RICERCA OPERATIVA RICERCA OPERATIVA RICERCA OPERATIVA (PROBLEMI

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "RICERCA OPERATIVA RICERCA OPERATIVA RICERCA OPERATIVA (PROBLEMI"

Transcript

1 RICERCA OPERATIVA RICERCA OPERATIVA (PROBLEMI DI SCELTA) Il termine RICERCA OPERATIVA sembra sia stato usato per la prima volta nel 1939, ma già precedentemente alcuni scienziati si erano occupati di problemi decisionali: Esempi importanti di anticipazioni dei metodi della RO sono: Nel 1776 il matematico G. MONGE ha affrontato un problema di trasporti esaminandone con metodi analitici gli aspetti economici. 1 2 RICERCA OPERATIVA Nel 1885 F.W. TAYLOR ha pubblicato uno studio sui metodi di produzione Frederick Winslow Taylor ( ingegnere e imprenditore statunitense, iniziatore della ricerca sui metodi per il miglioramento dell'efficienza nella produzione Nel 1908 A.K. ERLANG ha studiato il problema della congestione del traffico telefonico. RICERCA OPERATIVA Tuttavia il progresso della RO non si sarebbe forse verificato se non fosse stato per i suoi sviluppi nelle organizzazioni militari durante la seconda guerra mondiale. Gran Bretagna: seconda guerra mondiale. Obiettivo: utilizzare tecniche quantitative con lo scopo di sfruttare al meglio le risorse militari (limitate). 3 Team formato da matematici, fisici, ingegneri. 4 1

2 RICERCA OPERATIVA RICERCA OPERATIVA Tra il 1935 e il 1937 il Regno Unito lavorò sul progetto del radar come difesa antiaerea. Era importante che fosse efficiente la localizzazione e la successiva intercettazione e rientro a terra dei velivoli inglesi. Apparve quindi indispensabile anzitutto l'ottimizzazione della distribuzione delle apparecchiature radar sul territorio ed, inoltre, che fosse mandato via radio la segnalazione ad opportune località, nacque così il "Biggin Hill Experiment". In una relazione tecnica conclusiva del progetto il tipo di attività sviluppata venne descritta utilizzando l'espressione "operational research operational research Problema: ottimizzare la manutenzione ed organizzazione degli aerei utilizzati per l'avvistamento e l'attacco di sottomarini tedeschi. Risultati: su un orizzonte temporale di 5 mesi, le tecniche di Ricerca Operativa hanno consentito: un incremento delle ore di volo del 61%, mantenendo lo stesso numero di aerei; di incrementare la probabilità (inizialmente pari al 3%) di colpire i sottomarini fino al 40% (senza alcuna aggiunta di risorse). Fine della guerra: le tecniche della Ricerca Operativa vengono trasferite nei contesti civili (industrie, trasporti, amministrazione pubblica, servizi, ecc.) research". 5 6 DEFINIZIONE DI RICERCA OPERATIVA MORSE E KIMBALL La ricerca operativa è l applicazione del metodo scientifico da parte di gruppi interdisciplinari a sistemi complessi e organizzati per fornire al personale dirigente soluzioni utilizzabili nei processi decisionali. 7 Problema decisionale In un problema decisionale, le scelte non sono del tutto arbitrarie. Bisogna infatti tener conto delle risorse limitate (vincoli del problema). Le possibili scelte vengono valutate in base all'obiettivo o agli obiettivi che i decisori si prefiggono. 8 2

3 ESEMPLIFICAZIONE Campi di applicazione UFFICIO APPROVVIGIONAMENTO teoria dei giochi (problemi di decisione in condizioni competitive) programmazione lineare (pianificazione del problema) programmazione dinamica (pianificazione delle vendite) DECISIONI IN MERITO A: QUANTITA DI MATERIA PRIMA DA ACQUISTARE teoria dei grafi (utilizzata per le reti di comunicazione) programmazione reticolare (gestione progetti) DA QUALE FORNITORE ACQUISTARE QUANDO ACQUISTARE teoria delle scorte (stoccaggio di magazzino) teoria delle code (per gestire i problemi di traffico) 9 10 Le fasi Fasi di un problema risolto con la Ricerca Operativa 1 Formulazione del problema Esame della situazione reale Raccolta delle informazioni 2 Raccolta dei dati Formulazione del problema (variabili, funzione obiettivo, relazioni) Costruzione del modello matematico 3 Costruzione del modello matematico Soluzione del modello 4 Ricerca di una soluzione Analisi e verifica delle soluzioni 5 Controllo del modello e della soluzione 11 Attuazione 12 3

4 FORMULAZIONE DEL PROBLEMA E RACCOLTA DATI In una prima fase è necessario determinare con chiarezza gli obbiettivi appropriati, i vincoli da porre, le intercorrelazioni tra il settore da studiare e gli altri settori dell organizzazione ecc Questa fase è fondamentale, perché influenza molto le conclusioni dello studio e sfocia nella seconda fase dello studio cioè la raccolta dei dati che saranno utilizzati per le fasi successive Costruzione del modello matematico I modelli matematici sono rappresentazioni astratte di situazioni reali espresse in termini di simboli ed espressioni matematiche. Ci sarà sempre una funzione obiettivo da massimizzare (ricavi, profitti, vendite) o minimizzare (costi, perdite, macchinari). Tale funzione dipenderà da una o più variabili d azione (o variabili di decisione) di cui si dovranno determinare i rispettivi valori. Le variabili spesso sono legate tra di loro, e devono sottostare a determinate limitazioni. Tutto questo sarà rappresentato nel modello da equazioni e da disequazioni Costruzione del modello matematico Soluzione del modello Funzione Obiettivo y = f (x 1, x 2..x n ) La funzione obiettivo esprime un costo, un ricavo, un guadagno Vincoli + espressi da equazioni e\o disequazioni I vincoli sono di due tipologie: vincoli di segno (che esprimono la positività delle variabili di azione) e vincoli tecnici (esprimono delle situazioni reali p.es. capacità del magazzino) Le variabili x 1, x 2. x n si chiamano variabili di azione e Creato il modello matematico, si cerca, se esiste, la soluzione ottimale, o con i metodi della matematica classica, o con metodi di analisi numerica, oppure con tecniche di iterazione partendo da una soluzione e cercando di migliorarla. Una soluzione ottimale è quella che massimizza o minimizza (a seconda dei casi) la misura del rendimento in un modello Trovata la soluzione ottimale nel modello, bisogna verificare la corrispondenza tra il modello e la realtà e la soluzione deve essere valutata. sono le variabili d azione

