2 = 20 pf e C 3. Il condensatore C 3 è a facce piane e parallele

Dettagli

Conduttori. solidi: metalli/semiconduttori. Si muovono solo le cariche elementari. soluzioni elettrolitiche. Si muovono anche gli ioni (+ lenti)

Conduttori. solidi: metalli/semiconduttori. Si muovono solo le cariche elementari. soluzioni elettrolitiche. Si muovono anche gli ioni (+ lenti) : materiali, corpi, al cui interno le carche elettriche possono muoversi liberamente. solidi: metalli/semiconduttori. Si muovono solo le cariche elementari soluzioni elettrolitiche. Si muovono anche gli

Dettagli

E INT = 0 1) la carica ceduta al conduttore deve essere localizzata sulla sua superficie INT =

E INT = 0 1) la carica ceduta al conduttore deve essere localizzata sulla sua superficie INT = Conduttori in euilibrio in un campo elettrostatico Conduttori materiali solidi, liuidi o gassosi in cui sono presenti cariche che possono muoversi liberamente (cariche mobili) Conduttori solidi metalli,

Dettagli

Dario D Amore Corso di Elettrotecnica (AA 08 09)

Dario D Amore Corso di Elettrotecnica (AA 08 09) Dario D Amore Corso di Elettrotecnica (AA 08 09) Si dice campo scalare uno scalare funzione del punto, per es. la temperatura in una stanza, la densità della materia in una regione dello spazio Un campo

Dettagli

E costituito da due conduttori isolati di varie forme che vengono chiamati piatti o armature del condensatore.

E costituito da due conduttori isolati di varie forme che vengono chiamati piatti o armature del condensatore. Condensatori Il condensatore elettrico (o capacitore) è un dispositivo estremamente utile in elettronica e nei circuiti elettrici, poiché consente di immagazzinare e rilasciare energia elettrica in modo

Dettagli

PROGRAMMA DI FISICA. CLASSE: 4^ SEZ.:A Scientifico

PROGRAMMA DI FISICA. CLASSE: 4^ SEZ.:A Scientifico Viale Papa Giovanni XXIII 25 10098 RIVOLI Tel. 0119586756 Fax 0119589270 Sede di SANGANO 10090 via San Giorgio, 10 Tel. e fax 0119087184 SCIENTIFICO LINGUISTICO SCIENZE UMANE ECONOMICO SOCIALE e-mail:

Dettagli

Elettrostatica II. Energia Elettrostatica (richiamo) Potenziale Elettrico. Potenziale di cariche puntiformi. Superfici equipotenziali.

Elettrostatica II. Energia Elettrostatica (richiamo) Potenziale Elettrico. Potenziale di cariche puntiformi. Superfici equipotenziali. Elettrostatica II Energia Elettrostatica (richiamo) Potenziale Elettrico Potenziale di cariche puntiformi Superfici equipotenziali Condensatori Dielettrici Energia potenziale di due cariche Si può dimostrare

Dettagli

Condensatore. una ba8eria ideale man0ene una ΔV costante fra le due armature convertendo energia chimica in energia ele8rica

Condensatore. una ba8eria ideale man0ene una ΔV costante fra le due armature convertendo energia chimica in energia ele8rica Capacità Condensatore Disposi0vo che immagazzina in un campo ele8rosta0co energia che può essere rilasciata in modo controllato cos0tuito da due condu8ori spazialmente separa0 che possono essere carica0

Dettagli

- Introduzione all elettromagnetismo. - Elettrizzazione per strofinio. - Carica elettrica. - Elettrizzazione per contatto

- Introduzione all elettromagnetismo. - Elettrizzazione per strofinio. - Carica elettrica. - Elettrizzazione per contatto Lezione del 28/09/2017 - Introduzione all elettromagnetismo - Elettrizzazione per strofinio - Carica elettrica - Elettrizzazione per contatto - Elettrizzazione per induzione - Isolanti e conduttori - Legge

Dettagli

0 : costante dielettrica nel vuoto

0 : costante dielettrica nel vuoto 0 : costante dielettrica nel vuoto Φ Flusso del campo elettrico E dφ E E da EdAcosθ Se la superficie è chiusa (superficie gaussiana) il flusso si calcola come integrale chiuso: Φ E dφ E E da v EdAcosθ

