Dario D Amore Corso di Elettrotecnica (AA 08 09)

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Dario D Amore Corso di Elettrotecnica (AA 08 09)"

Transcript

1 Dario D Amore Corso di Elettrotecnica (AA 08 09)

2 Si dice campo scalare uno scalare funzione del punto, per es. la temperatura in una stanza, la densità della materia in una regione dello spazio Un campo vettoriale è un vettore funzione del punto, per es. la velocità dell acqua in una regione di mare rispetto a un punto fisso sul fondo, il valore della forza agente su di una particella di ferro nei pressi di una calamita fissa 2

3 Come per tutti i vettori, il vettore che rappresenta un campo vettoriale in un punto può essere scomposto nelle sue componenti rispetto ad un sistema di coordinate. In funzione del tipo di problema affrontato sarà conveniente usare coordinate cartesiane, cilindriche o sferiche. Esistono operatori che permettono di ottenere campi vettoriali da campi scalari e vice versa. 3

4 Rappresentazione di un campo scalare, per es. quota in ogni punto di una regione montagnosa: La funzione: h = h(x, y) descrive la quota in ogni punto della regione. In questa figura i diversi colori sono proporzionali al valore della quota. 4

5 campo vettoriale, per es. il vettore che indica la pendenza in ogni punto di una regione montagnosa DalDal campo scalare quota : h = h(x, y) con l operatore gradiente ottengo il campo vettoriale pendenza : P = h(x, y) x i + h(x, y) y j 5

6 6

7 Nasce una forza di attrazione o repulsione: La forza elettrica 7

8 I fenomeni elettrici trovano origine nella struttura della materia neutralità Nel SI la carica elettrica si misura in coulomb [C] La carica elettrica è quantizzata: multiplo della carica elementare di un elettrone: e =1, C 8

9 F = 1 4πɛ 0 qq 0 r 2 u ɛ 0 =8, C2 Nm 2 ε 0 : Permettività del vuoto 9

10 La misura della carica elettrica può essere effettuata con l elettroscopio a lamelle 10

11 Campo Elettrostatico creato da una carica isolata q 0 posta in P F = 1 q 1 q 0 4πɛ 0 r 2 u E = F q 0 [ N C ] Campo Elettrostatico creato da una coppia di cariche (sovrapposizione) F = F 1 + F 2 = 1 q 1 q 0 4πɛ 0 r1 2 u q 2 q 0 4πɛ 0 r2 2 u 2 E = F q 0 11

12 12

13 Tangente e concorde in ogni punto con il campo elettrostatico in quel punto Non si incrociano mai (il campo è definito univocamente) Hanno origine nelle cariche positive e terminano nelle cariche negative Linee di forza del campo elettrostatico creato da una carica isolata a) Carica positiva b) Carica negativa 13

14 Linee di forza del campo elettrostatico creato da una coppia di cariche di ugual valore Q A) di segno opposto B) di segno uguale 14

15 Se la forza che agisce su una carica è di natura diversa da quella elettrostatica (ad esempio è dovuta a processi chimici o ad azioni meccaniche) possiamo comunque definire un campo Elettromotore E = F q 0 F = q 0 E Una forza che causa uno spostamento della carica di Δ s compie un lavoro ΔW W = F s = q 0 E s s 15

16 Il lavoro compiuto lungo una linea orientata C 1 si ottiene sommando i singoli contributi ΔW i Operando un passaggio al limite la sommatoria diventa un integrale di linea (b) 16

17 Il lavoro compiuto dalle forze del campo elettromotore per spostare una carica unitaria lungo la linea C1 orientata da A a B si chiama Tensione elettrica tra A e B lungo C1: V (A B lungo C 1 )=V C1 = C 1 E ds V C1 La tensione ha orientamento opposto a quello della linea C1 La tensione si misura in volt [V], il campo elettrico si misura in [V/m] piuttosto che in [N/C] 17

18 W = F ds = F ds + F ds = C 1 C2 F ds F ds = W 1 W 2 C 1 C2 W = C F ds = q 0 C E ds = q 0 fem fem = C E ds 18

19 Quando il lavoro compiuto dalle forze del campo in un percorso chiuso è nullo, allora il campo di forze di dice Conservativo Il campo elettrostatico è un campo conservativo. fem = E ds =0 C Il lavoro compiuto dalle forze del campo su una carica dipende soltanto dai punti estremi del percorso e non dalla particolare linea Anche la tensione dipende soltanto dai punti estremi e non dalla particolare linea 19

20 In un campo elettrostatico la tensione diventa indipendente dalla linea considerata W 1= C 1 F ds = C2 F ds = W 2 V C2 = V C2 = V AB V AB 20

21 Flusso attraverso un elemento di superficie dφ(e) =E u s dσ = EcosθdΣ = E s dσ Flusso attraverso una superficie φ(e) = Σ E u s dσ Flusso attraverso una superficie chiusa φ(e) = Σ E u s dσ 21

22 φ(e) = Σ E u s dσ = q tot ɛ 0 Legge di Gauss nel caso di cariche discrete Legge di Gauss nel caso di una distribuzione di carica 22

23 Nel caso particolare di una carica puntiforme possiamo verificare la Legge di Gauss φ(e) = Σ E u s dσ = q 4πɛ 0 r 2 u r u s dσ = q 4πɛ 0 r 2 dσ = q 0 ɛ 0 23

24 Possiamo applicare la legge di Gauss per calcolare il campo elettrico prodotto da un piano indefinito uniformemente carico (σ: densità di carica superficiale [C/m 2 ]) φ(e) =EΣ + EΣ =2 EΣ = q ɛ 0 = σσ ɛ 0 E = σ 2ɛ 0 24

25 Il campo elettrico all interno di un conduttore in equilibrio elettrostatico è nullo La tensione tra due punti qualsiasi di un conduttore è sempre nulla V C1 = V C2 = E ds =0 C 1 E ds =0 C 2 25

26 Il campo elettrostatico creato da un conduttore carico ha le linee di forza sempre perpendicolari alla superficie Il campo elettrostatico creato da un conduttore carico si può calcolare con la legge di Gauss dφ(e) =E u n dσ = EdΣ φ(e) =EΣ = q ɛ 0 = σσ ɛ 0 E = σ ɛ 0 u n 26

27 Campo elettrico creato da un conduttore sferico carico con densità di carica superficiale σ: E = σ ɛ 0 u n = q 4πɛ 0 R 2 u n 27

28 Il campo creato dalla bachelite agisce sulle cariche libere presenti nel conduttore, spostandole. Queste si disporranno in modo da rendere nullo il campo all interno. 28

29 Il campo elettrostatico creato da una coppia di lastre piane indefinite cariche con densità di carica superficiale ±σ è nullo nello spazio non compreso tra le due lastre Nello spazio tra le lastre il campo ha valore doppio di quello calcolato per una singola lastra E = σ ɛ 0 29

