UNIVERSITÀ DEGLI STUDI DI ROMA LA SAPIENZA. Cages, configurazioni e schemi ciclici

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "UNIVERSITÀ DEGLI STUDI DI ROMA LA SAPIENZA. Cages, configurazioni e schemi ciclici"

Transcript

1 UNIVERSITÀ DEGLI STUDI DI ROMA LA SAPIENZA Cages, configurazioni e schemi ciclici Marién Abreu Quaderni Elettronici del Seminario di Geometria Combinatoria 25E (Maggio 2011) Dipartimento di Matematica Guido Castelnuovo P.le Aldo Moro, Roma - Italia

2 Cages, Configurazioni e Schemi Ciclici Marién Abreu Università degli Studi della Basilicata 16 Dicembre 2010 Università La Sapienza Roma

3 Argomenti Strutture geometriche e grafi estremali: alcune equivalenze Cages Semipiani Ellittici Configurazioni Simmetriche Rappresentazioni concise delle (0, 1) matrici associate a tali strutture: Schemi Ciclici Nuovi grafi e configurazioni usando l infrastruttura matriciale.

4 Cages Problema (Tutte; 1947 Kárteszi; 1960) Costruire cages (eventualmente Hamiltoniani) Un (k, g) cage è un grafo k regolare di girth g con minimo numero f(k, g) di vertici. Girth: è la lunghezza del circuito più piccolo in un grafo; Un grafo è regolare se tutti i suoi vertici hanno la stessa valenza (Sachs; 1963): Per ogni k 3 e g 5 esiste un (k, g) grafo. La limitazione di Moore è n(k, g) = { 1 + k + k(k + 1) + + k(k 1) g g dispari 2(1 + (k 1) + (k 1) (k 1) g 2 1 ) g pari Un grafo di Moore è un (k, g) grafo con n(k, g) vertici.

5 Grafi di Moore I grafi di Moore sono sporadici ed esistono solo di: Girth 5 e k = 2, 3, 7 e possibilmente 57 Girth 6, 8 o 12 e sono grafi di Levi di piani proiettivi o di quadrangoli o esagoni generalizzati Hoffman, Singleton, Higman, Ito ed al. = non esistono altri grafi di Moore Quasi sempre f(k, g) > n(k, g) Risultati (M.A., Funk, Labbate, Napolitano /2008/2010) Limitazioni superiori per i cages e costruzioni di classi infinite di (k, g) grafi di girth 5 e 6

6 Semipiani Ellittici Un semipiano ellittico è una struttura d incidenza di ordine n (che consta dello stesso numero di punti che di rette) tale che vengano soddisfatte le seguenti proprietà: Regolarità: Ci sono esattamente n + 1 punti in ogni retta e per ogni punto passano esattamente n + 1 rette. Linearità: Ogni coppia di punti è contenuta in al più una retta. Ossia, non ci sono digoni Parallelismo: Fissati una retta l 0 ed un punto p 0 non incidenti esiste al più una retta l 1 passante per p 0 e parallela a l 0 esiste al più un punto p 1 incidente a l 0 e parallelo a p 0

7 Demboski 1968 I semipiani ellittici S(X, L, ) di ordine n, con classi di parallelismo di cardinalità m, hanno n(n + 1) + m punti e rette e vale uno dei seguenti asserti: (O) m = 1 ed S = P è un piano proiettivo d ordine n. (C) m = n ed S = P B(p, l) dove p l. [Cronheim 1965] (L) m = n + 1 ed S = P B(p, l) dove p l. [Lüneburg 1964] (D) m = n + 1 n + 1 ed S = P B. (B) m < n + 1 n + 1 [Baker 1977]: 45 punti, ordine 6, m = 3

8 Risultati sui Semipiani Ellittici Risultati (M.A., Funk, Labbate, Napolitano - ArsComb 2008) Rappresentazioni matriciali concise per ogni tipo di semipiano ellittico Desarguesiano Le rappresentazioni mettono in evidenza una decomposizione tattica dei semipiani ellittici, ossia una loro partizione in semipiani ellittici di minor ordine.

9 Configurazioni Simmetriche Una configurazione simmetrica (n) k è una struttura d incidenza lineare, con n punti e rette nella quale ogni retta contiene k punti e per ogni punto passano k rette. I piani proiettivi sono configurazioni simmetriche minimali: Dato un intero k, la configurazione simmetrica (n) k con minimo numero di punti e rette è n = k 2 k + 1 Esistono per k = q + 1 con q potenza di primo. Lavoreremo con piani proiettivi desarguesiani P G(2, q). Per ogni configurazione simmetrica (n) k la deficiency d = n k 2 + k 1 misura quanto essa dista dall essere un piano proiettivo.

10 Spettro dell esistenza delle configurazioni 1 Rappresentiamo l esistenza delle configurazioni n k in base alla loro regolarità k e alla loro deficiency d, in una tabella chiamata spettro delle configurazioni k\d

11 Righe di Golomb Una riga di Golomb d ordine k è un insieme S = {α 1,..., α k } di k interi tali che le differenze α i α j sono tutte distinte per ogni i j. Il massimo α i in S è la lunghezza della riga. Dato un intero k, l intero l k denota la minima lunghezza di una riga di Golomb d ordine k. Risultati di Lipman e di Gropp implicano che per ogni k 3, fissato n 0 (k) = 2l k + 1, esistono configurazioni n k per ogni n n 0 (k). Una configurazione di Golomb è una configurazione (2l k + 1) k.

12 Spettro dell esistenza delle configurazioni 2 Le configurazioni di Golomb sono state determinate per 3 k 25. In questa tabella abbiamo incluso quelle per 3 k 7 k\d

13 Spettro dell esistenza delle configurazioni 3 Le configurazioni che corrispondono a semipiani ellittici di tipo L e C compaiono nello spettro su diagonali parallele k\d

14 Complementi di sottopiani di Baer e Stato dell Arte I semipiani ellittici di tipo D, che sono complementi di sottopiani di Baer in un piano proiettivo d ordine q 2 danno luogo ad ulteriori configurazioni. Ci sono ulteriori esempi sporadici ed alcuni risultati di non esistenza che completano lo stato dell arte dello spettro delle configurazioni qui rappresentato per 3 k 12. k\d

15 Regione tra i Semipiani Ellittici di tipo C e le Configuazioni di Golomb In una scala diversa, è più facile vedere che c è una regione limitata inferiormente dalla diagonale delle configurazioni provenienti da semipiani ellittici di tipo C e superiormente dalle configurazioni di Golomb, nella quale non è determinata l esistenza di configurazioni d k

16 Schemi Ciclici Uno schema ciclico su Z µ di valenza (k, l) è una matrice m n i cui elementi sono sottoinsiemi S i,j Z µ tali che Σ n j=1 S i,j = k e Σ m i=1 S i,j = l. Esempio ( 1, , 3 ) (5) Schema 2 2 di valenza (3, 3) su Z 5 che rappresenta il grafo di Petersen

17 Matrici Circolanti Una matrice circolante è univocamente determinata dalla sua prima riga. c 1 c 2 c 3 c n c n c 1 c 2 c n 1 c n 1 c n c 1 c n 2.. c 2 c 3 c 4 c 1 Esiste una corrispondenza biunivoca tra le (0, 1) matrici circolanti d ordine µ ed i sottoinsiemi di Z µ. Esplosione (Blow up): Ad ogni schema Z µ si può associare una (0, 1) matrice d ordine mµ nµ, sostituendo ogni insieme S i,j per la matrice circolante associata ad S i,j.