Dettagli

Capacità. Fisica sperimentale II

Capacità. Fisica sperimentale II Capacità Fisica sperimentale II Conduttore isolato lontano da altri conduttori o corpi carichi Depositiamo su di esso una carica complessiva Q All equilibrio avremo: Φ( r ) = 1 σ ( x)ds r x = Φ 0 Q = σ

Dettagli

Condensatori e Corrente

Condensatori e Corrente Tutorato #9 Condensatori e Corrente La Capacità La capacità di un conduttore isolato è sostanzialmente una misura della quantità di carica che è necessario accumulare sulla supercie per aumentare il suo

Dettagli

Fisica Generale B. 2. Elettrostatica dei Conduttori Metallici. Isolanti o Dielettrici. Induzione Elettrostatica. Conduttori

Fisica Generale B. 2. Elettrostatica dei Conduttori Metallici. Isolanti o Dielettrici. Induzione Elettrostatica. Conduttori Fisica Generale B 2. Elettrostatica dei Conduttori Metallici http://campus.cib.unibo.it/247/ Isolanti o Dielettrici In un isolante (detto anche dielettrico), le cariche elettriche in dotazione a una molecola

Dettagli

CONDUTTORI V T T O R I E DIELETTRICI g. bonomi fisica sperimentale (mecc., elettrom.) Introduzione

CONDUTTORI V T T O R I E DIELETTRICI g. bonomi fisica sperimentale (mecc., elettrom.) Introduzione Introduzione La fibrillazione è una contrazione disordinata del muscolo cardiaco. Un forte shock elettrico può ripristinare la normale contrazione. Per questo è necessario applicare al muscolo una corrente

Dettagli

Esercizi-Calcolo diretto di campo elettrico

Esercizi-Calcolo diretto di campo elettrico 1 CALCOLO DIRETTO CAMPO ELETTRICO Parte I Esercizi-Calcolo diretto di campo elettrico 1 Calcolo diretto campo elettrico Problema svolto 22.2 In figura vi sono due cariche q 1 = +8q e q 2 = 2q la prima

Dettagli

Esercizi-Calcolo diretto di campo elettrico

Esercizi-Calcolo diretto di campo elettrico 1 CALCOLO DIRETTO CAMPO ELETTRICO Parte I Esercizi-Calcolo diretto di campo elettrico 1 Calcolo diretto campo elettrico Problema svolto 22.2 In figura vi sono due cariche q 1 = +8q e q 2 = 2q la prima

Dettagli

Nome: Cognome: Matricola:

Nome: Cognome: Matricola: Esercizio 1: Una particella ++ si trova in quiete ad una distanza d = 100 µm da un piano metallico verticale mantenuto a potenziale nullo. i. Calcolare le componenti del campo E in un generico punto P

Dettagli

Main training FISICA. Lorenzo Manganaro. Lezione 11 Elettrostatica

Main training FISICA. Lorenzo Manganaro. Lezione 11 Elettrostatica Main training 2017-2018 FISICA Lorenzo Manganaro Lezione 11 Elettrostatica Lezione 11 Elettrostatica 1. Carica elettrica Elettrizzazione Conduttori/Isolanti 2. Legge di Coulomb e Campo elettrico 3. Capacità

Dettagli

CAPITOLO 3 LA LEGGE DI GAUSS

CAPITOLO 3 LA LEGGE DI GAUSS CAPITOLO 3 LA LEGGE DI GAUSS Elisabetta Bissaldi (Politecnico di Bari) - A.A. 2017-2018 2 Premesse TEOREMA DI GAUSS Formulazione equivalente alla legge di Coulomb Trae vantaggio dalle situazioni nelle

Dettagli

FORMULARIO ELETTROMAGNETISMO

FORMULARIO ELETTROMAGNETISMO FORMULARIO ELETTROMAGNETISMO Forza di Coulomb : forza che intercorre tra due particelle cariche Campo elettrico : quantità vettoriale generata da una carica Densità di carica superficiale, volumetrica

Dettagli

CAPACITÀ, CONDENSATORI, ENERGIA

CAPACITÀ, CONDENSATORI, ENERGIA Fisica generale II, a.a. 3/4 CAPACITÀ, CONDENSATORI, ENERGIA B.. Se un protone (carica e) ha raggio r =.( 5 ) m, la sua energia elettrostatica è pari a circa ( MeV=.6( 3 )J). (A).6 MeV (B).6 MeV (C). MeV

Dettagli

condensatori2.notebook January 17, 2015

condensatori2.notebook January 17, 2015 Se in un conduttore neutro cavo inseriamo mediante un manico isolante una carica positiva q, questa richiama sulla parete interna del conduttore cariche negative, per un contributo complessivo pari a q.