30 Dati due conduttori con carica rispettivamente +q e q, si dice capacità il rapporto tra la carica depositata sul conduttore e la tensione V che si stabilisce tra di essi. Il verso della tensione è da intendersi come in figura. C = q V La capacità nel SI si misura in Farad (F) 1 Farad = 1Coulomb/1Volt 30

31 Le armature distano h ed hanno superficie Σ. La carica presente sulle armature è ±q. Il campo elettrostatico tra le armature vale E = σ ɛ 0 = La tensione V tra le armature vale q Σɛ 0 V h V = E ds = Eh = qh 0 Σɛ 0 La capacità del condensatore è: C = q V = ɛ 0Σ h x 31

32 La precendente derivazione è approssimata (effetti di bordo del campo elettrostatico)

33 Il lavoro compiuto da un agente esterno (ad es. una pila di volta) per sottrarre la carica dq da un armatura e depositarla sull altra è Quando la carica totale spostata vale q, il lavoro complessivo è W = q 0 dw = V dq = q C dq q C dq = q2 2C = CV 2 2 = E Questa quantità dipende solo dallo stato finale e non dal particolare processo di carica Questa funzione si chiama energia del campo elettrostatico 33

34 Due cariche puntiformi +q e q poste a distanza a formano un dipolo elettrico Si definisce momento del dipolo elettrico il vettore p = qa Con p orientato dalla carica negativa a quella positiva 34

35 Il dipolo di momento p è posto in una regione su cui agisce un campo elettrico esterno E F 1 = qe F 2 =+qe Nasce un momento meccanico che tende a far ruotare l asse del dipolo M = r 2 F 2 + r 1 F 1 =(r 2 r 1 ) F 2 = qa E = p E M = p E = pesin(θ) Il momento di dipolo fa ruotare il dipolo in modo da avere p ed E paralleli 35

36 Inseriamo una lastra conduttrice di spessore s tra due lastre parallele distanti h con densità di carica σ o Per induzione completa, la lastra rende nullo il campo al suo interno mentre non altera quello esterno Se V = E 0 (h s) <E 0 h = V 0 s h V 0 V V 36

37 Inseriamo una lastra di materiale isolante di spessore s tra due lastre parallele distanti h con densità di carica σ o La tensione diminuisce al crescere di s ma non tende a zero Se s h V V k κ = V 0 V k > 1 Costante dielettrica relativa V V k 37

38 La diminuzione del campo elettrico si giustifica con la comparsa sulle facce estreme del dielettrico di una carica di polarizzazione di densità ±σ p E k = σ 0 ɛ 0 σ p ɛ 0 38

39 La capacità di un condensatore piano con un dielettrico tra le armature cambia C κ = q 0 V k = κq 0 V 0 = κc 0 Quanto ricavato per il calcolo della capacità continua a valere utilizzando la permettività dielettrica assoluta ɛ = κɛ 0 C = q V = ɛσ d [F ] 39

40 A livello atomico, l effetto del campo elettrico produce un micro spostamento degli elettroni rispetto al nucleo dell atomo Questo causa un momento di dipolo elettrico p a su ogni singolo atomo. Detto n il numero di atomi per unità di volume si può definire il vettore polarizzazione P = n<p > <p> è il momento di dipolo atomico medio Dato che ogni momento di bipolo p è parallelo ad E, anche P è parallelo ad E Il vettore polarizzazione si misura in C/m 2 40

41 Consideriamo il dielettrico uniformemente polarizzato tra le armature di un condensatore piano Il momento di dipolo relativo ad un volumetto infinitesimo è: dp = PdΣ 0 dh =(dq)dh Possiamo sostituire il prisma con un dipolo elettrico ±dq = ±PdΣ 0 41

42 Sulle facce interne le cariche si compensano Sulle facce estreme le cariche non si possono compensare a causa della discontinuità del mezzo Estendendo la somma (integrale) a tutti i primsetti che compongo il volume del dielettrico si ricava che il momento di dipolo risultante è p = q p h =(σ p Σ)h = P Σh ±σ p = ±P La densità superficiale delle cariche di polarizzazione è uguale alla componente di P lungo la normale alla superficie Per la maggior parte dei dielettrici risulta (dielettrici lneari): P = ɛ 0 (κ 1)E 42

43 La presenza delle cariche di polarizzazione la legge di Gauss si scrive così (cariche libere e di polarizzazione): Φ(E) = E u n dσ = q + q p La carica di polarizzazione contenuta nella scatola a base cilindrica in azzurro è negativa e vale: q p = σ p Σ = P Σ ɛ 0 Per la scatola possiamo scrivere allora: P u n dσ = P Σ = σ p Σ = q p Sostituendo nella legge di Gauss si ottiene: Φ(E) = E u n dσ = 1 ) (q P u n dσ ɛ 0 Infatti, P è nullo all interno del conduttore, ed è parallelo ad E tra le armature (ɛ 0 E + P) u n dσ = q

44 Si definisce vettore induzione dielettrica la quantità: D = ɛ 0 E + P Da cui si ricava la legge di Gauss per l induzione dielettrica: Φ(D) = D u n dσ = q Il flusso dell induzione dielettrica attraverso una superficie chiusa è uguale alla somma delle cariche libere contenute all interno della superficie 44

45 In un dielettrico lineare la polarizzazione è proporzionale al campo elettrico: Risulta quindi: P = ɛ 0 (κ 1)E D = ɛ 0 E + P = ɛ 0 E + ɛ 0 (κ 1)E = ɛ 0 κe = ɛe All interno di un dielettrico: Nel vuoto: D = ɛe D = ɛ 0 E 45

Potenziale elettrostatico

Potenziale elettrostatico Doppio strato piano Potenziale elettrostatico Consideriamo il lavoro compiuto dalla forza elettrica quando una particella di prova di carica q viene spostata in un campo elettrico E. Possiamo definire

Dettagli

approfondimento Struttura atomica e conservazione della carica nei fenomeni elettrici

approfondimento Struttura atomica e conservazione della carica nei fenomeni elettrici approfondimento Struttura atomica e conservazione della carica nei fenomeni elettrici Flusso del campo elettrico e legge di Gauss: Il campo elettrico generato da distribuzioni di carica a simmetria sferica

Dettagli

Elettrostatica II. Energia Elettrostatica (richiamo) Potenziale Elettrico. Potenziale di cariche puntiformi. Superfici equipotenziali.