5 Problema Tipico Esempio min max f(x) Modello x 0 Vincolo di segno Matematico g(x) 0 Vincoli tecnici f(x) = funzione obiettivo Costo Costo unitario Metodi semplici (grafici, algebrici) f(x) = Valori di ottimo Ricavo Analisi e derivate Guadagno Oggetti matematici presenti e da approfondire: Ulteriori metodi: Statistiche Approssimazione interpolazione Metodi numerici Equazioni e disequazioni Funzione Funzioni semplici Dominio Continuità Derivate etc. 17 Un azienda che produce concime ha una capacità produttiva massima pari a 220 quintali alla settimana. Per la sua produzione sostiene un costo fisso pari a euro settimanali ed un costo variabile di 30 euro al quintale. Il prezzo di vendita del prodotto è legato alla domanda dalla funzione: x = 250 0,5 * p Determinare la quantità da produrre settimanalmente per massimizzare il guadagno. 18 Esempio Classificazione problemi di scelta P = 500 2*x Il guadagno è dato da : Y = (500 2*x)*x *x Y = -2x con vincoli: x>=0 x<=220 Il modello risolto con l analisi ci conduce alla conclusione che sarà necessario vendere 117,5 quintali di concime Numero variabili coinvolte Tipo di variabili (campo di scelta) Numero e tipo dei vincoli a una variabile a due variabili a più di due variabili continuo (uno o più intervalli reali) discreto (insieme di valori) lineari equazione/i non lineari lineari disequazione/i non lineari 19 Tipo di funzione obiettivo lineari non lineari 20 5

6 Classificazione problemi di scelta Problemi di scelta che affronteremo Problemi di scelta In condizioni di certezza In condizioni di incertezza con effetti immediati con effetti differiti con effetti immediati con effetti differiti certezza: : dati e conseguenze determinabili a priori CONDIZIONI CERTEZZA EFFETTI IMMEDIATI EFFETTI DIFFERITI Ad una variabile A più variabili Max.-min(continuidiscreti) Scorte Sc.alternative P.lineare Investimenti Finanziari e Industriali incertezza: : grandezze variabili aleatorie effetti immediati: : decisione effetti differiti: : decisione realizzazione immediata realizzazione differita PROBLEMI DI MASSIMO E MINIMO Nei problemi di R.O. spesso si useranno i seguenti termini e le seguenti relazioni: Costo totale che verrà indicato con C(x) C(x) = Costo fisso + Costo variabile= C f + C v Costo fisso è il costo che non dipende dalla quantità x di beni prodotti e/o venduti Costo variabile è il costo che dipende dalla quantità x di beni prodotti e/o venduti In questi problemi dovrà essere ricercato il MIN nel caso in cui la funzione obiettivo rappresenti un Costo In questi problemi dovrà essere ricercato il MAX nel caso in cui la funzione obiettivo rappresenti un Utile Vi sono problemi nei quali le variabili di azione possono assumere solo valori interi. In tal caso si parla di problemi DISCRETI. Ricavo è ciò che si ottiene dalla vendita di uno o più prodoti. Lo indicheremo con R(x) = p x cioè il prodotto del prezzo per la quantità venduta Guadagno o Utile. Viceversa vi sono problemi nei quali le variabili possono assumere tutti i valori interi e non interi. Si parla di problemi CONTINUI. Verrà indicato con U(x) = R(x) C(x)

7 Problema di scelta in condizioni di certezza con effetti immediati 1 Un commerciante acquista prodotti al costo di 0,7 euro al kg e li rivende a 1,2 euro al kg. Per il trasporto deve sostenere costi fissi giornalieri di 6 euro e al massimo può trasportare giornalmente 20 kg di merce. Calcolare la quantità di prodotti da vendere per avere il massimo Utile. E un problema di tipo continuo. x = quantità prodotti venduti (problema continuo) R(x) = 1,2 x C(x) = 6 + 0,7 x U(x) = R(x) - C(x) = 1,2 x (6 + 0,7 x ) = 0,5 x Problema 1 (segue) Riassumendo il modello matematico sarà il seguente: U(x) = 0,5 x - 6 Funzione Obiettivo con vincoli x 0 Vincolo di segno e x 20 Vincoli tecnici In x =12 si il punto di equilibrio Break-even point divide la zona di perdita da quella di utile Per x=20 si ha il MAX utile 26 Problema 2 Problema 2 (segue) Un laboratorio artigianale fabbrica birra. Il prezzo unitario è legato alla quantità x venduta secondo la seguente relazione p= 50 0,1 x. Il costo di produzione giornaliera comporta una spesa fissa di euro 1000 più un costo unitario variabile C u v= 10 euro. Determinare la quantità di birra da produrre per ottenere il massimo guadagno. X = numero litri prodotti e venduti (problema continuo) R(x) = (50-0,1x) x C = x Quindi il Modello matematico sarà costituito da: U(x) = -0,1 x x Funzione obiettivo x 0 vincolo di segno (non ci sono vincoli tecnici) In questo esempio la funzione obiettivo è una parabola, pertanto per disegnarla occorre trovarne concavità, vertice e intersezione con gli assi (in particolare con l asse delle x). U(x) = R(x) C(x) = (50-0,1x) x - ( x) Quindi U(x) = -0,1 x x X v = -b/2a = 200 (sostituendo nella funzione) Y v = 3000 Intersezioni con l asse delle x risolvendo l equazione: -0,1 x x = 0 x 1 = 26,8 x 2 = 373,2 28 7

8 Problema 2 (segue) Problema 2 (segue) U t i l e I limiti di produttività (cioè le intersezioni della funzione con l asse delle x) sono dati dai valori di 26,8 e 373,2 litri. Il massimo utile pari a 3000 euro si ottiene producendo e vendendo 200 litri di birra. 29 x Come cambierebbe il problema inserendo un limite alla capacità produttiva di 300 litri di birra al giorno? Il modello matematico sarà costituito da: U(x) = -0,1 x x Funzione obiettivo x 0 e x 300 vincolo di segno e tecnici Il massimo corrisponde sempre a 200 litri di birra U t i l e x 30 Problema 3 Un impresa produce un prodotto sostenendo una spesa fissa mensile di u.m., un costo di produzione unitario di 50 u.m., una spesa unitaria di vendita pari alla metà del prodotto venduto. Il prezzo di vendita è di 800 u.m. per prodotto. La quantità massima che può essere prodotta è 1000 unità di prodotto. Determinare e disegnare la funzione guadagno mensile. (Esaminare anche con vincolo sulla produzione x 700) Problema 3 (segue) Risposta G(x) = -x 2 / x V(750; ) Il massimo corrisponde sempre a x=

9 Problema 4 Per la produzione di un bene un impresa sostiene una spesa fissa di u.m., un costo unitario di 800 u.m. per ogni unità prodotta e una spesa, stimata pari allo 0,5 del quadrato della quantità prodotta, per la manutenzione degli impianti. La capacità produttiva massima mensile è di unità. Determinare per quale quantità il costo unitario di produzione è minimo. C(x) = 0,5 x x Quindi la funzione di costo unitario è: = C u 2 0,5x + 800x x Il modello matematico sarà costituito da: Funzione obiettivo C u = 0,5x x x 0 e x vincolo di segno e tecnici Problema di scelta in condizioni di certezza con effetti immediati In generale per la ricerca del massimo o del minimo occorre ricorrere all analisi matematica Nel caso di funzione ad una variabile: Calcolo della derivata prima Porre la derivata prima uguale a zero Studio del segno della derivata prima (primo metodo) o calcolo della derivata seconda (secondo metodo) Risposta : x = 2000 p = 2800 Problema 4 (segue) Approfondimento sui problemi di massimo e minimo discreti Nei problemi discreti la variabile di azione(o le variabili) possono assumere solo valori interi. Può accadere che non sia possibile esprimere attraverso una relazione matematica il legame tra prezzo e quantità venduta o tra costo e quantità venduta. In tal caso si aggira l ostacolo utilizzando differente. una tecnica