Dettagli

Politecnico di Milano Fondamenti di Fisica Sperimentale (Prof. A. Farina) Seconda prova in itinere - 26/06/2012

Politecnico di Milano Fondamenti di Fisica Sperimentale (Prof. A. Farina) Seconda prova in itinere - 26/06/2012 Politecnico di Milano Fondamenti di Fisica Sperimentale Prof. A. Farina) a.a. 200-20-Facoltà di Ingegneria Industriale- Ingegneria Aerospaziale, Energetica e Meccanica Seconda prova in itinere - 26/06/202

Dettagli

Prova Parziale 5. La forza di Coulomb è: una forza conservativa. una forza radiale. una forza a distanza. tutte le le risposte precedenti.

Prova Parziale 5. La forza di Coulomb è: una forza conservativa. una forza radiale. una forza a distanza. tutte le le risposte precedenti. La forza di Coulomb è: una forza conservativa. una forza radiale. una forza a distanza. tutte le le risposte precedenti. 1 / 52 La forza di Coulomb è: una forza conservativa. una forza radiale. una forza

Dettagli

CAPITOLO 5 CORRENTE ELETTRICA

CAPITOLO 5 CORRENTE ELETTRICA CAPITOLO 5 CORRENTE ELETTRICA Elisabetta Bissaldi (Politecnico di Bari) - A.A. 2017-2018 2 Conduzione elettrica Materiali conduttori SOLIDI: Costituiti da un reticolo spaziale Ai vertici: ioni positivi

Dettagli

CAPITOLO 3 TEOREMA DI GAUSS

CAPITOLO 3 TEOREMA DI GAUSS CAPITOLO 3 3.1 Il concetto di flusso Una formulazione equivalente alla legge di Coulomb è quella stabilita dal teorema di Gauss, che trae vantaggio dalle situazioni nelle quali vi è una simmetria nella

Dettagli

Seminario didattico. Lezione 6: Condensatori-Dielettrici

Seminario didattico. Lezione 6: Condensatori-Dielettrici Seminario didattico Lezione 6: Condensatori-Dielettrici Esercizio n 1 In figura si ha V=20 V, C 1 =2,0 μf, C 2 =16 μf e C 3 =C 4 =8,0 μf. L interruttore S è inizialmente deviato a sinistra finché il condensatore

Dettagli

Flusso Elettrico Legge di Gauss: Motivazione & Definizione Legge di Coulomb come conseguenza della legge di Gauss Cariche sui Conduttori

Flusso Elettrico Legge di Gauss: Motivazione & Definizione Legge di Coulomb come conseguenza della legge di Gauss Cariche sui Conduttori Legge di Gauss Flusso Elettrico Legge di Gauss: Motivazione & Definizione Legge di Coulomb come conseguenza della legge di Gauss Cariche sui Conduttori La legge di Gauss mette in relazione i campi su una

Dettagli

Definizione di Flusso

Definizione di Flusso Definizione di Flusso Il flusso aumenta se il campo elettrico aumenta!! Δφ E ΔA EΔAcosθ E Il flusso è la quantità di materia che passa attraverso una superficie nell unità di tempo. Se si parla di campo

Dettagli

Elettromagnetismo. Prof. Francesco Ragusa Università degli Studi di Milano. Lezione n

Elettromagnetismo. Prof. Francesco Ragusa Università degli Studi di Milano. Lezione n Elettromagnetismo Prof. Francesco Ragusa Università degli Studi di Milano Lezione n. 14 30.11.2018 Sfera di dielettrico polarizzata Carica puntiforme e semispazio dielettrico Energia elettrostatica Anno