Elettrostatica II. Energia Elettrostatica (richiamo) Potenziale Elettrico. Potenziale di cariche puntiformi. Superfici equipotenziali. Elettrostatica II Energia Elettrostatica (richiamo) Potenziale Elettrico Potenziale di cariche puntiformi Superfici equipotenziali Condensatori Dielettrici Energia potenziale di due cariche Si può dimostrare

Dettagli

CAPACITÀ, CONDENSATORI, ENERGIA

CAPACITÀ, CONDENSATORI, ENERGIA Fisica generale II, a.a. 3/4 CAPACITÀ, CONDENSATORI, ENERGIA B.. Se un protone (carica e) ha raggio r =.( 5 ) m, la sua energia elettrostatica è pari a circa ( MeV=.6( 3 )J). (A).6 MeV (B).6 MeV (C). MeV

Dettagli

Dipolo Elettrico: due cariche (puntiformi) +q e q (stesso modulo, segno opposto) a distanza a. Momento di Dipolo, P: Vettore di modulo

Dipolo Elettrico: due cariche (puntiformi) +q e q (stesso modulo, segno opposto) a distanza a. Momento di Dipolo, P: Vettore di modulo Il Dipolo Elettrico Dipolo Elettrico: due cariche (puntiformi) q e q (stesso modulo, segno opposto) a distanza a. Momento di Dipolo, P: Vettore di modulo qa che va da qq a q Dato un punto P molto distante

Dettagli

Dielettrici (Isolanti)

Dielettrici (Isolanti) Dielettrici (Isolanti) N.B. nelle operazioni che svolgeremo avremo a che fare con condensatori carichi. Si può operare in due diverse condizioni: 1) a carica costante: condensatore caricato e poi scollegato

Dettagli

IL CAMPO ELETTRICO ED IL POTENZIALE

IL CAMPO ELETTRICO ED IL POTENZIALE IL CAMPO ELETTRICO ED IL POTENZIALE 1 V CLASSICO PROF.SSA DELFINO M. G. UNITÀ 2 - IL CAMPO ELETTRICO ED IL POTENZIALE 1. Il campo elettrico 2. La differenza di potenziale 3. I condensatori 2 LEZIONE 1

Dettagli

Capitolo Cariche elettriche, forze 23 e campi

Capitolo Cariche elettriche, forze 23 e campi Capitolo Cariche elettriche, forze 23 e campi 1 Capitolo 23 - Contenuti 1. Carica elettrica 2. Isolanti e conduttori 3. La legge di Coulomb 4. Il campo elettrico 5. Le linee del campo elettrico 6. La schermatura

Dettagli

CAMPO ELETTRICO. F r e = q E r. Newton ;

CAMPO ELETTRICO. F r e = q E r. Newton ; 1 CAMPO ELETTRICO Si definisce campo elettrico (o elettrostatico) una qualunque regione dello spazio nella quale si manifestano azioni su cariche elettriche. 1. DESCRIZIONE DEL CAMPO Per descrivere un

Dettagli

Esistono alcune sostanze che manifestano la capacità di attirare la limatura di ferro, in particolare, la magnetite

Esistono alcune sostanze che manifestano la capacità di attirare la limatura di ferro, in particolare, la magnetite 59 Esistono alcune sostanze che manifestano la capacità di attirare la limatura di ferro, in particolare, la magnetite Questa proprietà non è uniforme su tutto il materiale, ma si localizza prevelentemente

Dettagli

ELETTROLOGIA Cap II. Calcolo del Campo Elettrico dovuto ad alcune distribuzioni di carica. Elettrologia II

ELETTROLOGIA Cap II. Calcolo del Campo Elettrico dovuto ad alcune distribuzioni di carica. Elettrologia II ELETTROLOGIA Cap II Calcolo del Campo Elettrico dovuto ad alcune distribuzioni di carica 1 Anello di raggio R uniformemente carco con carica Q. Anello di dimensioni trasversali trascurabili rispetto al

Dettagli

Elettricità e Magnetismo. M. Cobal, Università di Udine

Elettricità e Magnetismo. M. Cobal, Università di Udine Elettricità e Magnetismo M. Cobal, Università di Udine Forza di Coulomb Principio di Sovrapposizione Lineare Campo Ele8rico Linee di campo Flusso, teorema di Gauss e applicazioni Condu8ori Energia potenziale

Dettagli

Fisica Generale B. 2. Elettrostatica dei Conduttori Metallici. Isolanti o Dielettrici. Induzione Elettrostatica. Conduttori

Fisica Generale B. 2. Elettrostatica dei Conduttori Metallici. Isolanti o Dielettrici. Induzione Elettrostatica. Conduttori Fisica Generale B 2. Elettrostatica dei Conduttori Metallici http://campus.cib.unibo.it/247/ Isolanti o Dielettrici In un isolante (detto anche dielettrico), le cariche elettriche in dotazione a una molecola

Dettagli

CONDUTTORI DIELETTRICI. G. Pugliese 1

CONDUTTORI DIELETTRICI. G. Pugliese 1 CONDUTTOI E DIELETTICI G. Pugliese I conduttori Conduttori materiali solidi, liuidi o gassosi in cui sono presenti cariche che possono muoversi liberamente (cariche mobili) Conduttori solidi (ad es. i

Dettagli

Tutorato di Fisica 2 Anno Accademico 2010/2011

Tutorato di Fisica 2 Anno Accademico 2010/2011 Matteo Luca Ruggiero DIFIS@Politecnico di Torino Tutorato di Fisica 2 Anno Accademico 2010/2011 () 2 1.1 Una carica q è posta nell origine di un riferimento cartesiano. (1) Determinare le componenti del

Dettagli

C = Q/V = 4π ε R. . Conseguentemente

C = Q/V = 4π ε R. . Conseguentemente Capacità di un conduttore sferico Per una sfera conduttrice di raggio R isolata e caricata con carica Q, i punti della superficie sono equipotenziali Q 1 Q V= 4π ε R Definiamo Capacità il rapporto Q/V

Dettagli

Lezione 8. Campo e potenziale elettrici

Lezione 8. Campo e potenziale elettrici Lezione 8. Campo e potenziale elettrici Legge di Coulomb: Unitá di misura: F = 1 q 1 q 2 4πɛ 0 r 2 1 4πɛ 0 = 8.99 10 9 Nm 2 /C 2 Campi elettrici E = F/q 1 F = qe Unitá di misura del campo elettrico: [E]

Dettagli

Formulario Elettromagnetismo

Formulario Elettromagnetismo Formulario Elettromagnetismo. Elettrostatica Legge di Coulomb: F = q q 2 u 4 0 r 2 Forza elettrostatica tra due cariche puntiformi; ε 0 = costante dielettrica del vuoto; q = cariche (in C); r = distanza

Dettagli

Facoltà di Ingegneria 1 a prova in itinere di Fisica II 15-Aprile Compito A

Facoltà di Ingegneria 1 a prova in itinere di Fisica II 15-Aprile Compito A Facoltà di Ingegneria a prova in itinere di Fisica II 5-Aprile-3 - Compito A Esercizio n. Un filo isolante di lunghezza è piegato ad arco di circonferenza di raggio (vedi figura). Su di esso è depositata