18 Schema su Z 5 per Petersen Esempio ( 1, , 3 ) (5)

19 Condizioni sugli Schemi Ciclici Teoremi (M.A., Funk, Labbate, Napolitano ) Sia M uno schema ciclico su Z µ, A la sua esplosione, e G il grafo la cui matrice d adiacenza è A. Allora le seguenti condizioni sono equivalenti: G A M Privo di Loop Zeri sulla diagonale 0 / S i,i Non diretto Simmetrica Schema antisimmetrico Privo di C 4 Priva di sotto matrici J 2 ( ) ( ) a b + c d 0 mod µ a S ij d Sgj b Sih c Sgh

20 Grafi di Levi di Piani Proiettivi Il grafo di Levi (o d incidenza punto/retta) di un piano proiettivo desarguesiano P G(2, q) è

21 Grafi di Levi di Semipiani Ellittici di tipo C Si eliminano un punto ed una retta incidenti, insieme a tutti i loro vicini

22 Grafi di Levi di Semipiani Ellittici di tipo C I grafi di Levi dei Semipiani Ellittici Desarguesiani di tipo C provenienti da P G(2, q) sono q regolari di girth 6 con 2q 2 vertici.

23 Grafi di Levi di Semipiani Ellittici di tipo L Si eliminano un punto ed una retta non incidenti, insieme a tutti i loro vicini

24 Grafi di Levi di Semipiani Ellittici di tipo L I grafi di Levi dei Semipiani Ellittici Desarguesiani di tipo L provenienti da P G(2, q) sono q regolari di girth 6 con 2(q 2 1) vertici.

25 Grafi di Levi di Semipiani Ellittici di tipo L I grafi di Levi dei Semipiani Ellittici Desarguesiani di tipo L provenienti da P G(2, q) sono q regolari di girth 6 con 2(q 2 1) vertici. Raggruppando diversamente e riordinando

26 Schema su Z q 1 per Semipiani Ellittici di tipo L (µ) S i,i = per ogni i {1,..., q + 1}

27 Schema su Z q 1 per Semipiani Ellittici di tipo L ( ) (µ) S i,i = per ogni i {1,..., q + 1} S i,q+1 = S q+1,j = {0} per ogni i, j {1,..., q} S i,j = {z} per ogni i, j {1,..., q} con i j dove z è tale che x i 1 x j 1 = w z, con x 0 = 0, x 1,..., x q 1 è un ordine per gli elementi di GF (q) e w una radice q sima dell unità. L esplosione di questo schema su Z q 1 è una matrice d incidenza per un semipiano ellittico di tipo L e per il suo grafo di Levi. Anche la matrice d incidenza dei semipiani ellittici di tipo C ammette uno schema ciclico su Z p, dove p è primo e q = p m.

28 Esempio Grafi di girth 6 Ricordiamo che per costruire la matrice d adiacenza A d un grafo bipartito con matrice d incidenza B si pone A := ( O B Il grafo di Levi del semipiano ellittico di tipo L costruito a partire da GF (7) ha matrice d adiacenza che è l esplosione dello schema ciclico su Z 6 B T O ) (6)

29 Grafi di girth 6 Si ottengono nuovi grafi regolari bipartiti di girth 6 eliminando righe e colonne dallo schema ciclico Teorema (M.A., Funk, Labbate, Napolitano - AusJC 2006) Esistono due famiglie infinite G (q, λ) e G + (q, λ) di grafi semplici (q λ) regolari bipartiti di girth 6 d ordine 2(q 2 λq) e 2(q 2 λq + λ 1) rispettivamente, con q = p m, p primo e 0 λ q 3.

30 Grafi di girth 5 Si costruiscono nuovi grafi di girth 5 aggiungendo sottografi regolari ai grafi di girth 6. Allo schema ciclico su Z 6 possono essere aggiunti degli elementi sulla diagonale che non cambiano la linearità 1, , , , , , , , , , , , , , , , 4 (6) Nel grafo l aggiunta rappresenta sottografi 2 regolari in ogni blocco di vertici, che lo fanno diventare non bipartito e di girth 5

31 Grafi di girth 5 Si ottengono nuovi grafi regolari bipartiti di girth 5 eliminando righe e colonne dallo schema ciclico Teorema (M.A., Funk, Labbate, Napolitano - DM 2008) Esiste una famiglia infinita H(q, λ) di grafi semplici (q + 2 λ) regolare di girth 5 d ordine 2(q λ), con q = p m, p 5 primo e 0 λ q 2. Corollario (M.A., Funk, Labbate, Napolitano - DM 2008) Dato un intero k 3, il grafo H(k) H(q, λ) tale che q sia la più piccola potenza di un primo con q k 2 e λ = q k + 2 generalizza una costruzione di Murty. In particolare, si ottengono limiti superiori migliori di quelli conosciuti per f(k, 5) con k 16.

32 Nuove Configurazioni Eliminando righe e colonne dello schema ciclico k d

33 Nuove Configurazioni Eliminando righe e colonne dello schema ciclico Rimuovendo 1 fattori dai grafi di Levi k d

34 Nuove Configurazioni Eliminando righe e colonne dello schema ciclico Rimuovendo 1 fattori dai grafi di Levi Applicando estensioni alla Martinetti

35 Definizione Estensioni alla Martinetti Sia H = {(p i, l i ) : p i l i for i = 1,..., k 1} un hyperpencil in una configurazione K di tipo (n) k. p 1 p 2 P k 1 l 1 l 2 l k 1

36 Definizione Estensioni alla Martinetti Sia H = {(p i, l i ) : p i l i for i = 1,..., k 1} un hyperpencil in una configurazione K di tipo (n) k. L estensione di Martinetti K H di K si ottiene da K come segue si eliminano le incidenze p i l i, per i = 1,..., k 1, l 1 l 2 l k 1 p 1 p 2 p k 1

37 Definizione Estensioni alla Martinetti Sia H = {(p i, l i ) : p i l i for i = 1,..., k 1} un hyperpencil in una configurazione K di tipo (n) k. L estensione di Martinetti K H di K si ottiene da K come segue si eliminano le incidenze p i l i, per i = 1,..., k 1, si aggiunge la bandiera (p H, l H ), si aggiungono le incidenze p i l H e p H l i per i = 1,..., k 1. l 1 l 2 l k 1 p 1 p 2 p k 1 p H l H

38 Spettro delle Configurazioni incluse le nostre costruzioni d k

UNIVERSITÀ DEGLI STUDI DI ROMA LA SAPIENZA. 2-fattori di grafi regolari

UNIVERSITÀ DEGLI STUDI DI ROMA LA SAPIENZA. 2-fattori di grafi regolari UNIVERSITÀ DEGLI STUDI DI ROMA LA SAPIENZA 2-fattori di grafi regolari Domenico Labbate Quaderni Elettronici del Seminario di Geometria Combinatoria 26E (Maggio 2011) http://www.mat.uniroma1.it/~combinat/quaderni

Dettagli

Introduzione ai grafi. Introduzione ai grafi p. 1/2

Introduzione ai grafi. Introduzione ai grafi p. 1/2 Introduzione ai grafi Introduzione ai grafi p. 1/2 Grafi Un grafo G è costituito da una coppia di insiemi (V,A) dove V è detto insieme dei nodi e A è detto insieme di archi ed è un sottinsieme di tutte

Dettagli

Matematica per Chimica, Chimica Industriale e Scienze dei Materiali Primo appello 7/02/2012 Tema A

Matematica per Chimica, Chimica Industriale e Scienze dei Materiali Primo appello 7/02/2012 Tema A Matematica per Chimica, Chimica Industriale e Scienze dei Materiali Primo appello 7/02/202 Tema A NOME:..................................................... COGNOME:.....................................................