Dettagli

Facoltà di Ingegneria Prova scritta di Fisica II - 23 Settembre Compito A Esercizio n.1 O Esercizio n. 2 O

Facoltà di Ingegneria Prova scritta di Fisica II - 23 Settembre Compito A Esercizio n.1 O Esercizio n. 2 O Facoltà di Ingegneria Prova scritta di Fisica II - 3 Settembre 003 - Compito A Esercizio n.1 Quattro cariche di uguale valore q, due positive e due negative, sono poste nei vertici di un quadrato di lato

Dettagli

Q V C = coulomb volt. Quando ad un conduttore isolato viene conferita una carica elettrica Q, esso assume un potenziale V.

Q V C = coulomb volt. Quando ad un conduttore isolato viene conferita una carica elettrica Q, esso assume un potenziale V. CAPACITÀ ELETTRICA Quando ad un conduttore isolato viene conferita una carica elettrica Q, esso assume un potenziale. Si definisce capacità elettrica Unità di misura della capacità elettrica nel S.I. C

Dettagli

POTENZIALE V T O R I ELETTRICO g. bonomi fisica sperimentale (mecc., elettrom.) Introduzione

POTENZIALE V T O R I ELETTRICO g. bonomi fisica sperimentale (mecc., elettrom.) Introduzione Introduzione Mentre era su una piattaforma panoramica questa ragazza si accorse che i suoi capelli le si rizzavano in testa. Suo fratello, divertito, le scattò questa foto. Cinque minuti dopo un fulmine

Dettagli

σ int =. σ est = Invece, se il guscio è collegato a massa, la superficie esterna si scarica e la densità di carica σ est è nulla. E =.

σ int =. σ est = Invece, se il guscio è collegato a massa, la superficie esterna si scarica e la densità di carica σ est è nulla. E =. Esercizio 1 a) Poiché la carica è interamente contenuta all interno di una cavità circondata da materiale conduttore, si ha il fenomeno dell induzione totale. Quindi sulla superficie interna della sfera

Dettagli

Fisica II. 3 Esercitazioni

Fisica II. 3 Esercitazioni etem Esercizi svolti Esercizio 3. alcolare le componenti cartesiane del campo elettrico generato da un dipolo p orientato lungo l asse x in un punto lontano rispetto alle dimensioni del dipolo. Soluzione:

Dettagli

CAPITOLO 3 LA LEGGE DI GAUSS

CAPITOLO 3 LA LEGGE DI GAUSS CAPITOLO 3 LA LEGGE DI GAUSS Elisabetta Bissaldi (Politecnico di Bari) - A.A. 2018-2019 2 Premessa TEOREMA DI GAUSS Formulazione equivalente alla legge di Coulomb Trae vantaggio dalle situazioni nelle

Dettagli

Esercizio 0.1. Elisabetta Bissaldi (Politecnico di Bari) A.A

Esercizio 0.1. Elisabetta Bissaldi (Politecnico di Bari) A.A ESERCIZI 2018 Elisabetta Bissaldi (Politecnico di Bari) A.A.2017-2018 2 Esercizio 0.1 Si determini il valore dell accelerazione di gravità partendo dalla legge di gravitazione universale, sapendo che la

Dettagli

C = Q/V = 4π ε R. . Conseguentemente

C = Q/V = 4π ε R. . Conseguentemente Capacità di un conduttore sferico Per una sfera conduttrice di raggio R isolata e caricata con carica Q, i punti della superficie sono equipotenziali Q 1 Q V= 4π ε R Definiamo Capacità il rapporto Q/V

Dettagli

ESAME DI FISICA II- Sessione 16/07/2013 Compito per l Ordinamento 270 e i VV.OO.

ESAME DI FISICA II- Sessione 16/07/2013 Compito per l Ordinamento 270 e i VV.OO. ESAME DI FISICA II- Sessione 16/07/2013 Compito per l Ordinamento 270 e i VV.OO. PROBLEMA 1 Una lastra di dielettrico (a=b=1 cm; spessore 0.1 cm), in cui si misura un campo elettrico di 10 3 V.m -1, presenta

Dettagli

Fenomeni elettrici. Strofinando un righello di plastica questo ha la proprietà di attrarre dei pezzettini di carta.