Dettagli

= E qz = 0. 1 d 3 = N

= E qz = 0. 1 d 3 = N Prova scritta d esame di Elettromagnetismo 7 ebbraio 212 Proff.. Lacava,. Ricci, D. Trevese Elettromagnetismo 1 o 12 crediti: esercizi 1, 2, 4 tempo 3 h; Elettromagnetismo 5 crediti: esercizi 3, 4 tempo

Dettagli

Esercitazioni 26/10/2016

Esercitazioni 26/10/2016 Esercitazioni 26/10/2016 Esercizio 1 Un anello sottile di raggio R = 12 cm disposto sul piano yz (asse x uscente dal foglio) è composto da due semicirconferenze uniformemente cariche con densità lineare

Dettagli

Capacità. Capacità elettrica Condensatore Condensatore = sistema per immagazzinare energia (elettrica)

Capacità. Capacità elettrica Condensatore Condensatore = sistema per immagazzinare energia (elettrica) Capacità Capacità elettrica Condensatore Condensatore = sistema per immagazzinare energia (elettrica) Definizione C Capacità Q V La capacità è una misura di quanta carica debba possedere un certo tipo

Dettagli

Elettromagnetismo Formulazione differenziale

Elettromagnetismo Formulazione differenziale Elettromagnetismo Formulazione differenziale 1. Legge di Gauss 2. Legge di Ampere 3. Equazioni di Maxwell statiche V - 0 Legge di Gauss Campo elettrico Carica contenuta all interno della superficie A Flusso

Dettagli

CORSO DI FISICA dispensa n.4 ELETTROSTATICA/CORRENTE ELETTRICA

CORSO DI FISICA dispensa n.4 ELETTROSTATICA/CORRENTE ELETTRICA CORSO DI FISICA dispensa n.4 ELETTROSTATICA/CORRENTE ELETTRICA Elettrostatica L elettrostatica é lo studio dei fenomeni elettrici in presenza di cariche a riposo. Fin dall antichitá sono note alcune proprietá

Dettagli

ELETTRICITÀ. In natura esistono due tipi di elettricità: positiva e negativa.

ELETTRICITÀ. In natura esistono due tipi di elettricità: positiva e negativa. Elettricità 1 ELETTRICITÀ Quando alcuni corpi (vetro, ambra, ecc.) sono strofinati con un panno di lana, acquistano una carica elettrica netta, cioè essi acquistano la proprietà di attrarre o di respingere

Dettagli

Definizione di Flusso

Definizione di Flusso Definizione di Flusso Il flusso aumenta se il campo elettrico aumenta!! Δφ E ΔA EΔAcosθ E Il flusso è la quantità di materia che passa attraverso una superficie nell unità di tempo. Se si parla di campo

Dettagli

Esercitazione 1. Matteo Luca Ruggiero 1. Anno Accademico 2010/ Dipartimento di Fisica del Politecnico di Torino

Esercitazione 1. Matteo Luca Ruggiero 1. Anno Accademico 2010/ Dipartimento di Fisica del Politecnico di Torino Esercitazione 1 Matteo Luca Ruggiero 1 1 Dipartimento di Fisica del Politecnico di Torino Anno Accademico 2010/2011 ML Ruggiero (DIFIS) Esercitazione 1: Elettrostatica E1.2010/2011 1 / 29 Sommario 1 Riferimenti

Dettagli

Fisica II. 3 Esercitazioni

Fisica II. 3 Esercitazioni etem Esercizi svolti Esercizio 3. alcolare le componenti cartesiane del campo elettrico generato da un dipolo p orientato lungo l asse x in un punto lontano rispetto alle dimensioni del dipolo. Soluzione:

Dettagli

Cosa differenzia un conduttore da un dielettrico? Come si comporta un conduttore? Come si utilizza un conduttore?

Cosa differenzia un conduttore da un dielettrico? Come si comporta un conduttore? Come si utilizza un conduttore? 1 Cosa differenzia un conduttore da un dielettrico? A livello macroscopico A livello microscopico Come si comporta un conduttore? In elettrostatica In presenza di cariche in moto (correnti)... Come si

Dettagli

Facoltà di Ingegneria Prova scritta di Fisica II - 23 Settembre Compito A Esercizio n.1 O Esercizio n. 2 O

Facoltà di Ingegneria Prova scritta di Fisica II - 23 Settembre Compito A Esercizio n.1 O Esercizio n. 2 O Facoltà di Ingegneria Prova scritta di Fisica II - 3 Settembre 003 - Compito A Esercizio n.1 Quattro cariche di uguale valore q, due positive e due negative, sono poste nei vertici di un quadrato di lato

Dettagli

Applicazioni del teorema di Gauss

Applicazioni del teorema di Gauss Prof. A.Guarrera Liceo Scientifico Galilei - Catania Applicazioni del teorema di Gauss Campo elettrostatico di una distribuzione di carica uniforme e filiforme (filo carico) di densità lineare di carica.

Dettagli

Capacità. Capacità elettrica Condensatore Condensatore = sistema per immagazzinare energia (elettrica) Fisica II CdL Chimica

Capacità. Capacità elettrica Condensatore Condensatore = sistema per immagazzinare energia (elettrica) Fisica II CdL Chimica Capacità Capacità elettrica Condensatore Condensatore = sistema per immagazzinare energia (elettrica) Definizione Capacità La capacità è una misura di quanta carica debba possedere un certo tipo di condensatore

Dettagli

1 Prove esami Fisica II

1 Prove esami Fisica II 1 Prove esami Fisica II Prova - 19-11-2002 Lo studente risponda alle seguenti domande: 1) Scrivere il teorema di Gauss (2 punti). 2) Scrivere, per un conduttore percorso da corrente, il legame tra la resistenza

Dettagli

Conservazione della carica elettrica

Conservazione della carica elettrica Elettrostatica La forza elettromagnetica è una delle interazioni fondamentali dell universo L elettrostatica studia le interazioni fra le cariche elettriche non in movimento Da esperimenti di elettrizzazione

Dettagli

1.2 Moto di cariche in campo elettrico

1.2 Moto di cariche in campo elettrico 1.2 Moto di cariche in campo elettrico Capitolo 1 Elettrostatica 1.2 Moto di cariche in campo elettrico Esercizio 11 Una carica puntiforme q = 2.0 10 7 C, massa m = 2 10 6 kg, viene attratta da una carica

Dettagli

condensatori2.notebook January 17, 2015

condensatori2.notebook January 17, 2015 Se in un conduttore neutro cavo inseriamo mediante un manico isolante una carica positiva q, questa richiama sulla parete interna del conduttore cariche negative, per un contributo complessivo pari a q.