Dettagli

Introduzione ai grafi. Introduzione ai grafi p. 1/2

Introduzione ai grafi. Introduzione ai grafi p. 1/2 Introduzione ai grafi Introduzione ai grafi p. 1/2 Grafi Un grafo G é costituito da una coppia di insiemi (V,A) dove V é detto insieme dei nodi e A é detto insieme di archi ed é un sottinsieme di tutte

Dettagli

APPUNTI DI ALGEBRA LINEARE

APPUNTI DI ALGEBRA LINEARE APPUNTI DI ALGEBRA LINEARE. Definizione Si dice spazio vettoriale (sul campo dei numeri reali R) un insieme V per il quale siano definite l operazione interna di somma (che ad ogni coppia di vettori e

Dettagli

Geometria BAER I canale Foglio esercizi 2

Geometria BAER I canale Foglio esercizi 2 Geometria BAER I canale Foglio esercizi 2 Esercizio 1. Calcolare il determinante e l inversa (quando esiste) della matrice ( ) cos θ sin θ R θ =, θ [0, 2π] sin θ cos θ Soluzione: Il determinante ( é cos

Dettagli

Rango di una matrice e teorema di Rouché-Capelli

Rango di una matrice e teorema di Rouché-Capelli Rango di una matrice e teorema di Rouché-Capelli Sappiamo che a una matrice m n, A, è associata l applicazione lineare L A : R n R m, L A (X) = AX, X R n. Definizione 1. Lo spazio nullo di A, N (A), è

Dettagli

GRAFI. fig.1 - GRAFI (1) Si avvisa il lettore che certe definizioni che verranno date differiscono da quelle presenti in letteratura.

GRAFI. fig.1 - GRAFI (1) Si avvisa il lettore che certe definizioni che verranno date differiscono da quelle presenti in letteratura. GRAFI 1. Definizioni, terminologia, esempi e applicazioni (1) Un grafo orientato (o diretto o di-grafo) G è una coppia (V,E) dove V è un insieme non vuoto ed E una relazione binaria su V, E V V, ossia

Dettagli

min det det Allora è unimodulare se e solo se det 1, 1, 0 per ogni sottomatrice quadrata di di qualsiasi dimensione.

min det det Allora è unimodulare se e solo se det 1, 1, 0 per ogni sottomatrice quadrata di di qualsiasi dimensione. Se è unimodulare e è intero allora il poliedro 0 ha vertici interi. Sia un vertice di Per definizione esiste allora una base di tale che, 0 Poiché è non singolare ( invertibile det 0) si ha che det 1 è

Dettagli

25 - Funzioni di più Variabili Introduzione

25 - Funzioni di più Variabili Introduzione Università degli Studi di Palermo Facoltà di Economia CdS Statistica per l Analisi dei Dati Appunti del corso di Matematica 25 - Funzioni di più Variabili Introduzione Anno Accademico 2013/2014 M. Tumminello

Dettagli

Tecniche di conteggio

Tecniche di conteggio Tecniche di conteggio 9 Ottobre 2003 Principio della somma Il numero di elementi dell unione di una famiglia di insiemi disgiunti è la somma del numero di elementi contenuti in ogni singolo insieme F =

Dettagli

APPLICAZIONI. Im f = {b B a A tale che f (a) = b}.

APPLICAZIONI. Im f = {b B a A tale che f (a) = b}. APPLICAZIONI Diremo applicazione (o funzione) da un insieme A ad un insieme B una legge f che associa ad ogni elemento a A uno ed un solo elemento b B. Scriviamo f : A B e il corrispondente o immagine

Dettagli

Geometria e Topologia I (U1-4) 2006-mag-10 61

Geometria e Topologia I (U1-4) 2006-mag-10 61 Geometria e Topologia I (U1-4) 2006-mag-10 61 (15.9) Teorema. Consideriamo il piano affine. Se A A 2 (K) è un punto e r una retta che non passa per A, allora esiste unica la retta per A che non interseca

Dettagli

Formulazioni. Consideriamo il seguente problema di Knapsack 0-1. max (5x x 2. ) st 3x x 2. < 6 x {0,1} 2

Formulazioni. Consideriamo il seguente problema di Knapsack 0-1. max (5x x 2. ) st 3x x 2. < 6 x {0,1} 2 Formulazioni Consideriamo il seguente problema di Knapsack 0-1 max (5x 1 + 2x 2 ) st 3x 1 + 4x 2 < 6 x {0,1} 2 Insiemi ammissibili F = {(0, 0), (0, 1), (1, 0)} Rappresentiamo sul piano gli insiemi ammissibili.

Dettagli

Determinante. Elisabetta Colombo. Determinante. Corso di Approfondimenti di Matematica per Biotecnologie, Anno Accademico ,

Determinante. Elisabetta Colombo. Determinante. Corso di Approfondimenti di Matematica per Biotecnologie, Anno Accademico , Corso di Approfondimenti di Matematica per Biotecnologie, Anno Accademico 2011-2012, 1 n=2 2 3 con le 4 n=2 n=2 con le Ad ogni matrice quadrata A = (a ij ) j=1...n i=1...n di ordine n si può associare

Dettagli

Introduzione ai grafi

Introduzione ai grafi TFA A048 Anno Accademico 2012-13 Outline Cenni storici sui grafi Nozioni introduttive: cammini, connessione, alberi, cicli Cammini di costo minimo Origini storiche La nascita della teoria dei grafi risale

Dettagli

Topologia dei circuiti

Topologia dei circuiti Università degli Studi di Pavia Facoltà di Ingegneria Corso di Corso di Teoria dei Circuiti Teoria dei circuiti Topologia dei circuiti Studio della struttura di un circuito dal punto di vista delle connessioni

Dettagli

Catene di Markov. 8 ottobre 2009

Catene di Markov. 8 ottobre 2009 Catene di Markov 8 ottobre 2009 Definizione 1. Si dice catena di Markov (finita) un sistema dotato di un numero finito n di stati {1, 2,..., n} che soddisfi la seguente ipotesi: la probabilità che il sistema

Dettagli

Sistemi di equazioni lineari

Sistemi di equazioni lineari Sistemi di equazioni lineari Siano X 1,, X n indeterminate Un equazione lineare (o di primo grado) nelle incognite X 1,, X n a coefficienti nel campo K è della forma a 1 X 1 + + a n X n = b, a i, b K,

Dettagli

Definizione 1.3 (Arco accoppiato) Un arco è accoppiato se è appartenente al matching M.