10 Problema 5 Un prodotto è fabbricato e venduto in lotti da 200 pezzi ciascuno. Per la lavorazione si sostiene una spesa fissa giornaliera di u.m ed un costo di u.m. 500 al pezzo, ed il numero massimo di lotti prodotti in un giorno è di 6. Il prezzo di vendita è decrescente al crescere del numero di lotti venduti secondo la seguente tabella N. lotti Prezzo al lotto (x1000) Determinare il numero di lotti che occorre vendere per avere il massimo utile 37 Problemi di massimo e minimo discreti L analisi di un problema discreto di questo tipo si può condurre anche utilizzando la cosiddetta ANALISI MARGINALE Con tale tecnica occorre calcolare la differenza di una funzione: f = f (x+1) f (x) tale differenza è detta incremento marginale Se gli incrementi marginali sono positivi la funzione è crescente, se sono negativi è decrescente. Quando gli incrementi marginali da positivi passano a negativi significa che si è in presenza di un massimo Quando gli incrementi marginali da negativi passano a positivi significa che siamo in presenza di un minimo In pratica per risolvere un problema discreto con questa tecnica si calcola il ricavo marginale ed il costo marginale. 38 Applichiamo questa tecnica all esempio precedente: N lotti Costi (x1000) Ricavo (x1000) Problema 5 (segue) Costo per lotto = a cui aggiungere il costo fisso Guadagno (x1000) Costo marginale Ricavo marginale Conviene espandere la produzione finché il ricavo marginale supera il costo marginale Max. 39 Problema 6 Una ditta produce beni in unità non divisibili (es. abiti) e deve decidere il numero di beni da produrre mensilmente per ottenere l utile massimo. I dati tecnici sono i seguenti : costo unitario per materia prima e lavorazione u.m , spesa fissa mensile u.m , prezzo di vendita p = x (dove x è il numero dei beni). Calcolare quante unità del bene produrre per ottimizzare l utile netto, sapendo che la massima capacità produttiva è unità al mese

11 Modello matematico: massimizzare y = -15x x x x N Caso discreto: dati molto numerosi V(4.000/3; /3) y(1333)= y(1334)= Risposta : x = Problema 6 (segue) 41 Problemi di massimo e minimo discreti Riassumendo in un problema discreto possiamo avere due situazioni: I legami tra i dati e le variabili si possono esprimere attraverso relazioni matematiche; in tal caso si scrive la funzione obiettivo e se ne ricerca max. min. approssimando gli eventuali dati non interi Non è possibile esprimere i legami tra dati e variabili con relazioni matematiche; in tal caso si ricorre alle tabelle(come nell esempio) utilizzando l analisi marginale 42 11

LA RICERCA OPERATIVA

LA RICERCA OPERATIVA LA RICERCA OPERATIVA Il termine Ricerca Operativa, dall inglese Operations Research, letteralmente ricerca delle operazioni, fu coniato per esprimere il significato di determinazione delle attività da

Dettagli

Ricerca operativa. prof. Mario Sandri mario.sandri@gmail.it

Ricerca operativa. prof. Mario Sandri mario.sandri@gmail.it Ricerca operativa prof. Mario Sandri mario.sandri@gmail.it Ricerca operativa La ricerca operativa (nota anche come teoria delle decisioni, scienza della gestione o, in inglese, operations research ("Operational

Dettagli

PROBLEMI DI SCELTA. Problemi di. Scelta. Modello Matematico. Effetti Differiti. A Carattere Continuo. A più variabili d azione (Programmazione

PROBLEMI DI SCELTA. Problemi di. Scelta. Modello Matematico. Effetti Differiti. A Carattere Continuo. A più variabili d azione (Programmazione 1 PROBLEMI DI SCELTA Problemi di Scelta Campo di Scelta Funzione Obiettivo Modello Matematico Scelte in condizioni di Certezza Scelte in condizioni di Incertezza Effetti Immediati Effetti Differiti Effetti

Dettagli

RICERCA OPERATIVA. Questi due tipi di costi contribuiscono a determinare il costo totale di produzione così definito:

RICERCA OPERATIVA. Questi due tipi di costi contribuiscono a determinare il costo totale di produzione così definito: RICERCA OPERATIVA Prerequisiti Rappresentazione retta Rappresentazione parabola Equazioni e disequazioni Ricerca Operativa Studio dei metodi e delle strategie al fine di operare scelte e prendere decisioni

Dettagli

Modelli di Ottimizzazione

Modelli di Ottimizzazione Capitolo 2 Modelli di Ottimizzazione 2.1 Introduzione In questo capitolo ci occuperemo più nel dettaglio di quei particolari modelli matematici noti come Modelli di Ottimizzazione che rivestono un ruolo

Dettagli

PROGRAMMAZIONE LINEARE IN DUE VARIABILI

PROGRAMMAZIONE LINEARE IN DUE VARIABILI 1 PROGRAMMAZIONE LINEARE IN DUE VARIABILI La ricerca operativa nata durante la seconda guerra mondiale ed utilizzata in ambito militare, oggi viene applicata all industria, nel settore pubblico e nell

Dettagli

Università del Salento

Università del Salento Università del Salento Dipartimento di Matematica DAI SISTEMI DI DISEQUAZIONI LINEARI.. ALLA PROGRAMMAZIONE LINEARE Chefi Triki La Ricerca Operativa Fornisce strumenti matematici di supporto alle attività

Dettagli

PROGRAMMAZIONE LINEARE IN DUE VARIABILI

PROGRAMMAZIONE LINEARE IN DUE VARIABILI 1 PROGRAMMAZIONE LINEARE IN DUE VARIABILI La ricerca operativa nata durante la seconda guerra mondiale ed utilizzata in ambito militare, oggi viene applicata all industria, nel settore pubblico e nell

Dettagli

PROBLEMI DI SCELTA IN CONDIZIONI DI CERTEZZA dipendenti da una sola variabile di scelta con effetti immediati

PROBLEMI DI SCELTA IN CONDIZIONI DI CERTEZZA dipendenti da una sola variabile di scelta con effetti immediati prof. Guida PROBLEMI DI SCELTA IN CONDIZIONI DI CERTEZZA dipendenti da una sola variabile di scelta con effetti immediati sono quei problemi nei quali gli effetti della scelta sono noti e immediati ESERCIZIO

Dettagli

PROGRAMMA CLASSE V I. T. C.