Dettagli

Sulla superficie interna del guscio sferico (induzione totale) si avrà la carica indotta q distribuita uniformemente, quindi

Sulla superficie interna del guscio sferico (induzione totale) si avrà la carica indotta q distribuita uniformemente, quindi 1) Una sfera conduttrice di raggio r = 5 cm possiede una carica q = 10 8 C ed è posta nel centro di un guscio sferico conduttore, di raggio interno R = 20 cm, posto in contatto con la terra (a massa).

Dettagli

APPENDICE 1 CAMPI CONSERVATIVI CIRCUITAZIONE DI UN VETTORE LUNGO UNA LINEA CHIUSA CORRENTE DI SPOSTAMENTO

APPENDICE 1 CAMPI CONSERVATIVI CIRCUITAZIONE DI UN VETTORE LUNGO UNA LINEA CHIUSA CORRENTE DI SPOSTAMENTO APPENDICE 1 CAMPI CONSERVATIVI CIRCUITAZIONE DI UN VETTORE LUNGO UNA LINEA CHIUSA CORRENTE DI SPOSTAMENTO Quando un punto materiale P si sposta di un tratto s per effetto di una forza F costante applicata

Dettagli

Fisica II Modulo. A. Mastroserio, S. Rainò

Fisica II Modulo. A. Mastroserio, S. Rainò Fisica II Modulo A. Mastroserio, S. Rainò Argomenti n ELETTROSTATICA n CORRENTE ELETTRICA n MAGNETISMO n OTTICA ELETTROSTATICA Carica elettrica n I primi studi di cui si ha notizia sui fenomeni di natura

Dettagli

1.5 Calcolo di erenziale vettoriale Derivata ordinaria Gradiente Esempio n. 3 - Gradiente di 1

1.5 Calcolo di erenziale vettoriale Derivata ordinaria Gradiente Esempio n. 3 - Gradiente di 1 Indice 1 ANALISI VETTORIALE 1 1.1 Scalari e vettori......................... 1 1.1.1 Vettore unitario (versore)............... 2 1.2 Algebra dei vettori....................... 3 1.2.1 Somma di due vettori.................

Dettagli

Conduttori e condensatori 1

Conduttori e condensatori 1 Induzione elettrica onduttori e condensatori Su un conduttore (neutro) in un campo elettrico esterno si induce una distribuzione di cariche che produce al suo interno un campo elettrico uguale e opposto

Dettagli

Cap 3- Legge di Gauss. 3.1-Concetto di flusso Flusso del campo elettrico. Cap 3- Legge di Gauss

Cap 3- Legge di Gauss. 3.1-Concetto di flusso Flusso del campo elettrico. Cap 3- Legge di Gauss Cap 3- Legge di Gauss Cap 3- Legge di Gauss Una formulazione equivalente alla legge di Coulomb è quella stabilita dal teorema di Gauss, che trae vantaggio dalle situazioni nelle quali vi è una simmetria

Dettagli

1. l induzione magnetica B in modulo, direzione e verso nel piano ortogonale al filo nel suo punto medio, a distanza r dal filo;

1. l induzione magnetica B in modulo, direzione e verso nel piano ortogonale al filo nel suo punto medio, a distanza r dal filo; Prova scritta di Elettromagnetismo e Ottica (CCS Fisica), 21 gennaio 2013 Nel piano x = 0 giace una lastra conduttrice collegata a terra. Nei punti di coordinate (a, a, 0) e (a, a, 0) si trovano due cariche,

Dettagli

Il campo elettrico. Giuseppe Frangiamore con la collaborazione di Mingoia Salvatore

Il campo elettrico. Giuseppe Frangiamore con la collaborazione di Mingoia Salvatore Il campo elettrico Giuseppe Frangiamore con la collaborazione di Mingoia Salvatore Legge di Coulomb I primi studi sulle forze agenti tra corpi elettrizzati si devono a COULOB il quale, verso la fine del

Dettagli

1 ) Il numero atomico dell atomo di ossigeno è 8. Ciò significa che:

1 ) Il numero atomico dell atomo di ossigeno è 8. Ciò significa che: ) Il numero atomico dell atomo di ossigeno è 8. Ciò significa che: A. 4 elettroni orbitano intorno al nucleo che contiene 4 protoni. B. Attorno al nucleo orbitano 8 elettroni. C. Il nucleo è costituito

Dettagli

LA CARICA ELETTRICA E LA LEGGE DI COULOMB V CLASSICO PROF.SSA DELFINO M. G.

LA CARICA ELETTRICA E LA LEGGE DI COULOMB V CLASSICO PROF.SSA DELFINO M. G. LA CARICA ELETTRICA E LA LEGGE DI COULOMB 1 V CLASSICO PROF.SSA DELFINO M. G. UNITÀ 1 - LA CARICA ELETTRICA E LA LEGGE DI COULOMB 1. Le cariche elettriche 2. La legge di Coulomb 2 LEZIONE 1 - LE CARICHE

Dettagli

Data una carica puntiforme Q

Data una carica puntiforme Q Data una carica puntiforme Q Come posso descrivere in modo sintetico il possibile effetto che Q esercita su una qualsiasi carica posta nello spazio circostante? Uso la carica q - - Estendendo il procedimento

Dettagli

Capacita` di un conduttore isolato

Capacita` di un conduttore isolato Capacita` di un conduttore isolato Carica sulla superficie di un conduttore isolato Q =!! (! r )da Potenziale del conduttore in un punto qualsiasi V = 1!! ( r )! da (Equipotenziale) 4!" 0 r La distribuzione

Dettagli

Esercizi di elettrostatica (prima parte)

Esercizi di elettrostatica (prima parte) Esercizi di elettrostatica (prima parte) Esercizi di elettrostatica: forza di coulomb, campo elettrico. 1. Date tre cariche elettriche puntiformi identiche ( Q ) poste ai vertici di un triangolo equilatero

Dettagli

Olimpiadi di Fisica 2015 Campo elettrico Franco Villa

Olimpiadi di Fisica 2015 Campo elettrico Franco Villa 1 Olimpiadi di Fisica 015 ampo elettrico Franco illa 1. ate le cariche Q = -1 µ e Q = - µ (ale in cm O=0, O=10, =10, O=0) determinare: il potenziale elettrico ed il campo elettrico E (modulo, direzione

Dettagli

MODULO DI ELETTROMAGNETISMO Prova Pre-Esame del 28 GENNAIO 2009 A.A

MODULO DI ELETTROMAGNETISMO Prova Pre-Esame del 28 GENNAIO 2009 A.A MODULO D ELETTROMAGNETSMO Prova Pre-Esame del 28 GENNAO 2009 A.A. 2008-2009 FSCA GENERALE Esercizi FS GEN: Punteggio in 30 esimi 1 8 Fino a 4 punti COGNOME: NOME: MATR: 1. Campo elettrostatico La sfera

Dettagli

Interazioni fondamentali (origine. delle forze) Elettromagnetica : lungo raggio lega elettroni e protoni per. per formare i nuclei. molecole,, etc.