Fenomeni elettrici. Strofinando un righello di plastica questo ha la proprietà di attrarre dei pezzettini di carta. Fenomeni elettrici Strofinando un righello di plastica questo ha la proprietà di attrarre dei pezzettini di carta. Una nuova forza? Quali proprietà ha questa forza? Differenze e analogie con la forza gravitazionale?

Dettagli

Corsi di Laurea in Ingegneria per l ambiente ed il Territorio e Chimica. Esercizi 1 FISICA GENERALE L-B. Prof. Antonio Zoccoli

Corsi di Laurea in Ingegneria per l ambiente ed il Territorio e Chimica. Esercizi 1 FISICA GENERALE L-B. Prof. Antonio Zoccoli rof. Antonio Zoccoli 1) Una carica Q è distribuita uniformemente in un volume sferico di raggio R. Determinare il lavoro necessario per spostare una carica q da una posizione a distanza infinita ad una

Dettagli

Capacita` di un conduttore isolato

Capacita` di un conduttore isolato Capacita` di un conduttore isolato Carica sulla superficie di un conduttore isolato Q =!! (! r )da Potenziale del conduttore in un punto qualsiasi V = 1!! ( r )! da (Equipotenziale) 4!" 0 r La distribuzione

Dettagli

Dipartimento di INFORMATICA Anno Accademico 2015/16 Registro lezioni del docente MIGLIORE ERNESTO

Dipartimento di INFORMATICA Anno Accademico 2015/16 Registro lezioni del docente MIGLIORE ERNESTO Attività didattica FISICA [MFN0598] Dipartimento di INFORMATICA Anno Accademico 2015/16 Registro lezioni del docente MIGLIORE ERNESTO Corso di studio: INFORMATICA [008707] Docente titolare del corso: MIGLIORE

Dettagli

= E qz = 0. 1 d 3 = N

= E qz = 0. 1 d 3 = N Prova scritta d esame di Elettromagnetismo 7 ebbraio 212 Proff.. Lacava,. Ricci, D. Trevese Elettromagnetismo 1 o 12 crediti: esercizi 1, 2, 4 tempo 3 h; Elettromagnetismo 5 crediti: esercizi 3, 4 tempo

Dettagli

Conduzione elettrica

Conduzione elettrica Conduzione elettrica Corrente elettrica i lim t t d dt dτ v dtdσcosθ d d di nev dtdσcosθ d nev dσcosθ d Definiamo il vettore densità di corrente j nev d dunue di j u d n Σ L intensità di corrente attraverso

Dettagli

CAPITOLO 1 FORZA ELETTROSTATICA CAMPO ELETTROSTATICO

CAPITOLO 1 FORZA ELETTROSTATICA CAMPO ELETTROSTATICO CAPITOLO 1 FORZA ELETTROSTATICA CAMPO ELETTROSTATICO Elisabetta Bissaldi (Politecnico di Bari) A.A. 2018-2019 2 L elettromagnetismo INTERAZIONE ELETTROMAGNETICA = INTERAZIONE FONDAMENTALE Fenomeni elettrici

Dettagli

Lezione 5: Elettrostatica. Seminario didattico

Lezione 5: Elettrostatica. Seminario didattico Lezione 5: Elettrostatica Seminario didattico Esercizio n 1 Ai vertici di un quadrato di lato 2 l sono poste 4 cariche uguali Q. Determinare : a) Il campo elettrico in un punto P dell'asse; b) il campo

Dettagli

Elettrostatica dei conduttori (parte II) Sistemi di conduttori Condensatori Energia elettrostatica

Elettrostatica dei conduttori (parte II) Sistemi di conduttori Condensatori Energia elettrostatica Elettrostatica dei conduttori (parte II) Sistemi di conduttori Condensatori Energia elettrostatica Sistemi di conduttori Conduttore isolato carico C C q -q - C q Avviciniamo C scarico Induzione incompleta

Dettagli

CAPITOLO 5 CORRENTE ELETTRICA

CAPITOLO 5 CORRENTE ELETTRICA CAPITOLO 5 CORRENTE ELETTRICA Elisabetta Bissaldi (Politecnico di Bari) - A.A. 2018-2019 2 Conduzione elettrica Materiali conduttori SOLIDI: Costituiti da un reticolo spaziale Ai vertici: ioni positivi