PROGRAMMA CLASSE V I. T. C. PROGRAMMA CLASSE V I. T. C. A.S 2009/10 Disciplina: Matematica Generale ed Applicata Titolo modulo Contenuti (suddivisi in unità didattiche) 1 Geometria analitica U.D.1 Equazione retta in forma esplicita

Dettagli

La Minimizzazione dei costi

La Minimizzazione dei costi La Minimizzazione dei costi Il nostro obiettivo è lo studio del comportamento di un impresa che massimizza il profitto sia in mercati concorrenziali che non concorrenziali. Ora vedremo la fase della minimizzazione

Dettagli

LA RICERCA OPERATIVA E I PROBLEMI DI SCELTA

LA RICERCA OPERATIVA E I PROBLEMI DI SCELTA LA RICERCA OPERATIVA E I PROBLEMI DI SCELTA La ricerca operativa può essere considerata: L applicazione del metodo scientifico da parte di gruppi interdisciplinari a problemi che implicano il controllo

Dettagli

La ricerca operativa

La ricerca operativa S.S.I.S. PUGLIA Anno Accademico 2003/2004 Laboratorio di didattica della matematica per l economia e la finanza La ricerca operativa Prof. Palmira Ronchi (palmira.ronchi@ssis.uniba.it) Gli esercizi presenti

Dettagli

mese 1 2 3 4 5 richiesta 6000 7000 8000 9500 11000

mese 1 2 3 4 5 richiesta 6000 7000 8000 9500 11000 1.7 Servizi informatici. Un negozio di servizi informatici stima la richiesta di ore di manutenzione/consulenza per i prossimi cinque mesi: mese 1 2 3 4 5 richiesta 6000 7000 8000 9500 11000 All inizio

Dettagli

Ai fini economici i costi di un impresa sono distinti principalmente in due gruppi: costi fissi e costi variabili. Vale ovviamente la relazione:

Ai fini economici i costi di un impresa sono distinti principalmente in due gruppi: costi fissi e costi variabili. Vale ovviamente la relazione: 1 Lastoriadiun impresa Il Signor Isacco, che ormai conosciamo per il suo consumo di caviale, decide di intraprendere l attività di produttore di caviale! (Vuole essere sicuro della qualità del caviale

Dettagli

Management Sanitario. Modulo di Ricerca Operativa

Management Sanitario. Modulo di Ricerca Operativa Management Sanitario per il corso di Laurea Magistrale SCIENZE RIABILITATIVE DELLE PROFESSIONI SANITARIE Modulo di Ricerca Operativa Prof. Laura Palagi http://www.dis.uniroma1.it/ palagi Dipartimento di

Dettagli

Fondamenti di Economia Aziendale ed Impiantistica Industriale

Fondamenti di Economia Aziendale ed Impiantistica Industriale Politecnico di Milano IV Facoltà di Ingegneria Fondamenti di Economia Aziendale ed Impiantistica Industriale Impiego della programmazione lineare nella progettazione degli impianti Cosa significa progettare

Dettagli

Capitolo 13: L offerta dell impresa e il surplus del produttore

Capitolo 13: L offerta dell impresa e il surplus del produttore Capitolo 13: L offerta dell impresa e il surplus del produttore 13.1: Introduzione L analisi dei due capitoli precedenti ha fornito tutti i concetti necessari per affrontare l argomento di questo capitolo:

Dettagli

Chi non risolve esercizi non impara la matematica.

Chi non risolve esercizi non impara la matematica. 96 matematica per l economia Esercizio 65. Consideriamo ancora il problema 63 dell azienda vinicola, aggiungendo la condizione che l azienda non può produrre più di 200 bottiglie al mese. Soluzione. La

Dettagli

Lezione 18 1. Introduzione

Lezione 18 1. Introduzione Lezione 18 1 Introduzione In questa lezione vediamo come si misura il PIL, l indicatore principale del livello di attività economica. La definizione ed i metodi di misura servono a comprendere a quali

Dettagli

Modello matematico PROGRAMMAZIONE LINEARE PROGRAMMAZIONE LINEARE

Modello matematico PROGRAMMAZIONE LINEARE PROGRAMMAZIONE LINEARE PRGRMMZIN LINR Problemi di P.L. in due variabili metodo grafico efinizione: la programmazione lineare serve per determinare l allocazione ottimale di risorse disponibili in quantità limitata, per ottimizzare

Dettagli

La Massimizzazione del profitto

La Massimizzazione del profitto La Massimizzazione del profitto Studio del comportamento dell impresa, soggetto a vincoli quando si compiono scelte. Ora vedremo un modello per analizzare le scelte di quantità prodotta e come produrla.

Dettagli

Capitolo 26: Il mercato del lavoro

Capitolo 26: Il mercato del lavoro Capitolo 26: Il mercato del lavoro 26.1: Introduzione In questo capitolo applichiamo l analisi della domanda e dell offerta ad un mercato che riveste particolare importanza: il mercato del lavoro. Utilizziamo

Dettagli

I Modelli della Ricerca Operativa

I Modelli della Ricerca Operativa Capitolo 1 I Modelli della Ricerca Operativa 1.1 L approccio modellistico Il termine modello è di solito usato per indicare una costruzione artificiale realizzata per evidenziare proprietà specifiche di

Dettagli

CLASSE TERZA - COMPITI DELLE VACANZE A.S. 2014/15 MATEMATICA

CLASSE TERZA - COMPITI DELLE VACANZE A.S. 2014/15 MATEMATICA Risolvere le seguenti disequazioni: 0 ) x x ) x x x 0 CLASSE TERZA - COMPITI DELLE VACANZE A.S. 04/ MATEMATICA x 6 x x x x 4) x x x x x 4 ) 6) x x x ( x) 0 x x x x x x 6 0 7) x x x EQUAZIONI CON I MODULI

Dettagli

MATEMATICA TRIENNIO CORSO TURISTICO, AMMINISTRAZIONE FINANZA MARKETING, SISTEMI INFORMATIVI AZIENDALI

MATEMATICA TRIENNIO CORSO TURISTICO, AMMINISTRAZIONE FINANZA MARKETING, SISTEMI INFORMATIVI AZIENDALI MATEMATICA TRIENNIO CORSO TURISTICO, AMMINISTRAZIONE FINANZA MARKETING, SISTEMI INFORMATIVI AZIENDALI Obiettivi del triennio: ; elaborando opportune soluzioni; 3) utilizzare le reti e gli strumenti informatici

Dettagli

Master della filiera cereagricola. Impresa e mercati. Facoltà di Agraria Università di Teramo. Giovanni Di Bartolomeo Stefano Papa

Master della filiera cereagricola. Impresa e mercati. Facoltà di Agraria Università di Teramo. Giovanni Di Bartolomeo Stefano Papa Master della filiera cereagricola Giovanni Di Bartolomeo Stefano Papa Facoltà di Agraria Università di Teramo Impresa e mercati Parte prima L impresa L impresa e il suo problema economico L economia studia

Dettagli

Domande a scelta multipla 1

Domande a scelta multipla 1 Domande a scelta multipla Domande a scelta multipla 1 Rispondete alle domande seguenti, scegliendo tra le alternative proposte. Cercate di consultare i suggerimenti solo in caso di difficoltà. Dopo l elenco

Dettagli

ESEMPIO P.L. : PIANIFICAZIONE DI INVESTIMENTI

ESEMPIO P.L. : PIANIFICAZIONE DI INVESTIMENTI ESEMPIO P.L. : PIANIFICAZIONE DI INVESTIMENTI PROBLEMA: un azienda deve scegliere fra due possibili investimenti al fine di massimizzare il profitto netto nel rispetto delle condizioni interne e di mercato

Dettagli

Il mercato di monopolio

Il mercato di monopolio Il monopolio Il mercato di monopolio Il monopolio è una struttura di mercato caratterizzata da 1. Un unico venditore di un prodotto non sostituibile. Non ci sono altre imprese che possano competere con

Dettagli

Programmazione lineare

Programmazione lineare Programmazione lineare Un modello matematico per un problema di programmazione lineare Problema 1. Un reparto di un azienda di elettrodomestici può produrre giornalmente non più di 6 lavatrici, delle quali