Definizione 1.3 (Arco accoppiato) Un arco è accoppiato se è appartenente al matching M. Matching. Definizioni Definizione. (Matching di un grafo G = (N, A)) Il matching di un grafo è un sottoinsieme M di archi tali per cui nessuna coppia di essi condivida lo stesso nodo. Definizione.2 (Matching

Dettagli

Parte IV: Matrici totalmente unimodulari

Parte IV: Matrici totalmente unimodulari Parte IV: Matrici totalmente unimodulari Formulazioni Consideriamo il seguente problema di Knapsack 0-1 max (5x 1 + 2x 2 ) st 3x 1 + 4x 2 < 6 x {0,1} 2 Insiemi ammissibili F = {(0, 0), (0, 1), (1, 0)}

Dettagli

GEOMETRIA 1 prima parte

GEOMETRIA 1 prima parte GEOMETRIA 1 prima parte Cristina Turrini C. di L. in Fisica - 2014/2015 Cristina Turrini (C. di L. in Fisica - 2014/2015) GEOMETRIA 1 1 / 44 index Relazioni in un insieme 1 Relazioni in un insieme 2 Gruppi,

Dettagli

Appunti del corso di Informatica 1 (IN110 Fondamenti) 7 Grafi e alberi: introduzione

Appunti del corso di Informatica 1 (IN110 Fondamenti) 7 Grafi e alberi: introduzione Università di Roma Tre Dipartimento di Matematica e Fisica Corso di Laurea in Matematica Appunti del corso di Informatica (IN0 Fondamenti) Grafi e alberi: introduzione Marco Liverani (liverani@mat.uniroma.it)

Dettagli

Problema 1.5. Mostra che una retta immaginaria r nello spazio contiene al più un punto reale.

Problema 1.5. Mostra che una retta immaginaria r nello spazio contiene al più un punto reale. 1 Complessificazione Problema 1.5. Mostra che una retta immaginaria r nello spazio contiene al più un punto reale. Soluzione. Se r è di prima specie, allora r è complanare con la sua coniugata: se, in

Dettagli

Matrici delle differenze finite

Matrici delle differenze finite Capitolo 8 Matrici delle differenze finite Si riportano in questo capitolo alcuni risultati e proprietà delle matrici delle differenze finite ovvero delle matrici che intervengono nel metodo delle differenze

Dettagli

Sviluppando ancora per colonna sulla prima colonna della prima matrice e sulla seconda della seconda matrice si ottiene:

Sviluppando ancora per colonna sulla prima colonna della prima matrice e sulla seconda della seconda matrice si ottiene: M. CARAMIA, S. GIORDANI, F. GUERRIERO, R. MUSMANNO, D. PACCIARELLI RICERCA OPERATIVA Isedi Esercizi proposti nel Cap. 5 - Soluzioni Esercizio 5. - La norma Euclidea di è 9 6 5 - Il versore corrispondente

Dettagli

Algebra lineare Geometria 1 11 luglio 2008

Algebra lineare Geometria 1 11 luglio 2008 Algebra lineare Geometria 1 11 luglio 2008 Esercizio 1. Si considerino la funzione: { R f : 3 R 3 (α, β, γ) ( 2β α γ, (k 1)β + (1 k)γ α, 3β + (k 2)γ ) dove k è un parametro reale, e il sottospazio U =

Dettagli

Rette e piani nello spazio Federico Lastaria, Analisi e Geometria 1. Politecnico di Milano Corso di Analisi e Geometria 1

Rette e piani nello spazio Federico Lastaria, Analisi e Geometria 1. Politecnico di Milano Corso di Analisi e Geometria 1 ette e piani nello spazio Federico Lastaria, Analisi e Geometria 1 Politecnico di Milano Corso di Analisi e Geometria 1 Federico Lastaria federico.lastaria@polimi.it ette e piani nello spazio. 9 Gennaio

Dettagli

EQUAZIONE DELLA RETTA

EQUAZIONE DELLA RETTA EQUAZIONE DELLA RETTA EQUAZIONE DEGLI ASSI L equazione dell asse x è 0. L equazione dell asse y è 0. EQUAZIONE DELLE RETTE PARALLELE AGLI ASSI L equazione di una retta r parallela all asse x è cioè è uguale

Dettagli

Matematica D (in teledidattica) Docenti: Alberto Tonolo, e nelle sedi locali Susi Osti, Katia Rossi, Stefano Antoniazzi.

Matematica D (in teledidattica) Docenti: Alberto Tonolo, e nelle sedi locali Susi Osti, Katia Rossi, Stefano Antoniazzi. Matematica D (in teledidattica) Docenti: Alberto Tonolo, e nelle sedi locali Susi Osti, Katia Rossi, Stefano Antoniazzi. Testi di riferimento: Ross: A First Course in Probability, Prentice Hall, euro 49,95

Dettagli

Che cos è un insieme? Come si individua un insieme? 1. Scrivendone esplicitamente gli elementi: C = {2, 4, 6, 8, 10,...}.

Che cos è un insieme? Come si individua un insieme? 1. Scrivendone esplicitamente gli elementi: C = {2, 4, 6, 8, 10,...}. Teoria degli insiemi Che cos è un insieme? Come si individua un insieme? 1. Scrivendone esplicitamente gli elementi: A = {a, b, c} B = {1, 2} C = {2, 4, 6, 8, 10,...}. 2. Enunciando una proprietà che è

Dettagli

Trapani. Dispensa di Geometria,

Trapani. Dispensa di Geometria, 2014 Trapani Dispensa di Geometria, 1 Gauss Lagrange Diciamo che la matrice simmetrica reale A e congruente alla matrice B mediante la matrice invertibile N se N t AN = B. Diciamo che A e diagonalizzabile

Dettagli

1 Rette e piani in R 3

1 Rette e piani in R 3 POLITECNICO DI MILANO. FACOLTÀ DI INGEGNERIA INDUSTRIALE. Analisi e Geometria 1. Sez. D - G. Docenti: Federico G. Lastaria, Mauro Saita, Nadir Zanchetta,. 1 1 Rette e piani in R 3 Una retta parametrizzata

Dettagli

Classificazione delle coniche.