Dettagli

CAPITOLO 2 POTENZIALE ELETTROSTATICO

CAPITOLO 2 POTENZIALE ELETTROSTATICO CAPITOLO 2 POTENZIALE ELETTROSTATICO Elisabetta Bissaldi (Politecnico di Bari) - A.A. 2018-2019 2 Lavoro, tensione e f.e.m. Consideriamo gli aspetti di LAVORO ed ENERGIA connessi ai campi elettrici. In

Dettagli

Quando si chiude l interruttore nel punto A, il condensatore inizia a caricarsi seguendo la legge

Quando si chiude l interruttore nel punto A, il condensatore inizia a caricarsi seguendo la legge Esercizio 1 Il circuito in figura è costituito da un generatore di f.e.m Ɛ=10 V, una resistenza R= 10 kω e tre condensatori C 1 = 10 pf, C 2 = 20 pf e C 3. Il condensatore C 3 è a facce piane e parallele

Dettagli

Facoltà di Ingegneria Prova scritta di Fisica II - VO 15-Aprile-2003

Facoltà di Ingegneria Prova scritta di Fisica II - VO 15-Aprile-2003 Facoltà di Ingegneria Prova scritta di Fisica II - VO 5-Aprile-003 Esercizio n. Un campo magnetico B è perpendicolare al piano individuato da due fili paralleli, cilindrici e conduttori, distanti l uno

Dettagli

si elettrizzano per strofinio forza attrattiva repulsiva trasferimento di carica elettrica si caricano

si elettrizzano per strofinio forza attrattiva repulsiva trasferimento di carica elettrica si caricano Elettrostatica Alcune sostanze (ambra, vetro, materie plastiche, ) si elettrizzano per strofinio, cioè strofinate con un panno acuistano la capacità di attrarre corpi leggeri. Due oggetti elettrizzati

Dettagli

Elettrostatica si elettrizzano per strofinio forza attrattiva repulsiva trasferimento di carica elettrica si caricano

Elettrostatica si elettrizzano per strofinio forza attrattiva repulsiva trasferimento di carica elettrica si caricano Elettrostatica Alcune sostanze (ambra, vetro, materie plastiche, ) si elettrizzano per strofinio, cioè strofinate con un panno acuistano la capacità di attrarre corpi leggeri. Due oggetti elettrizzati

Dettagli

1 Prove esami Fisica II

1 Prove esami Fisica II 1 Prove esami Fisica II Prova - 19-11-2002 Lo studente risponda alle seguenti domande: 1) Scrivere il teorema di Gauss (2 punti). 2) Scrivere, per un conduttore percorso da corrente, il legame tra la resistenza

Dettagli

FISICA GENERALE II CdL in Scienza dei Materiali a.a. 2018/2019 Prof. Roberto Francini Programma del corso:

FISICA GENERALE II CdL in Scienza dei Materiali a.a. 2018/2019 Prof. Roberto Francini Programma del corso: FISICA GENERALE II CdL in Scienza dei Materiali a.a. 2018/2019 Prof. Roberto Francini Programma del corso: - Proprietà generali delle cariche elettriche - Cariche puntiformi e distribuzioni continue di

Dettagli

Fondamenti di Fisica necessari per i corsi di informatica ed elettronica

Fondamenti di Fisica necessari per i corsi di informatica ed elettronica Fondamenti di Fisica necessari per i corsi di informatica ed elettronica Ricordiamo che: La velocità è data dal percorso fatto nel tempo. Esempio: una velocità di 30Km/ora indica che in un ora si percorrono

Dettagli

Se ora compiamo un percorso finito avremo

Se ora compiamo un percorso finito avremo Lezione 14 -Ricavare il potenziale dal campo E Immaginiamo di avere un certo campo elettrico E Prendiamo una carica di prova q e facciamole compiere un percorso infinitesimo ds nel campo Il campo E farà

Dettagli

ELETTROSTATICA. D = ρ (2) a cui possono essere associate, in caso di mezzo isotropo e lineare, le equazioni di materiale: = ε E, (3)