Dettagli

Esercizi di Matematica. Funzioni e loro proprietà

Esercizi di Matematica. Funzioni e loro proprietà www.pappalardovincenzo.3.it Esercizi di Matematica Funzioni e loro proprietà www.pappalardovincenzo.3.it ESERCIZIO www.pappalardovincenzo.3.it ESERCIZIO ESERCIZIO www.pappalardovincenzo.3.it ESERCIZIO

Dettagli

PROGRAMMAZIONE LINEARE:

PROGRAMMAZIONE LINEARE: PROGRAMMAZIONE LINEARE: Definizione:la programmazione lineare serve per determinare l'allocazione ottimale di risorse disponibili in quantità limitata, per ottimizzare il raggiungimento di un obiettivo

Dettagli

I ricavi ed i costi di produzione

I ricavi ed i costi di produzione I ricavi ed i costi di produzione Supponiamo che le imprese cerchino di operare secondo comportamenti efficienti, cioè comportamenti che raggiungono i fini desiderati con mezzi minimi (o, che è la stessa

Dettagli

Indicando con x i minuti di conversazione effettuati in un mese, con la spesa totale nel mese e con il costo medio al minuto:

Indicando con x i minuti di conversazione effettuati in un mese, con la spesa totale nel mese e con il costo medio al minuto: PROBLEMA 1. Il piano tariffario proposto da un operatore telefonico prevede, per le telefonate all estero, un canone fisso di 10 euro al mese, più 10 centesimi per ogni minuto di conversazione. Indicando

Dettagli

Investimenti lordi = 2.000 Investimenti netti = 800

Investimenti lordi = 2.000 Investimenti netti = 800 Macroeconomia, Esercitazione 1. A cura di Giuseppe Gori (giuseppe.gori@unibo.it) 1 Esercizi. 1.1 PIL/1 Si consideri un sistema economico che produce solo pane. Questo è costituito da tre imprese: una agricola,

Dettagli

Amministrazione, finanza e marketing - Turismo Ministero dell Istruzione, dell Università e della Ricerca PROGRAMMAZIONE DISCIPLINARE PER U. di A.

Amministrazione, finanza e marketing - Turismo Ministero dell Istruzione, dell Università e della Ricerca PROGRAMMAZIONE DISCIPLINARE PER U. di A. CLASSE quinta INDIRIZZO AFM-SIA-RIM-TUR UdA n. 1 Titolo: LE FUNZIONI DI DUE VARIABILI E L ECONOMIA Utilizzare le strategie del pensiero razionale negli aspetti dialettici e algoritmici per affrontare situazioni

Dettagli

Approfondimento 1 Le curve di costo

Approfondimento 1 Le curve di costo Laboratorio di di Progettazione Esecutiva dell Architettura 2 Modulo di Estimo Approfondimento 1 Le curve di costo Prof. Coll. Renato Da Re Barbara Bolognesi Obiettivo della comunicazione La comunicazione

Dettagli

Investimenti. In questa lezione: studieremo quali sono le determinanti degli investimenti. determiniamo l investimento ottimale

Investimenti. In questa lezione: studieremo quali sono le determinanti degli investimenti. determiniamo l investimento ottimale Investimenti In questa lezione: studieremo quali sono le determinanti degli investimenti determiniamo l investimento ottimale determiniamo le variabili che fanno variare l investimento ottimale 36 La Domanda

Dettagli

Lezione 3 Esercitazioni

Lezione 3 Esercitazioni Lezione 3 Esercitazioni Forlì, 26 Marzo 2013 Teoria della produzione Esercizio 1 Impiegando un fattore produttivo (input) sono stati ottenuti i livelli di produzione (output) riportati in tabella. Fattore

Dettagli

Domande a scelta multipla 1

Domande a scelta multipla 1 Domande a scelta multipla Domande a scelta multipla 1 Rispondete alle domande seguenti, scegliendo tra le alternative proposte. Cercate di consultare i suggerimenti solo in caso di difficoltà. Dopo l elenco

Dettagli

Costo marginale e costo medio. G. Pignataro Microeconomia SPOSI

Costo marginale e costo medio. G. Pignataro Microeconomia SPOSI Costo marginale e costo medio 1 Costo marginale (C ) Incremento di costo risultante dalla produzione di una unità di output in più. Poiché il costo fisso non cambia al variare del livello di produzione

Dettagli

LABORATORIO DI MATEMATICA I PROBLEMI DI SCELTA IN CONDIZIONI DI INCERTEZZA CON EXCEL

LABORATORIO DI MATEMATICA I PROBLEMI DI SCELTA IN CONDIZIONI DI INCERTEZZA CON EXCEL LABORATORIO DI MATEMATICA I PROBLEMI DI SCELTA IN CONDIZIONI DI INCERTEZZA CON EXCEL ESERCITAZIONE GUIDATA I problemi di scelta Problema. Una ditta produttrice di detersivi per lavatrice ha costi al litro

Dettagli

Un percorso dello sguardo. Grazia Cotroni. Le disequazioni e la parabola in seconda liceo

Un percorso dello sguardo. Grazia Cotroni. Le disequazioni e la parabola in seconda liceo Un percorso dello sguardo Grazia Cotroni Le disequazioni e la parabola in seconda liceo 2010/2011 Prerequisiti necessari per l attività didattica: 1. la retta 2. sistemi di primo grado (metodo di sostituzione,

Dettagli

INDICI DI BILANCIO. Lo stato patrimoniale, riclassificato, assume la forma che schematizziamo di seguito:

INDICI DI BILANCIO. Lo stato patrimoniale, riclassificato, assume la forma che schematizziamo di seguito: INDICI DI BILANCIO L analisi per indici del bilancio consiste nel calcolare, partendo dai dati dello Stato patrimoniale e del Conto economico, opportunamente revisionati e riclassificati, indici (quozienti,

Dettagli

Ricerca Operativa Prima Parte

Ricerca Operativa Prima Parte 1 2 fasi Prima Parte 2 Testi didattici S. Martello, M.G. Speranza, Ricerca Operativa per l Economia e l Impresa, Ed. Esculapio, 2012. F.S. Hillier, G.J. Lieberman, Ricerca operativa - Fondamenti, 9/ed,

Dettagli

Appello di Ricerca Operativa A.A. 2006-2007 (29/3/2007)

Appello di Ricerca Operativa A.A. 2006-2007 (29/3/2007) Nome... Cognome... 1 Appello di Ricerca Operativa A.A. 2006-2007 (29/3/2007) Si consideri la funzione f(x) = 4x 2 1 + 6x 4 2 2x 2 1x 2. Si applichi per un iterazione il metodo del gradiente a partire dai

Dettagli

LA POLITICA DEI PREZZI:

LA POLITICA DEI PREZZI: LA POLITICA DEI PREZZI: I VINCOLI DI MERCATO E LA CORRETTA DETERMINAZIONE DEL COSTO DEL PRODOTTO 1 DETERMINAZIONE DEL PREZZO APPROCCIO CENTRATO SULL AZIENDA APPROCCIO CENTRATO SUL MERCATO 2 APPROCCIO CENTRATO

Dettagli

LA COMBINAZIONE DEI FATTORI PRODUTTIVI CAP. 5

LA COMBINAZIONE DEI FATTORI PRODUTTIVI CAP. 5 LA COMBINAZIONE DEI FATTORI PRODUTTIVI CAP. 5 Appunti di estimo Il fine economico dell imprenditore Le motivazioni che spingono un imprenditore ad avviare attività di impresa sono: Produrre beni e servizi,