Classificazione delle coniche. Classificazione delle coniche Ora si vogliono studiare i luoghi geometrici rappresentati da equazioni di secondo grado In generale, non è facile riconoscere a prima vista di che cosa si tratta, soprattutto

Dettagli

DIARIO DELLE LEZIONI DI MATEMATICA DISCRETA A.A

DIARIO DELLE LEZIONI DI MATEMATICA DISCRETA A.A DIARIO DELLE LEZIONI DI MATEMATICA DISCRETA A.A. 2018-19 Mercoledì 27 Febbraio Presentazione del Corso. Introduzione alla Teoria dei grafi: grafo (semplice), vertici, archi (o lati), vertici adiacenti,

Dettagli

3) Quali delle seguenti applicazioni sono prodotti scalari? B) f : R R. D) f : R R R

3) Quali delle seguenti applicazioni sono prodotti scalari? B) f : R R. D) f : R R R 1) In uno spazio euclideo E 3 di dimensione 3 siano A un punto, r una retta e Π un piano non ortogonale ad r.allora A) esiste ed e unica la retta s passante per A, parallela ad r e ortogonale a Π. B) esiste

Dettagli

Esercizi di geometria per Fisica / Fisica e Astrofisica

Esercizi di geometria per Fisica / Fisica e Astrofisica Esercizi di geometria per Fisica / Fisica e strofisica Foglio 5 - Soluzioni Esercizio 1. Nello spazio R 3, si considerino i punti (1,0,0), (1,0,2), (0, 1,0), D (2, 1,2), E (2,1, 0), F (0, 1,2), G (3,2,0),

Dettagli

DIARIO DELLE LEZIONI DI MATEMATICA DISCRETA A.A

DIARIO DELLE LEZIONI DI MATEMATICA DISCRETA A.A DIARIO DELLE LEZIONI DI MATEMATICA DISCRETA A.A. 2017-18 Giovedì 22 Febbraio Presentazione del Corso. Introduzione alla Teoria dei grafi: grafo (semplice), vertici, archi (o lati), vertici adiacenti, estremi

Dettagli

Geometria analitica: rette e piani

Geometria analitica: rette e piani Geometria analitica: rette e piani parametriche Allineamento nel piano nello spazio Angoli tra rette e distanza 2 2006 Politecnico di Torino 1 Esempio 2 Sia A = (1, 2). Per l interpretazione geometrica

Dettagli

Esempio. L immagine di f è l insieme dei vettori w = (w 1, w 2 ) R 2 che hanno w 1 = w 2. Quindi:

Esempio. L immagine di f è l insieme dei vettori w = (w 1, w 2 ) R 2 che hanno w 1 = w 2. Quindi: Nucleo, immagine e loro proprietà [Abate, 5.2] Data una applicazione lineare f : V W, chiamiamo nucleo di f l insieme N(f) := { v V : f(v) = 0 W } Se S V è un sottoinsieme del dominio, indichiamo con f(s)

Dettagli

Metodi e Modelli per l Ottimizzazione Combinatoria Problema dell assegnamento e matrici totalmente unimodulari

Metodi e Modelli per l Ottimizzazione Combinatoria Problema dell assegnamento e matrici totalmente unimodulari Metodi e Modelli per l Ottimizzazione Combinatoria Problema dell assegnamento e matrici totalmente unimodulari L. De Giovanni G. Zambelli 1 Problema dell assegnamento Sia dato un grafo non orientato bipartito

Dettagli

Alcuni Preliminari. Prodotto Cartesiano

Alcuni Preliminari. Prodotto Cartesiano Prodotto Cartesiano Dati due insiemi A e B, si definisce il loro prodotto cartesiano A x B come l insieme di tutte le coppie ordinate (a,b) con a A e b B. Es: dati A= {a,b,c} e B={1,2,3} A x B = {(a,1),(b,1),(c,1),(a,2),(b,2),(c,2),(a,3),(b,3),(c,3)

Dettagli

Argomenti del corso. Concetti primitivi. - Enti geometrici fondamentali nello spazio - Posizioni reciproche relazioni di incidenza.

Argomenti del corso. Concetti primitivi. - Enti geometrici fondamentali nello spazio - Posizioni reciproche relazioni di incidenza. Argomenti del corso - Enti geometrici fondamentali nello spazio - Posizioni reciproche relazioni di incidenza (.perpendicolarità/ parallelismo) - Diedri e angoloidi - Poliedri - Figure rotonde - Misure

Dettagli

DIARIO DEL CORSO DI MATHEMATICS FOR DATA SCIENCE TRENTO, A.A. 2018/19 DOCENTI: ANDREA CARANTI, SIMONE UGOLINI

DIARIO DEL CORSO DI MATHEMATICS FOR DATA SCIENCE TRENTO, A.A. 2018/19 DOCENTI: ANDREA CARANTI, SIMONE UGOLINI DIARIO DEL CORSO DI MATHEMATICS FOR DATA SCIENCE TRENTO, A.A. 2018/19 DOCENTI: ANDREA CARANTI, SIMONE UGOLINI Nota. La descrizione di lezioni non ancora svolte si deve intendere come una previsione/pianificazione.

Dettagli

Quasifibrazione e flock parziali di un cono infinito

Quasifibrazione e flock parziali di un cono infinito CAPITOLO 22 Quasifibrazione e flock parziali di un cono infinito De Clerck e Van Maldeghem [27] hanno studiato i flock infiniti di un cono quadratico, i piani di traslazione corrispondenti e la possibilità

Dettagli

Esercizi di Matematica Discreta - Parte I

Esercizi di Matematica Discreta - Parte I Esercizi di Matematica Discreta - Parte I 7 ottobre 0 AVVISO: Sia i testi che gli svolgimenti proposti possono contenere errori e/o ripetizioni Essi sono infatti opera di vari collage e, per ovvie questioni

Dettagli

Spazi proiettivi. 16 novembre Completamento proiettivo di uno spazio affine

Spazi proiettivi. 16 novembre Completamento proiettivo di uno spazio affine Spazi proiettivi 16 novembre 2009 1 Completamento proiettivo di uno spazio affine Definizione 1. Una geometria è una coppia ordinata (P, L) di insiemi con: 1. Ogni elemento di L è un sottoinsieme di P;

Dettagli

Università degli Studi di Bergamo Modulo di Geometria e Algebra Lineare (vecchio programma) 2 luglio 2014 Tema A

Università degli Studi di Bergamo Modulo di Geometria e Algebra Lineare (vecchio programma) 2 luglio 2014 Tema A Università degli Studi di Bergamo Modulo di Geometria e Algebra Lineare (vecchio programma) 2 luglio 24 Tema A Tempo a disposizione: 2 ore. Calcolatrici, libri e appunti non sono ammessi. Ogni esercizio

Dettagli

Esame di Matematica 3 (laurea in Matematica) prova scritta del 3 luglio 2008 Compito A

Esame di Matematica 3 (laurea in Matematica) prova scritta del 3 luglio 2008 Compito A Esame di Matematica 3 (laurea in Matematica prova scritta del 3 luglio 28 Compito A ESERCIZIO. Si consideri la proiettività, f : P 3 (R P 3 (R, di matrice 3 3 A = 2 3 3 nel riferimento canonico {e,...,

Dettagli

Il piano proiettivo appunti del corso di Geometria 1, prof. Cristina Turrini. anno acc. 2008/2009

Il piano proiettivo appunti del corso di Geometria 1, prof. Cristina Turrini. anno acc. 2008/2009 appunti del corso di Geometria 1, prof. anno acc. 2008/2009 Alcune "asimmetrie" del piano affine Nel piano affine A 2, si hanno le seguenti proprietà di incidenza. 1 P, Q A 2, con P e Q, punti distinti

Dettagli

ESERCIZI DI GEOMETRIA E ALGEBRA LINEARE (II PARTE) In ogni sezione gli esercizi sono tendenzialmente ordinati per difficoltà crescente.