Interazioni fondamentali (origine. delle forze) Elettromagnetica : lungo raggio lega elettroni e protoni per. per formare i nuclei. molecole,, etc. Interazioni fondamentali (origine delle forze) orte : corto raggio ~10-14 m lega i protoni ed i neutroni per formare i nuclei Elettromagnetica : lungo raggio lega elettroni e protoni per formare atomi,

Dettagli

Esercizi di Fisica LB: elettrostatica

Esercizi di Fisica LB: elettrostatica Esercizio 1 Esercizi di Fisica LB: elettrostatica Esercitazioni di Fisica LB per ingegneri - A.A. 2004-2005 Una carica puntiforme q (per semplicità si immagini che abbia un raggio ɛ molto piccolo) è situata

Dettagli

23.2 Il campo elettrico

23.2 Il campo elettrico N.Giglietto A.A. 2005/06-23.3-Linee di forza del campo elettrico - 1 Cap 23- Campi Se mettiamo una carica in una regione dove c è un altra carica essa risentirà della sua presenza manifestando una forza

Dettagli

CORSO DI LAUREA IN SCIENZE BIOLOGICHE Prova scritta di FISICA 30 gennaio 2012

CORSO DI LAUREA IN SCIENZE BIOLOGICHE Prova scritta di FISICA 30 gennaio 2012 CORSO DI LAUREA IN SCIENZE BIOLOGICHE Prova scritta di FISICA 30 gennaio 2012 1) Un corpo di massa m = 1 kg e velocità iniziale v = 5 m/s si muove su un piano orizzontale scabro, con coefficiente di attrito

Dettagli

FORMULARIO ELETTROMAGNETISMO

FORMULARIO ELETTROMAGNETISMO FORMULARIO ELETTROMAGNETISMO Forza di Coulomb : forza che intercorre tra due particelle cariche Campo elettrico : quantità vettoriale generata da una carica Densità di carica superficiale, volumetrica

Dettagli

Campi Elettrici e Magnetici. ELETTROSTATICA Cariche Elettriche e Forze Elettriche

Campi Elettrici e Magnetici. ELETTROSTATICA Cariche Elettriche e Forze Elettriche Campi Elettrici e Magnetici ELETTROSTATICA Cariche Elettriche e Forze Elettriche Esperienza ==> Forza tra cariche SI INTRODUCE UNA NUOVA GRANDEZZA FONDAMENTALE: LA CARICA ELETTRICA UNITÀ DI MISURA NEL

Dettagli

Compito di prova - risolti

Compito di prova - risolti Compito di prova - risolti A P B q A q P q B 1. La carica positiva mobile q P si trova tra le cariche positive fisse q A, q B dove AB = 1 m. Se q A = 2 C e all equilibrio AP = 0.333 m, la carica q B vale

Dettagli

Flusso Elettrico Legge di Gauss: Motivazione & Definizione Legge di Coulomb come conseguenza della legge di Gauss Cariche sui Conduttori

Flusso Elettrico Legge di Gauss: Motivazione & Definizione Legge di Coulomb come conseguenza della legge di Gauss Cariche sui Conduttori Legge di Gauss Flusso Elettrico Legge di Gauss: Motivazione & Definizione Legge di Coulomb come conseguenza della legge di Gauss Cariche sui Conduttori La legge di Gauss mette in relazione i campi su una

Dettagli

Esercitazione 1. Invece, essendo il mezzo omogeneo, il vettore sarà espresso come segue

Esercitazione 1. Invece, essendo il mezzo omogeneo, il vettore sarà espresso come segue 1.1 Una sfera conduttrice di raggio R 1 = 10 cm ha una carica Q = 10-6 C ed è circondata da uno strato sferico di dielettrico di raggio (esterno) R 2 = 20 cm e costante dielettrica relativa. Determinare

Dettagli

E INT = 0 1) la carica ceduta al conduttore deve essere localizzata sulla sua superficie INT =

E INT = 0 1) la carica ceduta al conduttore deve essere localizzata sulla sua superficie INT = Conduttori in euilibrio in un campo elettrostatico Conduttori materiali solidi, liuidi o gassosi in cui sono presenti cariche che possono muoversi liberamente (cariche mobili) Conduttori solidi metalli,

Dettagli

ELETTROSTATICA / ELETTROLOGIA Cap I. Elettrologia I

ELETTROSTATICA / ELETTROLOGIA Cap I. Elettrologia I ELETTROSTATICA / ELETTROLOGIA Cap I 1 Fenomeno noto fin dall antichità greca! (Talete di Mileto VI secolo a.c) Strofinando con un panno di opportuno materiale (lana, pelle di gatto!! ) del vetro o dell

Dettagli

0 : costante dielettrica nel vuoto

0 : costante dielettrica nel vuoto 0 : costante dielettrica nel vuoto Φ Flusso del campo elettrico E dφ E E da EdAcosθ Se la superficie è chiusa (superficie gaussiana) il flusso si calcola come integrale chiuso: Φ E dφ E E da v EdAcosθ

Dettagli

Elettronica II Grandezze elettriche microscopiche (parte 1) p. 2

Elettronica II Grandezze elettriche microscopiche (parte 1) p. 2 Elettronica II Grandezze elettriche microscopiche (parte 1) Valentino Liberali Dipartimento di Tecnologie dell Informazione Università di Milano, 26013 Crema e-mail: liberali@dti.unimi.it http://www.dti.unimi.it/

Dettagli

Conduttori. solidi: metalli/semiconduttori. Si muovono solo le cariche elementari. soluzioni elettrolitiche. Si muovono anche gli ioni (+ lenti)

Conduttori. solidi: metalli/semiconduttori. Si muovono solo le cariche elementari. soluzioni elettrolitiche. Si muovono anche gli ioni (+ lenti) : materiali, corpi, al cui interno le carche elettriche possono muoversi liberamente. solidi: metalli/semiconduttori. Si muovono solo le cariche elementari soluzioni elettrolitiche. Si muovono anche gli

Dettagli

Elettrostatica I. Forza di Coulomb. Principio di Sovrapposizione Lineare. Campo Elettrico. Linee di campo. Flusso, teorema di Gauss e sue applicazioni

Elettrostatica I. Forza di Coulomb. Principio di Sovrapposizione Lineare. Campo Elettrico. Linee di campo. Flusso, teorema di Gauss e sue applicazioni Elettrostatica I Forza di Coulomb Principio di Sovrapposizione Lineare Campo Elettrico Linee di campo Flusso, teorema di Gauss e sue applicazioni Conduttori Energia potenziale elettrostatica Elettricità

Dettagli

Simulazione di Terza Prova. Classe 5DS. Disciplina: Fisica. Data: 10/12/10 Studente: Quesito N 1. Punti 4. Come si definisce l energia potenziale elettrica? Si ricavi l espressione dell energia potenziale