Dettagli

CAPITOLO I. Prof. Ing. Michele Marra - Appunti delle Lezioni di Ricerca Operativa Programmazione Dinamica

CAPITOLO I. Prof. Ing. Michele Marra - Appunti delle Lezioni di Ricerca Operativa Programmazione Dinamica CAPITOLO I. - PROGRAMMAZIONE DINAMICA La programmazione dinamica è una parte della programmazione matematica che si occupa della soluzione di problemi di ottimizzazione di tipo particolare, mediante una

Dettagli

IL BREAK EVEN E LA STRUTTURA DI COSTO

IL BREAK EVEN E LA STRUTTURA DI COSTO IL BREAK EVEN E LA STRUTTURA DI COSTO L analisi del punto di pareggio esprime, sia per via grafica che in termini matematici la relazione COSTI - VOLUME PROFITTO e dà un quadro immediato degli elementi

Dettagli

Logistica - Il problema del trasporto

Logistica - Il problema del trasporto Logistica - Il problema del trasporto Federico Di Palma December 17, 2009 Il problema del trasporto sorge ogniqualvolta si debba movimentare della merce da una o più sorgenti verso una o più destinazioni

Dettagli

Massimi e minimi vincolati di funzioni in due variabili

Massimi e minimi vincolati di funzioni in due variabili Massimi e minimi vincolati di funzioni in due variabili I risultati principali della teoria dell ottimizzazione, il Teorema di Fermat in due variabili e il Test dell hessiana, si applicano esclusivamente

Dettagli

UNIVERSITÀ DEGLI STUDI DI BERGAMO. Facoltà di Economia

UNIVERSITÀ DEGLI STUDI DI BERGAMO. Facoltà di Economia UNIVERSITÀ DEGLI STUDI DI BERGAMO Facoltà di Economia Programmazione e controllo IL PROCESSO DI BUDGET prof. Pagina 1 di 58 IL PROCESSO DI BUDGET IN AZIENDA Pagina 2 di 58 IL PROCESSO DI FORMULAZIONE DEL

Dettagli

Università degli studi di Bergamo Corso di Laurea Specialistica in Ingegneria Gestionale Economia e Organizzazione Aziendale Prof.

Università degli studi di Bergamo Corso di Laurea Specialistica in Ingegneria Gestionale Economia e Organizzazione Aziendale Prof. Università degli studi di Bergamo Corso di Laurea Specialistica in Ingegneria Gestionale Economia e Organizzazione Aziendale Prof. Michele Meoli Esercitazione: Analisi di Break-Even (o analisi del punto

Dettagli

Istituzioni di Economia Laurea Triennale in Ingegneria Gestionale Lezione 16 Offerta dell impresa

Istituzioni di Economia Laurea Triennale in Ingegneria Gestionale Lezione 16 Offerta dell impresa UNIVERSITÀ DEGLI STUDI DI BERGAMO Laurea Triennale in Ingegneria Gestionale Lezione 16 Offerta dell impresa Prof. Gianmaria Martini Offerta dell impresa La decisione di un impresa a riguardo della quantità

Dettagli

Esame di Stato 2015 - Tema di Matematica

Esame di Stato 2015 - Tema di Matematica Esame di Stato 5 - Tema di Matematica PROBLEMA Il piano tariffario proposto da un operatore telefonico prevede, per le telefonate all estero, un canone fisso di euro al mese, più centesimi per ogni minuto

Dettagli

I COSTI PROF. MATTIA LETTIERI

I COSTI PROF. MATTIA LETTIERI I COSTI ROF. MATTIA LETTIERI Indice 1. LE FUNZIONI DI COSTO --------------------------------------------------------------------------------------------------- 3 2. I COSTI DELL IMRESA NEL BREVE ERIODO

Dettagli

~ Copyright Ripetizionando - All rights reserved ~ http://ripetizionando.wordpress.com STUDIO DI FUNZIONE

~ Copyright Ripetizionando - All rights reserved ~ http://ripetizionando.wordpress.com STUDIO DI FUNZIONE STUDIO DI FUNZIONE Passaggi fondamentali Per effettuare uno studio di funzione completo, che non lascia quindi margine a una quasi sicuramente errata inventiva, sono necessari i seguenti 7 passaggi: 1.

Dettagli

Analisi dei costi di produzione

Analisi dei costi di produzione Analisi dei costi di produzione industriale Analisi dei costi 1 Comportamento dei costi La produzione è resa possibile dall impiego di diversi fattori. L attività di produzione consuma l utilità dei beni

Dettagli

Capitolo 8. La massimizzazione del profitto e l offerta concorrenziale. F. Barigozzi Microeconomia CLEC 1

Capitolo 8. La massimizzazione del profitto e l offerta concorrenziale. F. Barigozzi Microeconomia CLEC 1 Capitolo 8 La massimizzazione del profitto e l offerta concorrenziale F. Barigozzi Microeconomia CLEC 1 Argomenti trattati nel capitolo I mercati in concorrenza perfetta La massimizzazione del profitto

Dettagli

CAPITOLO SECONDO RICHIAMI DI MICROECONOMIA

CAPITOLO SECONDO RICHIAMI DI MICROECONOMIA CAPITOLO SECONDO RICHIAMI DI MICROECONOMIA SOMMARIO: 2.1 La domanda. - 2.2 Costi, economie di scala ed economie di varietà. - 2.2.1 I costi. - 2.2.2 Le economie di scala. - 2.2.3 Le economie di varietà.

Dettagli

Funzioni in due variabili Raccolta di FAQ by Andrea Prevete

Funzioni in due variabili Raccolta di FAQ by Andrea Prevete Funzioni in due variabili Raccolta di FAQ by Andrea Prevete 1) Cosa intendiamo, esattamente, quando parliamo di funzione reale di due variabili reali? Quando esiste una relazione fra tre variabili reali

Dettagli

ESERCITAZIONI per il corso di ECONOMIA DELL ARTE E DELLA CULTURA 1 1 MODULO (prof. Bianchi) a.a. 2007-2008

ESERCITAZIONI per il corso di ECONOMIA DELL ARTE E DELLA CULTURA 1 1 MODULO (prof. Bianchi) a.a. 2007-2008 ESERCITAZIONI per il corso di ECONOMIA DELL ARTE E DELLA CULTURA 1 1 MODULO (prof. Bianchi) a.a. 2007-2008 A. Il modello macroeconomico in economia chiusa e senza settore pubblico. A.1. Un sistema economico

Dettagli

Indice di rischio globale

Indice di rischio globale Indice di rischio globale Di Pietro Bottani Dottore Commercialista in Prato Introduzione Con tale studio abbiamo cercato di creare un indice generale capace di valutare il rischio economico-finanziario

Dettagli

Paperone e Rockerduck: a cosa serve l antitrust?