ESERCIZI DI GEOMETRIA E ALGEBRA LINEARE (II PARTE) In ogni sezione gli esercizi sono tendenzialmente ordinati per difficoltà crescente. ESERCIZI DI GEOMETRIA E ALGEBRA LINEARE (II PARTE) versione: 24 maggio 27 In ogni sezione gli esercizi sono tendenzialmente ordinati per difficoltà crescente Autovettori e autovalori Esercizio Trova gli

Dettagli

15 luglio Soluzione esame di geometria - Ing. gestionale - a.a COGNOME... NOME... N. MATRICOLA... ISTRUZIONI

15 luglio Soluzione esame di geometria - Ing. gestionale - a.a COGNOME... NOME... N. MATRICOLA... ISTRUZIONI 15 luglio 01 - Soluzione esame di geometria - Ing. gestionale - a.a. 01-01 COGNOME.......................... NOME.......................... N. MATRICOLA............. La prova dura ore. ISTRUZIONI Ti sono

Dettagli

Corso di Laurea in Scienza dei Materiali PROVA SCRITTA DI GEOMETRIA DEL 27/09/2016 SOLUZIONE DEGLI ESERCIZI PROPOSTI

Corso di Laurea in Scienza dei Materiali PROVA SCRITTA DI GEOMETRIA DEL 27/09/2016 SOLUZIONE DEGLI ESERCIZI PROPOSTI Corso di Laurea in Scienza dei Materiali PROVA SCRITTA DI GEOMETRIA DEL 7/9/6 SOLUZIONE DEGLI ESERCIZI PROPOSTI Esercizio. Si consideri la quadrica affine C d equazione cartesiana xy + yz z + 4x =. ()

Dettagli

Elementi di Algebra Lineare Il determinante

Elementi di Algebra Lineare Il determinante Elementi di Algebra Lineare Cristina Turrini UNIMI - 2015/2016 Cristina Turrini (UNIMI - 2015/2016) Elementi di Algebra Lineare 1 / 17 index 1 2 Sottomatrici e minori Cristina Turrini (UNIMI - 2015/2016)

Dettagli

Ricordiamo brevemente come possono essere rappresentate le rette nel piano: 1) mediante un'equazione cartesiana. = ( p 1

Ricordiamo brevemente come possono essere rappresentate le rette nel piano: 1) mediante un'equazione cartesiana. = ( p 1 Introduzione Nella computer grafica, gli oggetti geometrici sono definiti a partire da un certo numero di elementi di base chiamati primitive grafiche Possono essere punti, rette e segmenti, curve, superfici

Dettagli

Lo scopo della teoria dei determinanti è di definire una funzione. det : M n R. sia calcolabile facendo somme e prodotti delle entrate delle matrici

Lo scopo della teoria dei determinanti è di definire una funzione. det : M n R. sia calcolabile facendo somme e prodotti delle entrate delle matrici Determinanti 1 / 44 Lo scopo della teoria dei determinanti è di definire una funzione det : M n R chiamata determinante tale che: sia calcolabile facendo somme e prodotti delle entrate delle matrici det(a)

Dettagli

Soluzioni dello scritto di Geometria del 28 Maggio 2009

Soluzioni dello scritto di Geometria del 28 Maggio 2009 Soluzioni dello scritto di Geometria del 8 Maggio 9 1) Trovare le equazioni del sottospazio V(w, x, y, z) R 4 generato dalle quaterne c 1 = (,,, 1) e c = (, 1, 1, ). ) Trovare una base per OGNI autospazio

Dettagli

Risoluzione di sistemi lineari

Risoluzione di sistemi lineari Risoluzione di sistemi lineari Teorema (Rouché-Capelli) Dato il sistema di m equazioni in n incognite Ax = b, con A M at(m, n) b R n x R n [A b] si ha che: matrice dei coefficienti, vettore dei termini

Dettagli

Matrici unimodulari e totalmente unimodulari

Matrici unimodulari e totalmente unimodulari Matrici unimodulari e totalmente unimodulari Sia una matrice intera di dimensione con, si dice unimodulare se presa una qualsiasi sottomatrice di ordine massimo (di dimensione ) vale det = 1, +1, 0. Una

Dettagli

Proposizione 2 Il polinomio minimo di t corrisponde all annullatore minimale di M V.

Proposizione 2 Il polinomio minimo di t corrisponde all annullatore minimale di M V. Fogli NON riletti. Grazie per ogni segnalazione di errori. L esempio qui sviluppato vuole mostrare in concreto il significato dei risultati trattati a lezione e qui velocemente riassunti. Si assume che

Dettagli

24 giugno Soluzione esame di geometria - 12 crediti Ingegneria gestionale - a.a COGNOME... NOME... N. MATRICOLA...

24 giugno Soluzione esame di geometria - 12 crediti Ingegneria gestionale - a.a COGNOME... NOME... N. MATRICOLA... 4 giugno 010 - Soluzione esame di geometria - 1 crediti Ingegneria gestionale - a.a. 009-010 COGNOME.......................... NOME.......................... N. MATRICOLA............. La prova dura ore.

Dettagli

03 - Le funzioni reali di variabile reale

03 - Le funzioni reali di variabile reale Università degli Studi di Palermo Facoltà di Economia CdS Sviluppo Economico e Cooperazione Internazionale ppunti del corso di Matematica 03 - Le funzioni reali di variabile reale nno ccademico 2013/2014

Dettagli

GE110 - Geometria 1. Prova in Itinere 2 27 Maggio 2010

GE110 - Geometria 1. Prova in Itinere 2 27 Maggio 2010 GE110 - Geometria 1 Prova in Itinere 2 27 Maggio 2010 COGNOME e NOME : Problema 1: Problema 2: Problema 3: 1 2 Problema 1. Nello spazio affine reale A 5 R si fissi il riferimento affine canonico, e siano

Dettagli

Mauro Saita Gennaio Equazioni cartesiane di rette e equazioni parametriche di piani Esempi...

Mauro Saita   Gennaio Equazioni cartesiane di rette e equazioni parametriche di piani Esempi... ette e piani in ette e piani in. Esercizi e-mail: maurosaita@tiscalinet.it Gennaio 2016. Indice 1 Equazioni parametriche della retta 2 1.1 Esempi........................................ 2 2 Equazione cartesiana

Dettagli

Elementi di Algebra Lineare Applicazioni lineari

Elementi di Algebra Lineare Applicazioni lineari Elementi di Algebra Lineare Applicazioni lineari Cristina Turrini UNIMI - 2016/2017 Cristina Turrini (UNIMI - 2016/2017) Elementi di Algebra Lineare 1 / 50 index Applicazioni lineari 1 Applicazioni lineari

Dettagli

LAUREA IN INGEGNERIA CIVILE Corso di Matematica 2 II a prova di accertamento Padova Docenti: Chiarellotto - Cantarini TEMA n.