Dettagli

Il Corso di Fisica per Scienze Biologiche

Il Corso di Fisica per Scienze Biologiche Il Corso di Fisica per Scienze Biologiche Ø Prof. Attilio Santocchia Ø Ufficio presso il Dipartimento di Fisica (Quinto Piano) Tel. 075-585 708 Ø E-mail: attilio.santocchia@pg.infn.it Ø Web: http://www.fisica.unipg.it/~attilio.santocchia

Dettagli

q, da cui C 0 = q/v 0 = 0 A/d. Riempiamo ora lo spazio tra le armature con

q, da cui C 0 = q/v 0 = 0 A/d. Riempiamo ora lo spazio tra le armature con Capitolo 6 Condensatori 85 V q, da cui C = q/v = A/d. Riempiamo ora lo spazio tra le armature con d Aε materiale dielettrico: se il condensatore è staccato dal generatore che l ha caricato, subito la differenza

Dettagli

Conservazione della carica

Conservazione della carica Elettricità Le forze elettriche legano la materia Le onde luminose sono di natura elettrica I processi chimici e biologici sono di tipo elettrico (la gravità in confronto è troppo debole per avere un ruolo

Dettagli

Lez. 19 Potenziale elettrico

Lez. 19 Potenziale elettrico Lez. 19 Potenziale elettrico Prof. 1 Dott., PhD Dipartimento Scienze Fisiche Università di Napoli Federico II Compl. Univ. Monte S.Angelo Via Cintia, I-80126, Napoli mettivier@na.infn.it +39-081-676137

Dettagli

Elettromagnetismo. Applicazioni della legge di Gauss. Lezione n. 6 14.10.2015. Prof. Francesco Ragusa Università degli Studi di Milano

Elettromagnetismo. Applicazioni della legge di Gauss. Lezione n. 6 14.10.2015. Prof. Francesco Ragusa Università degli Studi di Milano Elettromagnetismo Prof. Francesco Ragusa Università degli Studi di Milano Lezione n. 6 14.10.2015 Applicazioni della legge di Gauss Anno Accademico 2015/2016 Campo di un guscio sferico cavo Abbiamo già

Dettagli

Problemi di Fisica. Elettromagnetismo. La Carica Elettrica e la Legge di Coulomb

Problemi di Fisica. Elettromagnetismo. La Carica Elettrica e la Legge di Coulomb Problemi di isica Elettromagnetismo La arica Elettrica e la Legge di oulomb Data la distribuzione di carica rappresentata in figura, calcolare la forza totale che agisce sulla carica Q posta nell origine

Dettagli

Il potenziale elettrico

Il potenziale elettrico Il elettrico Ingegneria Energetica Docente: Angelo Carbone Energia del elettrico e differenza di Relazione tra il elettrico e il Il elettrico dovuto a cariche puntiformi Il elettrico dovuto a una generica

Dettagli

Elettrostatica. pag. 1. Elettrostatica

Elettrostatica. pag. 1. Elettrostatica Carica elettrica Legge di Coulomb Campo elettrico Principio di sovrapposizione Energia potenziale del campo elettrico Moto di una carica in un campo elettrico statico Teorema di Gauss Campo elettrico e

Dettagli

Le 4 forze della natura:

Le 4 forze della natura: Le 4 forze della natura: Forze elettromagnetiche Forze gravitazionali Forze nucleari forti Forze nucleari deboli Meccanica: Che cosa fanno le forze? le forze producono accelerazioni, cioè cambiamenti di

Dettagli

ELETTROSTATICA. ' = ρ (2) a cui possono essere associate, in caso di mezzo isotropo e lineare, le equazioni di legame materiale:

ELETTROSTATICA. ' = ρ (2) a cui possono essere associate, in caso di mezzo isotropo e lineare, le equazioni di legame materiale: ELETTROSTATICA Si parla di elettrostatica quando, in ogni punto dello spazio ed in ogni istante risultano nulle tutte le derivate temporali che compaiono nelle equazioni generali dell elettromagnetismo,

Dettagli

Corrente elettrica. a = e E/m. La velocita' cresce linearmente. v= a t

Corrente elettrica. a = e E/m. La velocita' cresce linearmente. v= a t Corrente elettrica In un buon conduttore è disponibile una notevole quantità di elettroni liberi di muoversi Se applico un campo elettrico E essi sono accelerati a = e E/m La velocita' cresce linearmente

Dettagli

Campi Elettromagnetici Stazionari - a.a

Campi Elettromagnetici Stazionari - a.a Campi Elettromagnetici Stazionari - a.a. 2005-06 I Compitino - 17 Novembre 2005 Due anelli di raggio a=1 cm e sezione trascurabile, disposte come in Figura 1, coassiali tra loro e con l'asse x, in posizione

Dettagli

Università del Sannio

Università del Sannio Università del Sannio Corso di Fisica 1 Lezione 6 Dinamica del punto materiale II Prof.ssa Stefania Petracca 1 Lavoro, energia cinetica, energie potenziali Le equazioni della dinamica permettono di determinare

Dettagli

Esercizi-Calcolo diretto di campo elettrico

Esercizi-Calcolo diretto di campo elettrico 1 CALCOLO DIRETTO CAMPO ELETTRICO Parte I Esercizi-Calcolo diretto di campo elettrico 1 Calcolo diretto campo elettrico Problema svolto 22.2 In figura vi sono due cariche q 1 = +8q e q 2 = 2q la prima

Dettagli

ELETTROTECNICA. Condensatori. Livello 8. Andrea Ros sdb

ELETTROTECNICA. Condensatori. Livello 8. Andrea Ros sdb ELETTROTECNICA Livello 8 Condensatori Andrea Ros sdb Livello 8 Condensatori Dopo aver compreso il concetto di resistenza, facciamo un passo avanti e passiamo alla capacità. Sezione 1 Il campo elettrico

Dettagli

La forza gravitazionale: Newton, la mela, la luna e. perché la mela cade e la luna ruota?