Paperone e Rockerduck: a cosa serve l antitrust? Paperone e Rockerduck: a cosa serve l antitrust? Paperone Anna Torre, Rockerduck Ludovico Pernazza 1-14 giugno 01 Università di Pavia, Dipartimento di Matematica Concorrenza Due imprese Pap e Rock operano

Dettagli

Ricerca Operativa e Logistica Dott. F.Carrabs e Dott.ssa M.Gentili. Introduzione

Ricerca Operativa e Logistica Dott. F.Carrabs e Dott.ssa M.Gentili. Introduzione Ricerca Operativa e Logistica Dott. F.Carrabs e Dott.ssa M.Gentili Introduzione La Ricerca Operativa La Ricerca Operativa è una disciplina relativamente recente. Il termine Ricerca Operativa è stato coniato

Dettagli

Lezioni di Economia Aziendale classe quarta Prof. Monica Masoch LA FINANZA AZIENDALE E LE DECISIONI DI INVESTIMENTO

Lezioni di Economia Aziendale classe quarta Prof. Monica Masoch LA FINANZA AZIENDALE E LE DECISIONI DI INVESTIMENTO Lezioni di Economia Aziendale classe quarta Prof. Monica Masoch LA FINANZA AZIENDALE E LE DECISIONI DI INVESTIMENTO LE DECISIONI DI INVESTIMENTO Cosa significa «Investimento»? L investimento è la seconda

Dettagli

PIANO DI LAVORO DEL PROFESSORE

PIANO DI LAVORO DEL PROFESSORE ISTITUTO DI ISTRUZIONE SUPERIORE STATALE IRIS V ERSA RI - Cesano Maderno (MB) PIANO DI LAVORO DEL PROFESSORE Indirizzo LICEO TECNICO MATERIA M ATEMATICA APPLICATA ANNO SCOLASTICO 2011-2012 PROF PIZZILEO

Dettagli

Capitolo V. I mercati dei beni e i mercati finanziari: il modello IS-LM

Capitolo V. I mercati dei beni e i mercati finanziari: il modello IS-LM Capitolo V. I mercati dei beni e i mercati finanziari: il modello IS-LM 2 OBIETTIVO: Il modello IS-LM Fornire uno schema concettuale per analizzare la determinazione congiunta della produzione e del tasso

Dettagli

ALGORITMI MATEMATICI RISOLUTIVI RELATIVI A PROBLEMI ECONOMICO FINANZIARI E/O AZIENDALI

ALGORITMI MATEMATICI RISOLUTIVI RELATIVI A PROBLEMI ECONOMICO FINANZIARI E/O AZIENDALI ALGORITMI MATEMATICI RISOLUTIVI RELATIVI A PROBLEMI ECONOMICO FINANZIARI E/O AZIENDALI PREMESSA Il problema che si intende affrontare è gestione del magazzino: determinazione del lotto economico di acquisto

Dettagli

1) Quali sono le equazioni, implicita ed esplicita, del piano determinato dai punti (-2;0:3) (1,-2,-1) (3,1,0) dello spazio cartesiano?

1) Quali sono le equazioni, implicita ed esplicita, del piano determinato dai punti (-2;0:3) (1,-2,-1) (3,1,0) dello spazio cartesiano? A - ANALISI INFINITESIMALE 1) Quali sono le equazioni, implicita ed esplicita, del piano determinato dai punti (-;0:3) (1,-,-1) (3,1,0) dello spazio cartesiano? ) Qual è l'equazione del piano passante

Dettagli

STUDIO DI UNA FUNZIONE

STUDIO DI UNA FUNZIONE STUDIO DI UNA FUNZIONE OBIETTIVO: Data l equazione Y = f(x) di una funzione a variabili reali (X R e Y R), studiare l andamento del suo grafico. PROCEDIMENTO 1. STUDIO DEL DOMINIO (CAMPO DI ESISTENZA)

Dettagli

Lezione 6 (16/10/2014)

Lezione 6 (16/10/2014) Lezione 6 (16/10/2014) Esercizi svolti a lezione Esercizio 1. La funzione f : R R data da f(x) = 10x 5 x è crescente? Perché? Soluzione Se f fosse crescente avrebbe derivata prima (strettamente) positiva.

Dettagli

La gestione delle scorte tramite il punto di riordino ed il lotto economico

La gestione delle scorte tramite il punto di riordino ed il lotto economico La gestione delle scorte tramite il punto di riordino ed il lotto economico 1. Introduzione Le Scorte sono costituite in prevalenza da materie prime, da accessori/componenti, da materiali di consumo. Rappresentano

Dettagli

Costi unitari materie dirette 30 40 Costi unitari manodopera diretta. Energia 10 20 Quantità prodotte 600 400 Prezzo unitario di vendita 120 180

Costi unitari materie dirette 30 40 Costi unitari manodopera diretta. Energia 10 20 Quantità prodotte 600 400 Prezzo unitario di vendita 120 180 SVOLGIMENTO Per ogni attività di programmazione e pianificazione strategica risulta di fondamentale importanza per l impresa il calcolo dei costi e il loro controllo, con l attivazione di un efficace sistema

Dettagli

Simulazione di una catena logistica

Simulazione di una catena logistica Simulazione di una catena logistica La logistica aziendale richiede l organizzazione di approvvigionamento e trasporto dei prodotti e dei servizi. La catena di distribuzione, supply chain, comprende il

Dettagli

ELASTICITÀ. Sarebbe conveniente per il produttore aumentare ulteriormente il prezzo nella stessa misura del caso

ELASTICITÀ. Sarebbe conveniente per il produttore aumentare ulteriormente il prezzo nella stessa misura del caso Esercizio 1 Data la funzione di domanda: ELASTICITÀ Dire se partendo da un livello di prezzo p 1 = 1.5, al produttore converrà aumentare il prezzo fino al livello p 2 = 2. Sarebbe conveniente per il produttore

Dettagli

RENDIMENTI DI SCALA CRESCENTI

RENDIMENTI DI SCALA CRESCENTI 1 U C I I M - Torino Associazione Cattolica Insegnanti Dirigenti Formatori Sezione di Torino Ettore PEYRON Corso di ECONOMIA PUBBLICA 2007 Aggiornamento per docenti di Scienza delle Finanze della scuola

Dettagli

ESERCIZI DI MATEMATICA FINANZIARIA DIPARTIMENTO DI ECONOMIA E MANAGEMENT UNIFE A.A. 2015/2016. 1. Esercizi: lezione 24/11/2015

ESERCIZI DI MATEMATICA FINANZIARIA DIPARTIMENTO DI ECONOMIA E MANAGEMENT UNIFE A.A. 2015/2016. 1. Esercizi: lezione 24/11/2015 ESERCIZI DI MATEMATICA FINANZIARIA DIPARTIMENTO DI ECONOMIA E MANAGEMENT UNIFE A.A. 2015/2016 1. Esercizi: lezione 24/11/2015 Valutazioni di operazioni finanziarie Esercizio 1. Un operazione finanziaria

Dettagli

15. Analisi del rapporto tra costi, volumi e risultati. Ragioneria Generale ed Applicata Sede di Fano

15. Analisi del rapporto tra costi, volumi e risultati. Ragioneria Generale ed Applicata Sede di Fano 15. Analisi del rapporto tra costi, volumi e risultati Ragioneria Generale ed Applicata Sede di Fano UNO STRUMENTO PER L ANALISI CONGIUNTA DELL ANDAMENTO DEI COSTI, RICAVI, RISULTATI B.E.P.= break even

Dettagli

Laboratorio di Progettazione Esecutiva dell Architettura 2 Corso di Estimo a.a. 2007-08 Docente Renato Da Re Collaboratore: Barbara Bolognesi