ELETTROSTATICA. D = ρ (2) a cui possono essere associate, in caso di mezzo isotropo e lineare, le equazioni di materiale: = ε E, (3) ELETTROSTATICA Si parla di elettrostatica quando, in ogni punto dello spazio ed in ogni istante risultano nulle tutte le derivate temporali che compaiono nelle equazioni generali dell elettromagnetismo,

Dettagli

Classe 1C Liceo Scienze Applicate con potenziamento sportivo - A. S Programma di FISICA

Classe 1C Liceo Scienze Applicate con potenziamento sportivo - A. S Programma di FISICA Classe 1C Liceo Scienze Applicate con potenziamento sportivo - A. S. 2017-2018 LE GRANDEZZE E LE MISURE Unità 1- Le grandezze: Perché studiare la fisica - Di che cosa si occupa la fisica - La misura delle

Dettagli

Campi elettrici e magnetici variabili nel tempo

Campi elettrici e magnetici variabili nel tempo Campi elettrici e magnetici variabili nel tempo a.a. 2017-2018 Testo di riferimento: Elementi di Fisica, Mazzoldi, Nigro, Voci Fisica 2, Giancoli 23 Aprile 2018, Bari Dal programma o 1.0 CFU CAMPI ELETTRICI

Dettagli

ELETTROSTATICA. ' = ρ (2) a cui possono essere associate, in caso di mezzo isotropo e lineare, le equazioni di legame materiale:

ELETTROSTATICA. ' = ρ (2) a cui possono essere associate, in caso di mezzo isotropo e lineare, le equazioni di legame materiale: ELETTROSTATICA Si parla di elettrostatica quando, in ogni punto dello spazio ed in ogni istante risultano nulle tutte le derivate temporali che compaiono nelle equazioni generali dell elettromagnetismo,

Dettagli

Esercizio 1. Nell istante in cui il centro della spira si trova a distanza ll = 1111 cccc dal filo, si calcoli

Esercizio 1. Nell istante in cui il centro della spira si trova a distanza ll = 1111 cccc dal filo, si calcoli ESERCIZI Elisabetta Bissaldi (Politecnico di Bari) 2 Esercizio 1 Una spira rettangolare di lati aa = 1111 cccc e bb = 66 cccc e di resistenza RR = 1111 ΩΩ si muove con velocità costante vv = 22 mm/ss nel

Dettagli

Esercitazione 1. Invece, essendo il mezzo omogeneo, il vettore sarà espresso come segue

Esercitazione 1. Invece, essendo il mezzo omogeneo, il vettore sarà espresso come segue 1.1 Una sfera conduttrice di raggio R 1 = 10 cm ha una carica Q = 10-6 C ed è circondata da uno strato sferico di dielettrico di raggio (esterno) R 2 = 20 cm e costante dielettrica relativa. Determinare

Dettagli

Olimpiadi di Fisica 2015 Campo elettrico Franco Villa

Olimpiadi di Fisica 2015 Campo elettrico Franco Villa 1 Olimpiadi di Fisica 015 ampo elettrico Franco illa 1. ate le cariche Q = -1 µ e Q = - µ (ale in cm O=0, O=10, =10, O=0) determinare: il potenziale elettrico ed il campo elettrico E (modulo, direzione

Dettagli

Fisica Generale II (prima parte)

Fisica Generale II (prima parte) Corso di Laurea in Ing. Medica Fisica Generale II (prima parte) Cognome Nome n. matricola Voto 4.2.2011 Esercizio n.1 Determinare il campo elettrico in modulo direzione e verso generato nel punto O dalle

Dettagli

Potenziale vettore. f = soddisfa ancora l equazione precedente. (Invarianza di gauge)

Potenziale vettore. f = soddisfa ancora l equazione precedente. (Invarianza di gauge) Ricordiamo le seguenti identità MAGNETOSTATICA Potenziale vettore ( f ) ( v) Poiché E U : U E B A : A B I potenziali U ed A non sono unici infatti U è definito a meno di una costante f mentre A A + f soddisfa

Dettagli

un area pari al Portogallo Sardegna

un area pari al Portogallo Sardegna La differenza di potenziale che dà origine ad un fulmine può raggiungere 0 9 V e la carica coinvolta può arrivare fino a 40. Quanta energia è liberata nella scarica? V U q 0 9 E n U qv 40x0 J un area pari