La forza gravitazionale: Newton, la mela, la luna e. perché la mela cade e la luna ruota? La forza gravitazionale: Newton, la mela, la luna e perché la mela cade e la luna ruota? La causa dei due fenomeni è la stessa Accelerazione luna : a L = 0.0027 m/s 2 Accelerazione mela : a m = 9.81 m/s

Dettagli

ELETTROMAGNETISMO APPLICATO ALL'INGEGNERIA ELETTRICA ED ENERGETICA_3d (ultima modifica 01/10/2012)

ELETTROMAGNETISMO APPLICATO ALL'INGEGNERIA ELETTRICA ED ENERGETICA_3d (ultima modifica 01/10/2012) ELETTROMAGNETISMO APPLICATO ALL'INGEGNERIA ELETTRICA ED ENERGETICA_3d (ultima modifica 01/10/01) Soluioni di problemi elettrostatici I problemi elettrostatici riguardano lo studio degli effetti delle cariche

Dettagli

Flusso di un campo vettoriale

Flusso di un campo vettoriale Flusso di un campo vettoriale Il concetto è stato originariamente introdotto nella teoria dei fluidi, dove il flusso è legato alla quantità di fluido che passa attraverso una data superficie geometrica,

Dettagli

( ) = 4, J. ( 8, N m 2 /C ) 2 m)2 2, C

( ) = 4, J. ( 8, N m 2 /C ) 2 m)2 2, C UESITI 1 uesito Il campo elettrico è conservativo, per cui il lavoro che esso compie nello spostamento di una carica non dipende dal cammino percorso, ma solo dai punti iniziale e finale. Infatti L C ΔV

Dettagli

LISTA PROVVISIORIA DELLE DOMANDE D'ESAME FISICA GENERALE 2 A/A

LISTA PROVVISIORIA DELLE DOMANDE D'ESAME FISICA GENERALE 2 A/A LISTA PROVVISIORIA DELLE DOMANDE D'ESAME FISICA GENERALE 2 A/A 2017-2018 Prof. P. Monaco e F. Longo 01) Cos'e' la quantizzazione della carica elettrica. 02) Cosa stabilisce il principio di conservazione

Dettagli

Fenomeni elettrici. Strofinando un righello di plastica questo ha la proprietà di attrarre dei pezzettini di carta.

Fenomeni elettrici. Strofinando un righello di plastica questo ha la proprietà di attrarre dei pezzettini di carta. Fenomeni elettrici Strofinando un righello di plastica questo ha la proprietà di attrarre dei pezzettini di carta. Una nuova forza? Quali proprietà ha questa forza? Differenze e analogie con la forza gravitazionale?

Dettagli

S.Barbarino - Esercizi svolti di Fisica generale II. Esercizi svolti di Fisica generale II - Anno 1997

S.Barbarino - Esercizi svolti di Fisica generale II. Esercizi svolti di Fisica generale II - Anno 1997 SBarbarino - Esercizi svolti di Fisica generale II Esercizi svolti di Fisica generale II - nno 997 97-) Esercizio n del /3/997 Calcolare il lavoro necessario per trasportare un elettrone dal punto (,,)

Dettagli

Dati numerici: f = 200 V, R 1 = R 3 = 100 Ω, R 2 = 500 Ω, C = 1 µf.

Dati numerici: f = 200 V, R 1 = R 3 = 100 Ω, R 2 = 500 Ω, C = 1 µf. ESERCIZI 1) Due sfere conduttrici di raggio R 1 = 10 3 m e R 2 = 2 10 3 m sono distanti r >> R 1, R 2 e contengono rispettivamente cariche Q 1 = 10 8 C e Q 2 = 3 10 8 C. Le sfere vengono quindi poste in

Dettagli

Esame Scritto Fisica Generale T-B/T-2

Esame Scritto Fisica Generale T-B/T-2 Esame Scritto Fisica Generale T-B/T-2 (CdL Ingegneria Civile e Informatic Prof. B. Fraboni - M. Sioli VI Appello A.A. 2013-2014 - 11/09/2014 Soluzioni Esercizi Ex. 1 Due cariche puntiformi 1 = + e 2 =

Dettagli

Equazione d onda per il campo elettromagnetico

Equazione d onda per il campo elettromagnetico Equazione d onda per il campo elettromagnetico Leggi fondamentali dell elettromagnetismo. I campi elettrici sono prodotti da cariche elettriche e da campi magnetici variabili. Corrispondentemente l intensità

Dettagli

Gradiente, divergenza e rotore

Gradiente, divergenza e rotore Gradiente, divergenza e rotore Gradiente di una funzione scalare della posizione Sia f(x,y,z) una funzione scalare continua e derivabile delle coordinate costruiamo in ogni punto dello spazio un vettore

Dettagli

S.Barbarino - Esercizi svolti di Fisica generale II. Esercizi svolti di Fisica generale II - Anno 1996

S.Barbarino - Esercizi svolti di Fisica generale II. Esercizi svolti di Fisica generale II - Anno 1996 SBarbarino - Esercizi svolti di Fisica generale II Esercizi svolti di Fisica generale II - Anno 1996 96-1) Esercizio n 1 del 24/7/1996 Una regione di spazio é sede di un campo elettrico descrivibile dalla

Dettagli

Elettromagnetismo. Prof. Francesco Ragusa Università degli Studi di Milano. Lezione n

Elettromagnetismo. Prof. Francesco Ragusa Università degli Studi di Milano. Lezione n Elettromagnetismo Prof. Francesco Ragusa Università degli Studi di Milano Lezione n. 8 21.10.2015 Equazione di Laplace Conduttori in un campo elettrostatico Anno Accademico 2015/2016 Energia del campo

Dettagli

5,&+,$0, 68*/,23(5$725,9(7725,$/,

5,&+,$0, 68*/,23(5$725,9(7725,$/, 5,&+,$0, 8*/,23(5$725,9(7725,$/, Gradiente E un operatore differenziale del primo ordine che si applica ad una generica grandezza scalare ϕ, e genera un vettore secondo la seguente definizione: ϕ ϕ Q =

Dettagli

Problemi di Fisica. Elettrostatica. La Legge di Coulomb e il Campo elettrico

Problemi di Fisica. Elettrostatica. La Legge di Coulomb e il Campo elettrico LROSAICA Problemi di isica lettrostatica La Legge di Coulomb e il Campo elettrico LROSAICA ata la distribuzione di carica rappresentata in figura, calcolare la forza totale che agisce sulla carica Q posta

Dettagli

FONDAMENTI DI ELETTROTECNICA

FONDAMENTI DI ELETTROTECNICA FONDAMENTI DI ELETTROTECNICA Si può asserire con sicurezza che il tecnico di domani, qualunque sia il suo campo di lavoro, dovrà avere un certo bagaglio di conoscenze di elettrotecnica e di elettronica

Dettagli

Lavoro ed energia. Lavoro di una forza Teorema dell energia cinetica Forze conservative Conservazione dell energia

Lavoro ed energia. Lavoro di una forza Teorema dell energia cinetica Forze conservative Conservazione dell energia Lavoro ed energia Lavoro di una forza Teorema dell energia cinetica Forze conservative Conservazione dell energia Lavoro di una forza Consideriamo una forza F applicata ad un punto materiale P che si sposti

Dettagli

Appunti sui conduttori in equilibrio elettrostatico. di Fabio Maria Antoniali

Appunti sui conduttori in equilibrio elettrostatico. di Fabio Maria Antoniali Appunti sui conduttori in equilibrio elettrostatico di Fabio Maria Antoniali versione del 30 maggio 2016 1 Conduttori elettrici I conduttori sono materiali in cui alcune cariche elementari sono libere

Dettagli