Laboratorio di Progettazione Esecutiva dell Architettura 2 Corso di Estimo a.a. 2007-08 Docente Renato Da Re Collaboratore: Barbara Bolognesi Laboratorio di Progettazione Esecutiva dell Architettura 2 Corso di Estimo a.a. 2007-08 Docente Renato Da Re Collaboratore: Barbara Bolognesi Microeconomia venerdì 29 febbraio 2008 La struttura della lezione

Dettagli

CAPITOLO IX 9. - PROGRAMMAZIONE LINEARE INTERA

CAPITOLO IX 9. - PROGRAMMAZIONE LINEARE INTERA CAPITOLO IX 9. - PROGRAMMAZIONE LINEARE INTERA Molto spesso i risultati che si desidera ottenere come soluzione di un problema di programmazione lineare sono numeri interi, ad es. il numero di vagoni ferroviari

Dettagli

I mercati dei beni e i mercati finanziari: il modello IS-LM. Assunzione da rimuovere. Investimenti, I

I mercati dei beni e i mercati finanziari: il modello IS-LM. Assunzione da rimuovere. Investimenti, I I mercati dei beni e i mercati finanziari: il modello IS-LM Assunzione da rimuovere Rimuoviamo l ipotesi che gli Investimenti sono una variabile esogena. Investimenti, I Gli investimenti delle imprese

Dettagli

Teoria dei Giochi. Anna Torre

Teoria dei Giochi. Anna Torre Teoria dei Giochi Anna Torre Almo Collegio Borromeo 14 marzo 2013 email: anna.torre@unipv.it sito web del corso:www-dimat.unipv.it/atorre/borromeo2013.html IL PARI O DISPARI I II S T S (-1, 1) (1, -1)

Dettagli

UNIVERSITÀ DEGLI STUDI DI BERGAMO

UNIVERSITÀ DEGLI STUDI DI BERGAMO UNIVERSITÀ DEGLI STUDI DI BERGAMO Corso di prof.ssa Maria Sole Brioschi Esercizi sulle decisioni aziendali di lungo periodo DLP-E2 Corso 20085 Corso di Laurea Triennale in Ingegneria Edile Anno Accademico

Dettagli

Università Ca Foscari Venezia

Università Ca Foscari Venezia Università Ca Foscari Venezia Dipartimento di Scienze Ambientali, Informatica e Statistica Giovanni Fasano 2 Problemi di Costo Fisso & Vincoli Disgiuntivi (con esercizi ) November 12, 2015 2 Università

Dettagli

Economia Pubblica il Monopolio Naturale

Economia Pubblica il Monopolio Naturale Economia Pubblica il Monopolio Naturale Giuseppe De Feo Università degli Studi di Pavia email: giuseppe.defeo@unipv.it Secondo Semestre 2011-12 Outline il Monopolio Naturale Il problema del Monopolio Naturale

Dettagli

Modulo 2. Domanda aggregata e livello di produzione

Modulo 2. Domanda aggregata e livello di produzione Modulo 2 Domanda aggregata e livello di produzione Esercizio. In un sistema economico privo di settore pubblico, la funzione di consumo è: C = 200 + 0.8Y; gli investimenti sono I= 50. a) Qual è il livello

Dettagli

Macroeconomia, Esercitazione 2.

Macroeconomia, Esercitazione 2. Macroeconomia, Esercitazione 2. A cura di Giuseppe Gori e Gianluca Antonecchia (gianluca.antonecchia@studio.unibo.it) 1.1 Domanda e Offerta aggregate/1 In un sistema economico privo di settore pubblico,

Dettagli

Il monopolio (Frank, Capitolo 12)

Il monopolio (Frank, Capitolo 12) Il monopolio (Frank, Capitolo 12) IL MONOPOLIO Il monopolio è una forma di mercato in cui un unico venditore offre un bene che non ha stretti sostituti, ad una moltitudine di consumatori La differenza

Dettagli

Ricerca Operativa A.A. 2007/2008. 10. Dualità in Programmazione Lineare

Ricerca Operativa A.A. 2007/2008. 10. Dualità in Programmazione Lineare Ricerca Operativa A.A. 2007/2008 10. Dualità in Programmazione Lineare Luigi De Giovanni - Ricerca Operativa - 10. Dualità in Programmazione Lineare 10.1 Soluzione di un problema di PL: punti di vista

Dettagli

Il comportamento del produttore

Il comportamento del produttore Unità 2 Il comportamento del produttore 1 Indice Ambito I fattori produttivi La funzione di produzione Il mercato concorrenziale 2 Ambito La teoria del produttore si occupa di studiare il comportamento

Dettagli

MINIMIZZAZIONE DEI COSTI

MINIMIZZAZIONE DEI COSTI Università degli studi di MACERATA Facoltà di SCIENZE POLITICHE ECONOMIA POLITICA: MICROECONOMIA A.A. 2009/2010 MINIMIZZAZIONE DEI COSTI Fabio CLEMENTI E-mail: fabio.clementi@univpm.it Web: http://docenti.unimc.it/docenti/fabio-clementi

Dettagli

La teoria dell offerta

La teoria dell offerta La teoria dell offerta Tecnologia e costi di produzione In questa lezione approfondiamo l analisi del comportamento delle imprese e quindi delle determinanti dell offerta. In particolare: è possibile individuare

Dettagli

LA MASSIMIZZAZIONE DEI PROFITTI NEL BREVE PERIODO

LA MASSIMIZZAZIONE DEI PROFITTI NEL BREVE PERIODO 1 LA MASSIMIZZAZIONE DEI PROFITTI NEL BREVE PERIODO 1 La nozione di breve e di lungo periodo Una assunzione rilevante della teoria del comportamento dell'impresa sviluppato in precedenza è che l'impresa

Dettagli

Funzioni a 2 variabili

Funzioni a 2 variabili Funzioni a 2 variabili z = f(x, y) Relazione che associa ad ogni coppia di valori x,y (variabili indipendenti) uno ed un solo valore di z (variabile dipendente). Esempi: z = x 2y + 4 z = x 2 y 2 2x z =

Dettagli

I.T.C. Abba Ballini BS a.s. 2014 2015 cl 4^

I.T.C. Abba Ballini BS a.s. 2014 2015 cl 4^ MODULO 1: LE FUNZIONI- GRAFICI APPROSSIMATI UD 1.1 Saper analizzare le proprietà caratteristiche di una funzione razionale in una variabile Saper ipotizzare il grafico di una funzione razionale Dominio,

Dettagli

Corso di Analisi Statistica per le Imprese (9 CFU) Prof. L. Neri a.a. 2011-2012

Corso di Analisi Statistica per le Imprese (9 CFU) Prof. L. Neri a.a. 2011-2012 Corso di Analisi Statistica per le Imprese (9 CFU) Prof. L. Neri a.a. 2011-2012 1 Riepilogo di alcuni concetti base Concetti di base: unità e collettivo statistico; popolazione e campione; caratteri e

Dettagli

Corso di Macroeconomia. Il modello IS-LM. Appunti

Corso di Macroeconomia. Il modello IS-LM. Appunti Corso di Macroeconomia Il modello IS-LM Appunti 1 Le ipotesi 1. Il livello dei prezzi è fisso. 2. L analisi è limitata al breve periodo. La funzione degli investimenti A differenza del modello reddito-spesa,

Dettagli