Dettagli

Il condensatore. 25/10/2002 Isidoro Ferrante A.A. 2004/2005 1

Il condensatore. 25/10/2002 Isidoro Ferrante A.A. 2004/2005 1 Il condensatore Un condensatore è costituito in linea di principio da due conduttori isolati e posti a distanza finita, detti armature. aricando i due conduttori con carica opposta, si forma tra di essi

Dettagli

Corrente ele)rica. Cariche in movimento e legge di Ohm

Corrente ele)rica. Cariche in movimento e legge di Ohm Corrente ele)rica Cariche in movimento e legge di Ohm Corrente ele)rica Nei metalli si possono avere elettroni che si muovono anche velocemente fra un estremo e l altro del metallo, ma senza una differenza

Dettagli

Capacità F i s i c a s p e r i m e n t a l e I I

Capacità F i s i c a s p e r i m e n t a l e I I Capacità F i s i c a s p e r i m e n t a l e I I Conduttore isolato lontano da altri conduttori o corpi carichi Depositiamo su di esso una carica complessiva Q All equilibrio avremo: σ ( x ) ds Φ(r ) =

Dettagli

All interno di una sfera di raggio R posta nel vuoto esiste una densità di carica ρ = ρ 0 distanza dal centro della sfera e ρ 0.

All interno di una sfera di raggio R posta nel vuoto esiste una densità di carica ρ = ρ 0 distanza dal centro della sfera e ρ 0. Esercizio 1 All interno di una sfera di raggio posta nel vuoto esiste una densità di carica ρ = ρ r 2 distanza dal centro della sfera e ρ. Determinare: 1. La carica totale della sfera 2. Il campo elettrico

Dettagli

Lezione 13 - La legge di Gauss

Lezione 13 - La legge di Gauss Lezione 13 - La legge di Gauss Armati dei concetti fin qui introdotti possiamo enunciare la legge di Gauss o anche Φ = q interna r E da r sup. Gaussiana = q interna illustrazione tratta da: Halliday-Resnick-Walker,

Dettagli

POLITECNICO DI MILANO

POLITECNICO DI MILANO POLITECNICO DI MILANO Facoltà di Ingegneria Industriale Fondamenti di Fisica Sperimentale, a.a. 010-11 II a prova in itinere (Elettricità + Magnetismo), 8 giugno 011 Giustificare le risposte e scrivere

Dettagli

ELETTRICITÀ CORRENTE CONTINUA LEZIONE N. 29d (Circuiti elettrici Condensatori) Corso di Fisica 2 prof. Giuseppe Ciancio

ELETTRICITÀ CORRENTE CONTINUA LEZIONE N. 29d (Circuiti elettrici Condensatori) Corso di Fisica 2 prof. Giuseppe Ciancio ELETTRIITÀ ORRENTE ONTINUA LEZIONE N. 9d (ircuiti elettrici ondensatori) orso di Fisica prof. Giuseppe iancio ELETTRIITÀ ORRENTE ONTINUA (ircuiti elettrici ondensatori) Un condensatore è costituito in

Dettagli

INDICE FENOMENI ELETTRICI

INDICE FENOMENI ELETTRICI INDICE CAPITOLO 1 FENOMENI ELETTRICI Compendio 1 1-1 Introduzione 2 1-2 Forze elettrostatiche 3 1-3 Induzione elettrostatica 6 1-4 La carica elettrica 9 1-5 La Legge di Coulomb 11 1-6 Campo elettrostatico

Dettagli

La legge di Gauss. Il flusso elettrico

La legge di Gauss. Il flusso elettrico La legge di Gauss La legge di Gauss mette in relazione il flusso elettrico Φ attraverso una superficie chiusa e la carica q %& dentro: Se più linee di flusso escono di quante ne entrano, contiene una carica

Dettagli

Verifiche sperimentali legge di Coulomb. capitolo 3

Verifiche sperimentali legge di Coulomb. capitolo 3 Verifiche sperimentali legge di Coulomb capitolo 3 Fino a che punto si può aver fiducia nella legge di Coulomb? Era noto che: Una buccia sferica omogenea di materia dà, al suo interno, un contributo nullo

Dettagli