LAUREA IN INGEGNERIA CIVILE Corso di Matematica 2 II a prova di accertamento Padova Docenti: Chiarellotto - Cantarini TEMA n. LAUREA IN INGEGNERIA CIVILE Corso di Matematica II a prova di accertamento Padova 10-1-07 Docenti: Chiarellotto - Cantarini TEMA n.1 PARTE 1. Quesiti preliminari Stabilire se le seguenti affermazioni sono

Dettagli

Esercizî di Geometria

Esercizî di Geometria Esercizî di Geometria (Carlo Petronio Foglio del 27/4/2015 Esercizio 1 Determinare l espressione dell isometria di R 2 descritta: (a La riflessione σ rispetto alla retta l di equazione 3x 2 = 5; ( 3 (b

Dettagli

MATEMATICA DEL DISCRETO (Informatica) Docenti BONZINI e TURRINI esercizi di preparazione alla prova di metà corso

MATEMATICA DEL DISCRETO (Informatica) Docenti BONZINI e TURRINI esercizi di preparazione alla prova di metà corso MATEMATICA DEL DISCRETO (Informatica) Docenti BONZINI e TURRINI esercizi di preparazione alla prova di metà corso NOTA - Negli esercizi che seguono verranno adottate le seguenti notazioni: il simbolo Z

Dettagli

Lezione 17 Maggio 23

Lezione 17 Maggio 23 PSC: Progettazione di sistemi di controllo III rim. 2007 Lezione 17 Maggio 23 Docente: Luca Schenato Stesori: Comin, Dal Bianco, Fabris, Parmeggiani 17.1 Consensus 17.1.1 Nozioni preliminari L idea dell

Dettagli

Soluzioni della settima esercitazione di Algoritmi 1

Soluzioni della settima esercitazione di Algoritmi 1 Soluzioni della settima esercitazione di Algoritmi 1 Beniamino Accattoli 19 dicembre 2007 1 Grafi Un grafo è non orientato se descrivendo un arco come una coppia di vertici (i,j) l ordine è ininfluente

Dettagli

Corso di Laurea in Matematica per l Informatica e la Comunicazione Scientifica

Corso di Laurea in Matematica per l Informatica e la Comunicazione Scientifica Corso di Laurea in Matematica per l Informatica e la Comunicazione Scientifica Soluzione del compito di Matematica Discreta 1 del 7 novembre 003 1. Sia S un sottoinsieme di V = Z 9 e si consideri la famiglia

Dettagli

I COMPITI DELLA GEOMETRIA DESCRITTIVA DELINEATI DAL MATEMATICO GASPARD MONGE ( ) SONO:

I COMPITI DELLA GEOMETRIA DESCRITTIVA DELINEATI DAL MATEMATICO GASPARD MONGE ( ) SONO: I COMPITI DELLA GEOMETRIA DESCRITTIVA DELINEATI DAL MATEMATICO GASPARD MONGE (1746-1818) SONO: FORNIRE I METODI PER RAPPRESENTARE SU UN FOGLIO DA DISEGNO CHE HA DUE DIMENSIONI TUTTI I CORPI DELLA NATURA

Dettagli

= (cioè le due terne di numeri direttori ( devono essere ) proporzionali). Tale uguaglianza non è verificata, poiché risulta ρ

= (cioè le due terne di numeri direttori ( devono essere ) proporzionali). Tale uguaglianza non è verificata, poiché risulta ρ Alcuni esercizi sullo spazio euclideo R Nel seguito R indicherà lo spazio euclideo tridimensionale standard, dotato del riferimento cartesiano naturale (pag 56-57 del libro Nota: gli esercizi proposti

Dettagli

Esame di Matematica 3 (laurea in Matematica) prova scritta del 18 giugno 2008 Compito A

Esame di Matematica 3 (laurea in Matematica) prova scritta del 18 giugno 2008 Compito A Esame di Matematica 3 (laurea in Matematica prova scritta del 8 giugno 28 Compito A ESERCIZIO. Si consideri la proiettività, f : P 3 (R P 3 (R, di matrice 6 4 2 2 A = 4 2 2 2 nel riferimento canonico {e,...,

Dettagli

1 Ampliamento del piano e coordinate omogenee

1 Ampliamento del piano e coordinate omogenee 1 Ampliamento del piano e coordinate omogenee Vogliamo dare una idea, senza molte pretese, dei concetti che stanno alla base di alcuni calcoli svolti nella classificazione delle coniche. Supponiamo di

Dettagli

Daniela Lera A.A

Daniela Lera A.A Daniela Lera Università degli Studi di Cagliari Dipartimento di Matematica e Informatica A.A. 2016-2017 Richiami Algebra Lineare Spazio normato Uno spazio lineare X si dice normato se esiste una funzione

Dettagli

Sistemi lineari - Parte Seconda - Esercizi

Sistemi lineari - Parte Seconda - Esercizi Sistemi lineari - Parte Seconda - Esercizi Terminologia Operazioni elementari sulle righe. Equivalenza per righe. Riduzione a scala per righe. Rango di una matrice. Forma canonica per righe. Eliminazione

Dettagli

Facsimile di prova d esame Esempio di svolgimento

Facsimile di prova d esame Esempio di svolgimento Geometria analitica 18 marzo 009 Facsimile di prova d esame Esempio di svolgimento 1 Nello spazio, riferito a coordinate cartesiane ortogonali e monometriche x,y,z, è assegnata la retta r di equazioni

Dettagli

I2. Relazioni e funzioni

I2. Relazioni e funzioni I2. Relazioni e funzioni I2. Relazioni Una relazione è un sottoinsieme del prodotto cartesiano. Esempio I2. Dati gli insiemi ={ldo, runo, Carlo} e ={nna, arbara} si consideri la relazione, espressa in

Dettagli

Rette e piani nello spazio

Rette e piani nello spazio Rette e piani nello spazio Equazioni parametriche di una retta in R 3 : x(t) = x 0 + at r(t) : y(t) = y 0 + bt t R, parametro z(t) = z 0 + ct ovvero r(t) : X(t) = P 0 + vt, t R}, dove: P 0 = (x 0, y 0,

Dettagli

DIARIO DELLE LEZIONI DI MATEMATICA DISCRETA A.A

DIARIO DELLE LEZIONI DI MATEMATICA DISCRETA A.A DIARIO DELLE LEZIONI DI MATEMATICA DISCRETA A.A. 2016-17 Giovedì 2 Marzo Presentazione del Corso. Introduzione alla Teoria dei grafi: grafo (semplice), vertici, archi o lati, vertici adiacenti, estremi

Dettagli

Prova scritta di Geometria 1 Docente: Giovanni Cerulli Irelli 15 Febbraio 2017

Prova scritta di Geometria 1 Docente: Giovanni Cerulli Irelli 15 Febbraio 2017 Prova scritta di Geometria Docente: Giovanni Cerulli Irelli 5 Febbraio 7 Esercizio. Si considerino i due sottospazi π e π di R dati dalle seguenti equazioni: π : x y + z = ; π : x + y z =.. Trovare una

Dettagli

UNIVERSITÀ DEGLI STUDI DI FIRENZE. Registro dell'insegnamento

UNIVERSITÀ DEGLI STUDI DI FIRENZE. Registro dell'insegnamento UNIVERSITÀ DEGLI STUDI DI FIRENZE Registro dell'insegnamento Anno accademico 2010/2011 Prof. PRATO ELISA Settore inquadramento GEOMETRIA REGISTRO Facoltà FACOLTA' DI ARCHITETTURA NON VALIDATO Insegnamento

Dettagli

FONDAMENTI DI GEOMETRIA

FONDAMENTI DI GEOMETRIA 1 FONDAMENTI DI GEOMETRIA (Fundamental geometrical concepts) La geometria [ghè (terra) metron (misura)] è una parte della matematica che studia lo spazio, la forma, l estensione, la trasformazione delle

Dettagli

ALBERI E GRAFI PIANI

ALBERI E GRAFI PIANI Marco Barlotti Appunti integrativi su ALBERI E GRAFI PIANI per l insegnamento di TEORIA DEI GRAFI E APPLICAZIONI per il corso di laurea triennale in Matematica Vers. 0.1 Anno Accademico 2004-2005 AVVERTENZA

Dettagli

Corso di Geometria Meccanica, Elettrotecnica Esercizi 11: soluzioni

Corso di Geometria Meccanica, Elettrotecnica Esercizi 11: soluzioni Corso di Geometria 0- Meccanica Elettrotecnica Esercizi : soluzioni Esercizio Scrivere la matrice canonica di ciascuna delle seguenti trasformazioni lineari del piano: a) Rotazione di angolo π b) Rotazione

Dettagli

Autovalori e autovettori, matrici simmetriche e forme quadratiche (cenni) (prof. M. Salvetti)

Autovalori e autovettori, matrici simmetriche e forme quadratiche (cenni) (prof. M. Salvetti) Autovalori e autovettori, matrici simmetriche e forme quadratiche (cenni) (prof. M. Salvetti) April 14, 2011 (alcune note non complete sugli argomenti trattati: eventuali completamenti saranno aggiunti)

Dettagli

Testi di esercizi di preparazione alla I prova in itinere Gli esercizi in elenco sono in gran parte tratti da vecchie prove d esame

Testi di esercizi di preparazione alla I prova in itinere Gli esercizi in elenco sono in gran parte tratti da vecchie prove d esame Testi di esercii di preparaione alla I prova in itinere Gli esercii in elenco sono in gran parte tratti da veccie prove d esame Eserciio Al variare di k discutere e ove possibile risolvere il sistema lineare

Dettagli

12 gennaio Soluzione esame di geometria - Ing. gestionale - a.a COGNOME... NOME... N. MATRICOLA... ISTRUZIONI

12 gennaio Soluzione esame di geometria - Ing. gestionale - a.a COGNOME... NOME... N. MATRICOLA... ISTRUZIONI COGNOME.......................... NOME.......................... N. MATRICOLA............. La prova dura ore. ISTRUZIONI Ti sono stati consegnati tre fogli, stampati fronte e retro. Come prima cosa scrivi

Dettagli

Università degli Studi di Roma Tor Vergata Corso di Laurea in Matematica. Argomenti: spazi vettoriali di vettori geometrici, relazioni

Università degli Studi di Roma Tor Vergata Corso di Laurea in Matematica. Argomenti: spazi vettoriali di vettori geometrici, relazioni Università degli Studi di oma Tor Vergata Corso di Laurea in Matematica Geometria 1 a.a. 016-17 seconda settimana rgomenti: spazi vettoriali di vettori geometrici, relazioni.1) Nel piano euclideo, considera

Dettagli

2 Forma canonica metrica delle ipequadriche

2 Forma canonica metrica delle ipequadriche 26 Trapani Dispensa di Geometria, 1 Iperquadriche Sia A una matrice reale simmetrica n n, non nulla, sia b un vettore colonnna in R n e sia c R. L insieme delle soluzioni in R n dell equazione X t AX +

Dettagli

Questi sono alcuni esercizi indicativi. Vedere anche [Franchetta-Morelli]. CONICHE. 9x 2 2 4( 4x 2 2)

Questi sono alcuni esercizi indicativi. Vedere anche [Franchetta-Morelli]. CONICHE. 9x 2 2 4( 4x 2 2) Questi sono alcuni esercizi indicativi. Vedere anche [Franchetta-Morelli]. CONICHE Esercizio 1 Fissato nell ampliamento proiettivo complesso del piano un sistema di coordinate omogenee, classificare (dal

Dettagli

Operatori antisimmetrici

Operatori antisimmetrici Operatori antisimmetrici F. Pugliese November 9, 2011 Abstract In questa breve nota ricordiamo le principali proprietà degli endomorfismi antisimmetrici di uno spazio vettoriale euclideo. Nel caso di spazi

Dettagli

Sommario lezioni di geometria

Sommario lezioni di geometria Sommario lezioni di geometria C. Franchetti November 12, 2006 1 Geometria analitica nel piano 1.1 Distanza di due punti Siano P 1 = (x 1, y 1 ), P 2 = (x 2, y 2 ) due punti del piano, se d(p 1, P 2 ) indica

Dettagli

ALBERI ORIENTATI. Definizione: Albero orientato = rooted tree = grafo orientato con le seguenti proprietà: - ha un nodo fissato, detto radice (r);

ALBERI ORIENTATI. Definizione: Albero orientato = rooted tree = grafo orientato con le seguenti proprietà: - ha un nodo fissato, detto radice (r); ALBERI ORIENTATI Pagina 1 ALBERI ORIENTATI 15:05 Definizione: Albero orientato = rooted tree = grafo orientato con le seguenti proprietà: - ha un nodo fissato, detto radice (r); - per ogni nodo v, esiste

Dettagli

UNIVERSITÀ DEGLI STUDI ROMA TRE Collegio Didattico in Ingegneria Informatica corso di Ricerca operativa 2. Esercizi sul problema dell assegnamento

UNIVERSITÀ DEGLI STUDI ROMA TRE Collegio Didattico in Ingegneria Informatica corso di Ricerca operativa 2. Esercizi sul problema dell assegnamento UNIVERSITÀ DEGLI STUDI ROMA TRE Collegio Didattico in Ingegneria Informatica corso di Ricerca operativa Esercizi sul problema dell assegnamento Richiami di Teoria Ricordiamo che, dato un grafo G=(N,A),

Dettagli

Corso di Matematica Generale M-Z Dipartimento di Economia Universitá degli Studi di Foggia ALGEBRA LINEARE. Giovanni Villani

Corso di Matematica Generale M-Z Dipartimento di Economia Universitá degli Studi di Foggia ALGEBRA LINEARE. Giovanni Villani Corso di Matematica Generale M-Z Dipartimento di Economia Universitá degli Studi di Foggia ALGEBRA LINEARE Giovanni Villani Matrici Definizione 1 Si definisce matrice di tipo m n una funzione che associa

Dettagli

ESAME DI GEOMETRIA. 6 febbraio 2002 CORREZIONE QUIZ

ESAME DI GEOMETRIA. 6 febbraio 2002 CORREZIONE QUIZ ESAME DI GEOMETRIA 6 febbraio CORREZIONE QUIZ. La parte reale di ( + i) 9 è positiva. QUIZ Si può procedere in due modi. Un primo modo è osservare che ( + i) =i, dunque ( + i) 9 =(+i)(i) 4 = 4 ( + i) :

Dettagli

0 0 c. d 1. det (D) = d 1 d n ;

0 0 c. d 1. det (D) = d 1 d n ; Registro Lezione di Algebra lineare del 23 novembre 216 1 Matrici diagonali 2 Autovettori e autovalori 3 Ricerca degli autovalori, polinomio caratteristico 4 Ricerca degli autovettori, autospazi 5 Matrici

Dettagli